Homology of Real Algebraic Fiber Bundles
Having Circle as Fiber or Base

YILDIRAY OZAN

1. Introduction

For real algebraic set§ € R” andY € R*, amapF: X — Y is said to beentire
rational if there existf;, g e R[x1,...,x.],i =1 ..., s, such that eacl; van-

ishes nowhere o andF = (f1/g1, ..., fs/gs). We sayX andY areisomorphic

to each other if there are entire rational mapsX — Y andG: Y — X such
that F o G = idy andG o F = idy. A complexificationXc € CP" of X will

mean thatX is a nonsingular algebraic subset of soR2" and Xc < CPV is

the complexification of the paiX < RP". We also require the complexification

to be nonsingular (blow uX¢ along smooth centers away frokhdefined over

reals if necessary). For basic definitions and facts about real algebraic geometry,
we refer the reader to [2; 4]. L&H, (X, R) be the kernel of the induced map

i*: H*(X, R) —> H*(X(C’ R)

on homology, where: X — Xc is the inclusion map ang is eitherZ or a field.

In [16] it is shown thatKH, (X, R) is independent of the complexificatioh C

Xc. All compact manifolds and nonsingular real or complex algebraic setg are

oriented so that Poincaré duality and intersection of homology classes are defined.
In this note,X will be mostly the total space of a fiber bundle and we will study

KH.(X, R). In the next section the fiber will b&! and in the third section the

base space will b6. As an application we will prove a result of Kulkarni that

a compact homogeneous manifatlhas an algebraic mod&l with [X] zero in

H,(Xc; Z) if and only if M has zero Euler characteristic. (Kulkarni[10, Cor. 4.6,

Thm. 5.1] proved this for rational coefficients.) In Section 4 we will consider en-

tire rational mapsf: X — Y and compar&kH, (X, R) andKH, (Y, R) via f in

caseX andY have the same dimension. Results will be proved in the last section.

2. Bundles with Circle Fibers

On any compact Lie group there is a unique real algebraic structure compatible
with the group operations [12]. L&t be such a group endowed with its unique
real algebraic structure. An action 6fon X is said to bealgebraicif the action
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is given by an entire rational mafx G x X — X. If H € G is a closed sub-
group then, on the homogeneous spa@gél, there is a canonical algebraic struc-
ture where the quotient map is entire rational. Moreover, this algebraic structure
is unique if one requires the action 6f on G/H, by left multiplication, to be
algebraic.

For any smooth mag: N" — M™ of compact smooth manifolds, define the
transfer homomorphisms

fii Hy_o(M; R) — H,_(N;R) and f': H"*(N; R) - H" *(M; R)

via the following diagrams:

Hoo(M:R) —1 H, .(N:R)  H"™ N:R) —— H"*M: R)

o= o o o

H*(M; R) - H*(N; R), H.(N:R) ——> H(M;R),
- A

where the vertical maps are the (inverse of) Poincaré isomorphiBras Z,, if
M or N is nonorientable). For any € H" (N, R) andb € H,,_;(M, R) with
ded fi(b)) > deda), the following holds (cf. [7, p. 394]):

fulan fih)) = (=)' f'(a) N b. (%)

Now we can state the results of this section.

Tueorem 2.1. LetSt act algebraically on a compact connected nonsingular real
algebraic setX of dimensiom:, and letr : X — X/S' = B be the quotient map.
Then, for any0 < k < n — 1, m(Hy(B, R)) € KH;1(X, R) in each of the
following cases

(1) Ris afield and thes* action is free
(2) R =Z, the S action is free, andd,,1(B, Z) is torsion free
(3) Risafield of characteristic zero and the stabilizer of any point ofthaction

is finite.
Moreover, in these cases the map H,_1(B, R) - KH,(X, R) is an isomor-
phism and so th& fundamental clasgX] is null homologous in any complexifi-
cation Xc.

Dovermann [8] showed that any smodthaction on a smooth closed manifold is
algebraically realized. Hence, we have the following theorem.

TuEOREM 2.2. Assume thas? is acting on a smooth closed manifald of di-
mensiom and thatr : M — M/S* = B is the quotient map. TheM has an al-
gebraic modek suchthat, foranp < k <n—1, m(Hy(B, R)) € KHi41(X, R)
in each of the following cases

(1) Ris afield and thes* action is free
(2) R = Z, the S* action is free, andH,.1(B, Z) is torsion free
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(3) Risafield of characteristic zero and the stabilizer of any point ofsthaction
is finite.

Moreover, in these cases tiefundamental clasgX] is null homologous in any

complexificationXc.

REMARK. SupposéM is Z oriented. The manifoldZ in Theorem 2.2 has neces-
sarily zero Euler characteristic. IndeedMfhas nonzero Euler characteristic then
the self-intersection aX in its complexification is nonzero and s&]would not

be torsion inH, (X¢; Z). In fact, we conjecture that any connected smooth com-
pact manifoldM with zero Euler characteristic has an algebraic maogdelith tor-
sion [X]in H,(Xc; Z). We have to mention Kulkarni’s result that this conjecture
is true for compact homogeneous manifolds [10, Cor. 4.6, Thm. 5.1].

CoroLLARY 2.3. A compact homogeneous manifdtdhas an algebraic model
X with [X] zero inH, (X¢; Z) if and only if M has zero Euler characteristic.

Kulkarni uses mixed Hodge structures to prove this result in rational coefficients.
The proof we provide is of different nature and works for integer coefficients also.

3. Fiber Bundles over a Circle

In this section, we will study the relative homology of fiber bundles ¢¥én their
complexifications. The main reference for this section is the article by Morrison
[9, p. 101].

Let F — M =2 S be a smooth fiber bundle with compact and conneéted
Topologically, M is just [0 1] x F/(0,x~@¢x). Whereg¢: F — F is a diffeo-
morphism, the monodromy of the fiber bundle. By a Mayer-Vietoris argument we
see that

Hy(M, Q) = @,y Hi(S%, Q) ® H;(F, Q)%,

whereH; (F, Q)%+ is the+1-eigenspace of the induced homomorphism of vector
space®... H;(F,Q) — H;(F, Q). In particular,M is orientable if and only i
is orientable an@: F — F is orientation preserving.

Assume thatrg is a regular map. This ensures that the smooth fiber bundle is
stable under small deformations of the projection mapThere exists an alge-
braic modelX of M such that any smooth map — S* can be approximated by
entire rational maps in the* topology (first use [1], [2], or [3] to get a mod#l

with Hé}lg(X, Z,) = HY(X, Z5) and then use Theorem 1.4 in [5]). In other words,

the setR(X, S1) of entire rational maps from to S* is dense in the s&t> (X, S1)
of smooth maps fronX to S%, whereC> (X, S?) is equipped with the > topol-
ogy. Now choose some € R(X, S') so close targ thatr: X — St is a fiber
bundle equivalent tag: X — S; thatis, there is a diffeomorphis: X — M
with 7 = 7 o G. For genericr close enough targ, each fiberF, = 7 ~(z) will
be an irreducible nonsingular real algebraic set diffeomorphic tdow consider
the complexification of this fiber bundie-: Xc — SL = CP1, which is locally
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trivial with smooth and irreducible fibers outside a finite set of singular fibers. For
anyz € St € CP? the fibernc‘l(z) C Xc is acomplexification of, = 7 ~%(z) €

X. We will denote this complex fiber bc. The monodromy : F — F extends

to ¢c: Fc — Fc, the monodromy of the complex fiber bundle restricsdc

CP?, provided that the complex fibers ov&t are smooth.

Tueorem 3.1. Letn: X — SY nc: Xc — St =CPYL F, Fe,¢: F — F, and
¢c: Fc — Fc as before. Then

(Hi(SY, Q) ® Hi_1(F, Q)*) ® KH(F,Q)* C KH (X, Q),

whereH; (F, Q)% is the+1-eigenspace of the homomorphisngef. H;(F, Q) —
H;(F,Q) and KH,(F, Q)% = KH(F, Q) N Hy(F, Q)%-.

The following is an immediate corollary of the foregoing discussion.

CoroLLARY 3.2. Assume thaV is anr-dimensional compact connected smooth
manifold that admits a fibering ovestt. ThenM has an algebraic modet such
that the fundamental clagX] is torsion inH,(X¢, Z).

REMARks. (1) Write CP! = D, U D_ as the union of two closed disks with
common boundargD, = dD_ = S*. LetZ, denotezr(gl(D+). Assume tha¥
has only one singular fiber. It is well known (see [11]) that the eigenvalues of the
induced map on homology..: H;(Fc,C) — H;(F¢, C) are all roots of unity.
Hence, any class € H;(F, C) with the property thap..(«) = A - o, wherer e C
is not a root of unity, should vanish ii; (F¢, C).

(2) Letr: X — (-1, 1) be areal deformation with complexification : X¢ —
D, whereD is the unit disk inC so that all fibers are smooth. Let (—1,1) and
let F* = 7~Y(r) be the real fiber over with complexificationF/. = mgl(t).
Since the paitF(, F') is diffeomorphic to( F2, F°), we see thakKH.(F', R) =
KH.(F° R). Hence,KH.(F, R) does not alter under real deformations. It is
not yet known what happens in the case that all fibersFt@leith only nonreal
singularities, are smooth.

(3) Suppose thak is the total space of a real algebraic fiber bundle whose
base space or the fiber has trivial homology in its complexification. We do not
yet have a result like Theorem 3.1 in this general case. However, if a homology
class inX is a product of classes of the base and the fiber then it is trivial in the
complexificationXc.

4. The Case WhereX and Y Have the Same Dimension

Let f: X — Y be an entire rational map. Then, by [16, Thm. 2.3] we have
f«(KHy (X, R)) C KH, (Y, R). Itis natural to ask whethef, (KH, (Y, R)) lies in

KH (X, R). The following propositions provide partial answers to this question
when dimX) = dim(Y).
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ProrosiTioN 4.1. Let f: X — Y be an entire rational map of topological de-
green > 0 of compact connected nonsingular real algebraic sets of the same di-
mension. LeF be field of characteristic zero gr withn # 0 (modp). Then, for
anyk, fi mapsH, (Y, F) — KH, (Y, F) into Hy(X, F) — KH (X, F) injectively.

REMARK. LetX = {(x,y) € R? | x* + y* = 1}, which does not bound in its
complexification because its complexificati&p is a nonsingular curve of degree
4in CP2 and thus has genus 3. By a result of Bochnak and Kucharz [5, Cor. 1.5],
we can find an entire rational diffeomorphistn X — S*. SinceS* bounds in its
complexification, this example shows that in Proposition 4.1 we cannot replace the
conclusion with a statement thAtmapskK H, (Y, F) into KH, (X, F). What went
wrong in this example is that—although the topological degre¢ ok — S*
is 1—the degree of its complexificatigia : Xc — St is 2 and hence the preimage
of S under f¢ has an extra component (other thgn

Let G be a finite group acting algebraically and freely on a nonsingular real
algebraic sefX, so that the topological quotietd/G equals the algebraic quo-
tientY = X//G. In other words, the nonreal points &t are mapped to the non-
real points of the quotient algebraic set or, equivalently, the degrees of both the
guotient map and its complexification are equal [14; 15]. In this case we have the
following.

ProrosiTioN 4.2. LetG and f: X — Y be as in the preceding paragraph, and
let F be a field of characteristic zero gr withn = |G| # 0 (modp). Then, for
anyk, fi mapskKH,(Y, F) injectively intoKH; (X, F). Moreover, the composi-
tion fi o fi: KH (Y, F) — KH(Y, F) is just multiplication by: and thus is an
isomorphism.

ExaMPLE. LetG = Z, or a finite group of odd order, and let M — N be a
regularG covering of compact smooth manifolds. Then there exists an equivari-
ant algebraic modeX of M such thatX/G = X//G: If G is of odd order then

by [8] the G manifold M has an equivariant algebraic model—s&y;-and then,

by [15, Thm. 2.1] or [14, Prop. 3.7], we see tHtG = X//G. If G = Z, then

first find an algebraic modéf for the smooth quotienX /G with Hé,g(Y, Zp) =
HY(Y, Z») (cf. [1], [2], or [3]) and then use [13, Thm. 4.2] to construgit

5. Proofs

Proof of Theorem 2.1Parts (1) and (2) are proved in [16]. For part (3), we need
only observe that the manifol@ used in [16] is a rational homology manifold.
To see this, le < S* be the smallest subgroup containing all the stabilizers of
the St action on(D? x X); H is finite (cf. [6, Sec. 10, p. 218]), and each ele-
ment of H is homotopic to the identity map d¥. HenceH,(D? x X, Q) =
H.((D?x X)/H, Q). So(D? x X)/H is a rational homology manifold. Note that
S« SY/H acts on(D? x X)/H freely with quotientW. The Gysin sequence as-
sociated to this™ fiber bundle proves tha¥ is a rational homology manifold.]
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Proof of Corollary 2.3.1f the Euler characteristic a¥/ is not zero then—by the
Remark following Theorem 2.2—for any algebraic mo#edf M, the fundamen-
tal class K] is not zero inH,(X¢, Z).

Now assume thaZ has zero Euler characteristic. Sinkeis a homogeneous
manifold we can writeM = G/H for some compact Lie groug and a closed
subgroupH of G. By the facts stated at the beginning of Sectiom2h)as a canon-
ical algebraic structure and the action on the coset spad¢ = G/H is alge-
braic. LetTy € H be a maximal torus. Suppose tigtis maximal inG also, and
consider the fiber bundle

H/To—) G/To—) G/H

SinceTy is maximal inG, the Euler characteristics 6f/ Ty is nonzero. However,
this is a contradiction because the base syggteé has zero Euler characteristic.
S0, Ty is not maximal inG. Now choose a maximal torug in G containingTyp,

and letS* be a circle subgroup df with 7o N S* = (e). The subgrougs* acts
freely onG/H becaus&s'NH = (S'NT)NH =S'N(TNH) =85'NTy =

(e). Moreover, thisS* action is algebraic and thus, by Theorem 2.1(2), the funda-
mental classi/] is zero inH,(Mc, 7). O

Proof of Theorem 3.1The proof consists of setting up the notation and diagram
chasing. We will basically follow the article by Morrison in [9]. Wri@P! =
D, U D_ asthe union of two closed disks with common boundddy = dD_ =
St Letz, denoten(gl(DJr). As mentioned before, there are only finitely many
singular fibers. We can assume that the fibers SWesre all smooth. The rea-
son is that the real parts of all the fibers orare smooth and we care only
about the relative homology of the p&iX¢, X). Hence, smoothly-isotopings?*
in CP? off the singular base points (together with the real fibers over it), we ob-
tain a smooth manifold. isotopic toX and such tha;t'(El(mc(z)) is smooth for all
zeLl.

We will first assume that there is only one singular fibeZinand that this fiber
has normal crossings. In other words, the degeneration is semistable. We need
semistability for the Clemens—Schmid exact sequence that we will make use of
shortly.

Let N = |09¢*: H,(Fc, Q) — H,(Fc, Q)v Where¢*: H, (Fc, Q) -
H,,(Fc, Q) is the monodromy homomorphism and

logg. = (¢ — 1) — 3 — D*+ 2 — 3 — .

This is a finite sum by the monodromy theorem. Note thatket H,, (Fc, Q)?",

the set of all invarianiz cycles. (Thet+1-eigenspace of the induced homomor-
phismeg, of vector spaces mags (Fc, Q) to H;(Fc, Q).) Leti,: H,,(Fc, Q) —
H,(Z,,Q) be the induced map on homology by the inclusionfc — Z,.
Finally, define two more homomorphismsandg as the compositions

@i Hy(Z4,Q) = Hy(Zy,0Z4,Q) > HZ"™(Z,. Q)
and
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B HZ™(Z, Q) > H2""(Fe, Q) 2 H,_s(Fe, Q).

respectively. The maps labeld? are just (the inverse of) the Poincaré duality
maps. Now we can write the Clemens—Schmid exact sequence:

o> H2Z(Z, Q) B Hy(Fe, Q) 2> Hy(Fe, Q)
Y H,(Z4,Q) S B "(Z,, Q) 5
Sincenc: Z, — S'is also a fiber bundle with fibefc, we have
H(0Z4,Q) =D,y =4 H;(SY, Q) ® Hj(Fc, Q)%-.
Consider the following commutative diagram:

H,(X,Q) =D, ;_, Hi(S", Q) ® H;(F, Q)%

| oo o]

H,(3Z+, Q) = @, -, Hi(S', Q) ® Hj(Fc, Q)

iFe )
19Z,

oo D Hy(Fe, @ 25 Hp(Fe, Q) 5 Hp(Z1, Q) % H™™(Z,,Q) 5 ...

where all nonhorizontal maps are induced by inclusions. Note that the image of
ir. is the direct summando(S*, Q) ® H,, (Fc, Q)% of H,(3Z,, Q). On the
other hand, it follows from the definition of that the image of;2, lies in the
kernel ofa. Hence, the summandy (5%, Q) ® H,,_1(Fc, Q)% of H,,(3Z,, Q)

is contained in ketyz, . Finally, sinceKH,,(X, Q) is equal to the kernel of the
compositioniyz, o ix, we conclude that

(Hi(S%, Q) ® H,_1(F,Q)*) ® KH,,(F,Q)** € KH,,(X, Q).

Suppose now that this singular fiber is not semistable. Then, by the semistable
reduction theorem [9, p. 102], the degeneration can be made semistable by chang-
ing the base, taking a finite cyclic cover of the degeneration branched over some
center in the singular fiber, and then blowing up and down the singular fiber. This
operation replaces the monodromy with a power of it. Ket> X be the corre-
sponding cyclic—say;-fold—covering. Then, by the foregoing arguments,

(Hi(SY, Q) ® H, 1(F, Q)*"*) ® KH,,(F, Q)" = H,,(X, Q)
and
(H1(SY, Q) ® H,_1(F, Q)*"*) ® KH,,(F, Q)" € KH,,(X, Q).

This covering is induced from the standard cyetifold coverings* — S%, z —
7", and thusX/Z, = X//Z, ([16]). Hence, using Proposition 4.2, we are done in
this case also.

Assume now that there is more than one singular fiberz4 ets* and, for each
singular fiber, choose an “elementary” loopzgin D, that goes around just that
fiber exactly once. Then the monodromy aldfigwill be just the composition of
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monodromies along each of these elementary loops. For accass, (Fc, Q) to
survive inH,,(Z ., Q), it must be invariant under the monodromies along all the
elementary loops. Note that a class that is invariant under the monodromy along
S1 may not be invariant under the monodromy along some elementary loop. How-
ever, a class that is invariant under each of these monodromies will be invariant
under the monodromy alongf. Hence we have

(Hy(SY, Q) ® H,_1(F, Q)*) ® KH,,(F, Q)* C KH,,(X, Q). O

Proof of Proposition 4.1 and Proposition 4.&incef: X — Y has degree, the
compositionf, o fi: H,(Y, F) — H; (Y, F) is just multiplication byn and thus

is an isomorphism [7, Prop. 14.1(6)]. SinfemapsKH; (X, F) into KH, (Y, F),

we are done with the proof of Proposition 4.1 (Theorem 2.3 in [16]). To complete
the proof of the other proposition, we need only show thamapsKH, (Y, F)

into KH; (X, F). For this we use another property of transfer homomorphisms.
Namely, given a commutative diagram

K—f>L

b
M —> N
g

of smooth manifolds, where the vertical maps are embeddingg etdansversal

to (L) so thatg~(7 (L)) = 1(K), it follows thati, o fi = g o J.. (This follows

from the Thom isomorphism and the fact that the Poincaré dual of an embedded
submanifold is supported in any given tubular neighborhood of the submanifold
so that, since is transversal tg (L), ¢g* pulls back the Poincaré dual ¢fL) to

that of1(K).)

TakeK = X, L =Y, M = X¢c, N = Y¢, g = fc, and: and; as the em-
beddings ofX andY into their complexifications. Note that these choices sat-
isfy the previous conditions. Now, i € KH, (Y, F) then j.(«¢) = 0 and thus
(14 o fi)() = 0. Hencef(a) € KHy (X, F). O
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