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Isik, Pym and Ulger [8] give a good account of the structure of the second dual
L1(G)∗∗ of the group algebraL1(G) of a compact groupG. Lau and Pym [10]
investigate the general case of a locally compact groupG. They introduce a sub-
algebraLG, the norm closure of elements inL1(G)∗∗ with compact carriers, and
identify it with L∞0 (G)

∗ via restriction on the subspaceL∞0 (G) of bounded mea-
surable functions onG that vanish at infinity. ForL∞0 (G)

∗, they are able to re-
cover most of the results obtained forL1(G)∗∗ in the compact case. Therefore,
they suggest in [10] that the sensible replacement forL1(G)∗∗ should beL∞0 (G)

∗.
The purpose of this paper is to give a locally convex topologyτ onL1(G) under
whichL∞0 (G) (with ‖ · ‖∞) is its strong dual and thus presentL∞0 (G)

∗ as the sec-
ond dual of(L1(G), τ ). We show that, except for the trivial case ofG finite, there
are uncountably many such topologies, and we discuss various levels of continuity
of multiplication.

As far as possible, we follow [10] in our notation and refer to [5] for basic func-
tional analysis and to [7] for basic harmonic analysis (see also [12]). In particular,
λ is the left Haar measure on the locally compact groupG for a Borel measurable
subsetK of G. Moreover,f ∈ L∞(G), ‖f ‖K = ess sup{ |f(x)| : x ∈ K }, and
L∞0 (G) = { f ∈ L∞(G) : forK compact, ‖f ‖G\K → 0 asK ↑ G }. It follows
that(L1(G), L∞0 (G)) is a dual pair.

Let σ and µ denote (resp.) the weak topologyσ(L1(G), L∞0 (G)) and the
Mackey topologyµ(L1(G), L∞0 (G))onL1(G). Letσ ∗ denote the weak*-topology
σ(L∞0 (G), L

1(G)) onL∞0 (G), and letL1
00(G) be the subalgebra ofL1(G) con-

sisting of thosef that vanish outside some compact subset ofG.

Let S andR be (resp.) the sets of increasing sequences(Kn) in K and(an) in
(0,∞) with an→∞. For ((Kn), (an))∈S ×R, let

U((Kn), (an)) = {φ ∈L1(G) : ‖φχKn‖1 ≤ an, n∈N }.
ThenU = {U((Kn), (an)) : ((Kn), (an))∈S ×R } is a base of neighborhoods of
zero for a locally convex topologyβ1 onL1(G). It is similar to the strict topology
β defined by Buck [1].
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1. Remarks. (i) If G is σ -compact then there exists a(Kn) ∈ S with
⋃{Kn :

n ∈ N } = G satisfying the condition that eachK in K is contained in someKn.
Therefore, a base of neighborhoods forβ1 is also given by

U = {U((Kn), (an)) : (an)∈R }.
(ii) If G is infinite then there is a(Kn) ∈ S with λ(Kn\Kn−1) > 0 for eachn,

whereK0 = φ. It is easy to see this ifG is not compact because, for aK in K,
G\K is a non-empty open subset of the locally compact spaceG and thus con-
tains a compact subsetL with non-empty interior. Alternatively, we can use the
proof of [7, item (11.43)(e)]. On the other hand, ifG is compact thenG is not dis-
crete, so by regularity ofλ there is a decreasing sequence(Un) of open neighbor-
hoods of the identitye satisfying 0< λUn+1 < λUn for eachn in N. We may take
Kn = G\Un for n in N.

(iii) The construction in [7, item (11.43)] can by modified to give the following
stronger form of (ii) to be used later: IfG is not compact then there exist(An) in
S and sequences(Bn) and(Cn) in K that satisfy the following conditions.
(a) AnB−1

n ⊂ Cn.
(b) TheBn are mutually disjoint.
(c) TheCn are mutually disjoint.
(d) infn λCn ≥ inf n λB−1

n > 0.
(e) If G is unimodular then, for eachn,

λBn ≤ 1 and λ
(⋃

n An
) = ∞.

Let U andV be compact symmetric neighborhoods ofe in G with V 2 ⊂ U

andλV ≤ 1. SinceG is not compact, for any finite subsetF of G there is az in
G with z not in the set

⋃{ x−1UyU : x, y ∈ F }. Hence, takingx0 = e, we can
inductively construct a sequence(xn) in G with

x2n /∈
⋃{ x−1

j UxkU : 0 ≤ j, k < 2n } for n in N ∪ {0},
x2k+j = xjx2k for 1≤ j < 2k and k in N.

Forn∈N, we put

An =
⋃{Vxj : 0 ≤ j < 2n },

Bn = V(x2n)
−1, and

Cn =
⋃{VxjV : 2n ≤ j < 2n+1 }.

(iv) We can strengthen (ii) in another way by modifiying the construction in
[7, item (11.43)(e)]. SupposeG is not compact. LetV be a compact symmet-
ric neighborhood ofe and let(Kn) ∈ S. Then there are sequences(xn) in G and
(Ln)∈S such that, for eachn, Kn ⊂ Ln andVxn ⊂ Ln\Ln−1, whereL0 = φ.

(v) If G is compact, thenL∞0 (G) = L∞(G) andβ1= µ = ‖ · ‖1-topology.

2. Theorem. The dual of(L1(G), β1) (with the strong topology) can be iden-
tified withL∞0 (G) (with ‖ · ‖∞) and thus the second dual of(L1(G), β1) can be
identified withL∞0 (G)

∗.
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Proof. Let B = {φ ∈ L1(G) : ‖φ‖1 ≤ 1}. ThenB is β1-bounded. Hence every
β1-continuous linear functional onL1(G) is bounded onB and thus is continu-
ous on(L1(G), ‖ · ‖1). Each such functional is therefore given by an element of
L∞(G). We show that such anf is inL∞0 (G). Sincef is β1-continuous, there is
a ((Kn), (an))∈S ×R such that∣∣∣∣∫ φ(x)f(x) dλ(x)

∣∣∣∣ ≤ 1 for eachφ in U((Kn), (an)).

Also, there exists ag ∈L∞(G) with ‖g‖∞ ≤ 1 andgf = |f |.
Let j ∈N. LetA be a Borel subset ofG\Kj with 0< λA <∞ andα ≥ 0 such

that|f |χA ≥ αχA. Let φ = aj+1(λA)
−1χAg. Thenφ ∈U((Kn), (an)), and so

1≥
∣∣∣∣∫ φ(x)f(x) dλ(x)

∣∣∣∣ = ∫ aj+1(λA)
−1(χA|f |)(x) dλ(x) ≥ aj+1α.

Therefore,α ≤ 1/aj+1 and so‖f ‖G\Kj ≤ 1/aj+1. Sinceaj → ∞, we also have
‖f ‖G\Kj → 0 asj →∞; hence,f ∈L∞0 (G).

Now letf ∈L0
∞(G). Then there exists a(Kn) ∈ S such that‖f ‖G\Kn → 0 as

n → ∞. PutK0 = φ and, forn ∈ N, setbn = ‖f ‖G\Kn−1 andβn =
√
bn. Let

(an)∈R be such thatanβn ≤ 1 for eachn. Let φ ∈U((Kn), (an)). Forn∈N, let
rn = ‖φχKn\Kn−1‖1 andsn =

∑
1≤j≤n rj . Puts0 = 0. Then, forp ∈N, we have∑

1≤n≤p+1

bnrn =
∑

1≤n≤p
(bn − bn+1)sn + bp+1sp+1

=
∑

1≤n≤p
(βn − βn+1)(βn + βn+1)sn + β2

p+1sp+1

≤
∑

1≤n≤p
(βn − βn+1)2βnan + β2

p+1ap+1

≤
∑

1≤n≤p
2(βn − βn+1)+ βp+1.

As a result,
∣∣∫ φ(x)f(x) dλ(x)∣∣ ≤ ∑∞

n=1bnrn ≤ 2[‖f ‖∞]1/2 and sof is β1-
continuous.

We next show thatB absorbs allβ1-bounded subsets ofL1(G). Suppose not.
Then there is aβ1-bounded subsetX of L1(G) such thatX 6⊂ ρB for eachρ >
0. Hence, for eachn ∈ N, there is aφn ∈ X with ‖φn‖1 > n and thus aCn ∈ K
with ‖φnχCn‖1 > n. We can have a sequenceKn in S with Cn ⊂ Kn for eachn.
Putan =

√
n for n in N. Then there is aρ > 0 such thatX ⊂ ρU((Kn), (an)).

Therefore, for eachn,
‖φnχKn‖1 ≤ ρan = ρ

√
n.

But ‖φnχKn‖1 ≥ ‖φnχCn‖1 > 1 and thusn < ρ
√
n for eachn—this gives us a

contradiction. HenceB absorbs everyβ1-bounded subset ofL1(G).

Consequently, the strong topologyτb on (L1(G), β1)∗ identified withL∞0 (G)
is the topology given by the norm defined by
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‖f ‖ = sup

{ ∣∣∣∣∫ f(x)φ(x) dλ(x)

∣∣∣∣ : φ ∈B
}
= ‖f ‖∞.

Hence the second dual of(L1(G), β1) isL∞0 (G)
∗.

3. Theorem. LetG be infinite. Then there are uncountably many locally con-
vex topologiesτ onL1(G) such thatL∞0 (G) (with ‖ · ‖∞) is the strong dual of
(L1(G), τ ) and thusL∞0 (G)

∗ is the second dual of(L1(G), τ ).

Proof. By Remark 1(ii) there is a(Kn) ∈ S with λ(Kn\Kn−1) > 0 for eachn,
whereK0 = φ. Let (an) ∈R and putV = U((Kn), (an)). ThenV contains the
space generated by anf inL1(G) if and only iff = 0 on

⋃
n Kn. Since{χKn\Kn−1 :

n ∈ N } is a linearly independent set, the spaceF1 = { f ∈ L1(G) : f = 0 on
eachKn } has infinite codimension inL1(G). Everyσ-neighborhood of zero con-
tains a subspace ofL1(G) of finite codimension, soV cannot be aσ-neighborhood
of zero and thusσ < β1. Hence, by [11], there exist infinitely many locally con-
vex topologiesτ lying betweenσ andβ1; in fact, using [9], we have uncount-
ably many such topologiesτ. Each one of them has(L∞0 (G), ‖ · ‖∞) as its strong
dual.

4. Remarks. (i) For any topologyτ with (L1(G), τ )∗ = L∞0 (G) (in particular,
if σ ≤ τ ≤ β1), the set of continuous (nonzero) multiplicative linear functionals
on (L1(G), τ ) is the set of continuous characters ofG or empty according asG
is compact or noncompact. This follows immediately from [7, Cor. (23.7)], since
every multiplicative linear functional onL1(G) is ‖ · ‖1-continuous and since a
character is inL∞0 (G) if and only ifG is compact.

(ii) Gulick [6] considered a locally convex algebra with hypocontinuous multi-
plication and constructed its second dual with Arens product. We recall that mul-
tiplication in a locally convex algebraE is said to behypocontinuousif, given a
neighborhoodU of zero inE and a bounded subsetC ofE, there exists a neighbor-
hoodV of zero inE satisfying(VC)∪(CV ) ⊂ U. Interestingly, the Arens product
onL∞0 (G)

∗ has already been constructed by Lau and Pym in [10, Prop. 2.7] and
the discussion that follows. TakeG = R, letKn = [−n, n] for eachn, and take
any (an), (bn) ∈R andr ∈ N. We then see thatφr = brχ(r−1,r] ∈ U((Kn), (bn))
andψr = χ[−r,−r+1) ∈B, but

‖(φr ∗ ψr)χ[−1,1]‖1= br .
HenceU((Kn), (bn)) ∗ B 6⊂ U((Kn), (an)). Thus multiplication in(L1

00(R), β1)

(anda fortiori in (L1(R, β1)) is not hypocontinuous. We shall strenghten this
result in Theorem 5.

(iii) We are not yet able to see if(L1(G), β1) has separately continuous mul-
tiplication. However, a dense subalgebra—namely,(L1

00(G), β
1)—has sepa-

rately continuous multiplication and is thus a locally convex algebra. Further,
(L1(G), β1) is a locally convex module over(L1

00(G), β
1). To see this, it is enough

to note that, forf ∈ L1
00(G) with f vanishing outside a compact subsetL of G

and forg ∈L1(G) andK in K, we have thatKL−1 andL−1K are inK,
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‖(f ∗ g)χK‖1 ≤ ‖f ‖1‖gχL−1K‖1,
and

‖(g ∗ f )χK‖1 ≤ ‖f ‖1‖gχKL−1‖1.
5. Theorem. LetG be unimodular.
(a) (L1(G), σ) and (L1(G), µ) are both locally convex algebras.
(b) If G is infinite then multiplication in(L1(G), σ) is not hypocontinuous.
(c) If G is not compact then multiplication in(L1(G), µ) is not hypocontinuous.
(d) If G is not compact then multiplication considered as a bilinear map on

(L1
00(G), β

1)×(L1
00(G), β

1) to (L1
00(G), σ) is not hypocontinuous; a fortiori,

multiplication is hypocontinuous neither in(L1(G), β1) nor in (L1(G), σ).

Proof. By [7, Cor. (20.14), item (20.19)], forf ∈L1(G) andg ∈L∞(G) we have
thatf ∗ g andg ∗ f are inL∞(G), ‖f ∗ g‖∞ ≤ ‖f ‖1‖g‖∞, and‖g ∗ f ‖∞ ≤
‖f ‖1‖g‖∞. Let f, g ∈L1(G) andh∈L∞0 (G) = (L1(G), σ)∗, and letg1 be given
by g1(x) = g(x−1) for x inG. Theng1∈L1(G). Henceh ∗ g1 andg1∗ h are both
in L∞(G). Also,h(f ∗ g) = (h ∗ g1)(f ) andh(g ∗ f ) = (g1 ∗ h)(f ).

(a) To prove that multiplication byg is continuous on(L1(G), σ) to itself, it is
enough to show thath ∗ g1 andg1 ∗ h are both inL∞0 (G). Let ε > 0 be arbitrary.
Then there is a compact subsetK ofG such that‖g1χG\K‖1 < ε and‖hχG\K‖∞ <
ε. We thus have

‖(h ∗ g1)χG\K2‖∞ = ‖(hχK ∗ g1χK + hχK ∗ g1χG\K + hχG\K ∗ g1)χG\K2‖∞
= ‖(hχK ∗ g1χG\K + hχG\K ∗ g1)χG\K2‖∞
≤ ‖hχK ∗ g1χG\K‖∞ + ‖hχG\K ∗ g1‖∞
≤ ‖hχK‖∞‖g1χG\K‖1+ ‖hχG\K‖∞‖g1‖1
≤ ‖h‖∞ε + ε‖g1‖1
= ε(‖h‖∞ + ‖g‖1).

Similarly, ‖(g1 ∗ h)χG\K2‖∞ ≤ ε(‖h‖∞ + ‖g‖1), so bothh ∗ g1 andg1∗ h are in
L∞0 (G).

Further, to prove that multiplication byg is continuous on(L1(G), µ) to itself,
it is enough to show that, for a balanced convexσ ∗-compact subsetA of L∞0 (G),
bothA ∗ g1 andg1∗A are balanced convexσ ∗-compact subsets ofL∞0 (G). They
are clearly balanced convex subsets ofL∞0 (G). We start with a net(hα) ∗ g1 in
A ∗ g1. Then (hα) has a subnet(ψβ) in A that converges to aψ in A in the
σ ∗-topology. Thus, for anf in L1(G), (ψβ ∗ g1)(f ) = ψβ(f ∗ g) converges to
ψ(f ∗ g) = (ψ ∗ g1)(f ). Hence(hα ∗ g1) has a subnet (viz.(ψβ ∗ g1)) conver-
gent toψ ∗g1 inA∗g1 in theσ ∗-topology. This shows thatA∗g1 isσ ∗-compact.
Similarly, we can show this fact forg1 ∗ A.

(b) Let (if possible) multiplication in(L1(G), σ) be hypocontinuous. Leth ∈
L∞00(G). By the hypocontinuity of multiplication in(L1(G), σ), we have ann-
tuple {fj }nj=1 in L∞0 (G) = (L1(G), σ)∗ such that, puttingV = {

f ∈ L1(G) :∣∣∫ f(x)fj(x) dλ(x)∣∣ < 1, 1≤ j ≤ n }, we have
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V ∗ B ⊂
{
f ∈L1(G) :

∣∣∣∣∫ f(x)h(x) dλ(x)

∣∣∣∣ < 1

}
.

So
⋂n
j=1N(fj ) ∗ L1(G) ⊂ N(h), where, forφ ∈ L∞0 (G), N(φ) denotes the null

space ofφ, that is,{
f ∈L1(G) :

∫
G

f(x)φ(x) dλ(x) = 0

}
.

Let g ∈ L1(G) andg1(x) = g(x−1) for x in G. For f in
⋂n
j=1N(fj ), 0 =

h(f ∗ g) = (h ∗ g1)(f ) and sof ∈ N(h ∗ g1). Therefore, by duality theory in
locally convex spaces,h ∗ g1 is in the linear spanF of { fj : 1 ≤ j ≤ n }. Thus
h ∗ L1(G) ⊂ F. In particular,h ∗ L1(G) is finite-dimensional.

The proof will be complete if we produce anh not having this property. IfG is
discrete thenh = χ{e} works fine. SupposeG is not discrete, and letx 6= e be an
element ofG. Then there is a compact symmetric neighborhoodK0 of e such that
K0 ∩ xK0 = ∅. LetK = K0 ∪ {x}. SinceG is not discrete,x is a boundary point
of K. Let U = {U : U is an open symmetric neighborhood ofe with U ⊂ K0 }.
ForU ∈U letKU = KŪ andVU = xU ∩ (G\K). ThenVU is a non-empty open
subset ofG and thusλ(VU) > 0. Henceλ(KU) ≥ λK + λVU > λK andλKU ≤
λK2 < ∞ for all U. Further,{KU : U ∈ U } forms a neighborhood base forK.
Thus, by regularity ofλ, λKU → λK and so there is a decreasing sequence(Un)

in U with λKUn all distinct andλKUn → λK. In particular,λ(KUn\KUn+1) > 0 for
eachn.

Let h = χK andfn = χŪn . Thenh ∈L∞00(G) and eachfn is inL∞00(G). Since
Supph ∗ fn = KUn, we have that{h ∗ fn : n ∈N } is a linearly independent set.
Henceh ∗ L1(G) is not finite-dimensional, completing the proof of part (b).

(c) Let (if possible) multiplication in(L1(G), µ) be hypocontinuous, and let
(An), (Bn), (Cn), andV be as in Remark 1(iii). Forn∈N, letgn = χBn andhn =
χCn. Then theσ(L∞(G), L1(G))-closed envelopeH of {hn : n ∈ N } is the set{ ∑∞

n=1anhn : an ∈C for eachn and
∑∞

n=1|an| ≤ 1
}
, and soH ⊂ L∞0 (G).

By Alaoglu’s theorem, the unit ballD of (L∞(G), ‖·‖∞) isσ(L∞(G), L1(G))-
compact. SinceH ⊂ D is σ(L∞(G), L1(G))-closed we have thatH is a σ ∗-
compact subset ofL∞0 (G). Therefore,

W = H 0 =
{
f ∈L1(G) :

∣∣∣∣∫ f(x)h(x) dλ(x)

∣∣∣∣ ≤ 1 for h in H

}
is aµ-neigbourhood of zero inL1(G). By hypocontinuity of multiplication in
(L1(G), µ), there is aσ ∗-compact balanced convex subsetE of L∞0 (G) with
E 0 ∗ B ⊂ H 0. This givesE 0 ⊂ (H ∗ B)0, which in turn gives thatH ∗ B ⊂ E;
thus(H ∗ B) is a relatively compact subset of(L∞0 (G), σ

∗). The sequence(ψn)
given byψn = hn ∗ gn therefore has a subnetσ ∗-convergent to aψ in L∞0 (G).
Butψn(x) = λ(xB−1

n ∩ Cn) = λV for x in An (n in N). Henceψ(x) = λV for x
in
⋃
n An. Sinceλ

(⋃
n An

) = ∞, we have thatψ /∈ L∞0 (G). This contradiction
completes the proof of (c).

(d) Consider any((Kn), (an)) ∈ S × R and a compact symmetric neighbor-
hoodV of e in G with λV ≤ 1. Let (xn) and(Ln) be as in Remark 1(iv). For
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n∈N, we putφr = arχVxr andψr = χx−1
r V
. Then eachφr is inU((Ln), (an)) ⊂

U((Kn), (an)), and eachψr is inB. But ‖(φr ∗ ψr)χV 2‖1 = ar(λ(V ))2, so

U((Kn), (an)) ∗ B 6⊂
{
f ∈L1(G) :

∣∣∣∣∫ f(x)χV 2(x) dλ(x)

∣∣∣∣ < 1

}
.

This finishes the proof.

6. Remarks. (i) For the case ofG compact abelian, Theorem 5(b) follows from
[3, Thm. 1] applied to the Banach algebra(L1(G), ‖ · ‖1) because its dual in this
case isL∞0 (G) = L∞(G). On the other hand, takingG to be noncompact, Theo-
rem 5(b) provides a large set of examples to show that condition (ii) in [3, Thm. 2]
is not necessary for the conclusion to be true.

(ii) Since(L1(G), σ) has a bounded bornivoreB, it is a boundedly generated
space. So [2] can be used to advantage. For instance, it gives a corollary to Theo-
rem 5 as: IfG is infinite and unimodular then(L1(G), σ) is notA-convex.

(iii) Unimodularity is not needed for Theorem 5(b) because our proof can be
easily modified by consideringg inL∞00(G) only, instead of in the whole ofL1(G).

The proof can then be augmented to show that(L1(G), σ) is notA-convex.

Our next theorem comes as an answer to the following question (posed by the
referee): Does Arens regularity ofL∞0 (G)

∗ imply G is finite?

7. Theorem.

(i) L∞0 (G)
∗ is Arens regular if and only ifG is finite.

(ii) Let τ be any locally convex topology onL1(G) lying betweenτ andβ1. Then
(L1(G), τ ) is Arens regular if and only ifG is discrete.

Proof. (i) By [4, Cor. 6.3], ifL∞0 (G)
∗ is Arens regular then this implies that the

subalgebraL1(G) is also Arens regular. By the now-classical result from [4] and
[13],G is finite. The reverse implication is clear.

(ii) As proved in [10, Thm. 2.11(v)], the topological center ofL∞0 (G)
∗ isL1(G).

Thus(L1(G), τ ) is Arens regular if and only ifL1(G) = L∞0 (G)∗. This follows
whenG is discrete, as has been noted in [10, p. 452]. For the converse, as in [10,
Sec. 2] letπ be the natural projection onL1(G)∗∗ to LUC(G)∗, where LUC(G)
is the subspace ofL∞(G) consisting of functions that are bounded and uniformly
continuous in the left uniformity ofG. ForH ∈L1(G)∗∗ = L∞(G)∗, π(H ) is the
restriction ofH to LUC(G).

Further, it has been noted in [10] thatπ is the identity onL1(G) and, by [10,
Thm. 2.8],πL∞0 (G)

∗ = M(G). Hence(L1(G), τ ) is Arens regular implies that
L1(G) = M(G), which in turn gives thatG is discrete.
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