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1. Introduction

The LaplacianA for Euclidean spac®” has the following properties: (a) the
essential spectrum 6fA is [0, co); (b) A has no point spectrum; and (6) has
no singular continuous spectrum.(ify, x», . . ., x,,) are the standard global coor-
dinates onR”, then theexhaustion function(x) = (x? +x2 + - -- + x2)¥? sat-
isfies (i)|Vb| = 1 forx # 0 and (ii) Hes$? = 2g. Hereg denotes the Euclidean
metric.

Let M be a complete Riemannian manifold that admits a proper exhaustion
functionb. If (i) and (ii) above are satisfied in a weak or approximate sense, then
we would like to show that the Laplacianof M has properties similar to those of
the Euclidean Laplacian. This program was started in our earlier paper [6]. Under
general averagedl, conditions on/Ab| and||Vb| — 1|, we showed that the es-
sential spectrum of A is [0, co). More stringent pointwise decay conditions for
|Hessh? — 2g| and||Vbh| — 1] were needed to eliminate the possibility of a point
spectrum forA. The singular continuous spectrum was not discussed in [6].

The present paper extends the earlier work concerning the point spectrum and
provides new results about the singular continuous spectrum. déimits an ex-
haustion functiorb having Properties 2.1, then Theorem 2.3 statesAhlas no
square integrable eigenfunctions. The analogous resultin [6] required the stronger
hypotheseg Vb| —1| < cbh~¢ and|Hessh? — 2g| < cb~¢ for somes > 0, whereas
Properties 2.1 impose no specific decay rate on these quantities. However, Prop-
erty 2.1(iv) restricts the third derivatives bf whereas no such condition was im-
posed in [6]. For manifolds with nonnegative Ricci curvature, Euclidean volume
growth, and quadratic curvature decay, Cheeger and Colding [3] and Colding and
Minicozzi [4] constructed an exhaustion function with Properties 2.1.

The singular continuous spectrum is studied in Section 3. détisfies Prop-
erties 3.1 (which are more restrictive than 2.1) then Theorem 3.5 states Ahat
has no singular continuous spectrum. The asymptotically Euclidean spaces of [1]
support exhaustion functions with Properties 3.1. For these spaces, the curvature
may have variable sign but the curvature decay is faster than quadratic. Our treat-
ment of the singular continuous spectrum is an application of the abstract Mourre
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theory in [2]. The Mourre theory of [5] also inspired our treatment of the point
spectrum, although the work in Section 2 is logically self-contained.

Our main theorems generalize readily fren\ to certain Schrédinger opera-
tors—A + V on manifolds. We prove all our results in this more general context.
For the Schrodinger operator &t, these theorems are well-known (see [2; 5]).

The author thanks Professor F. Nier for suggesting that the Mourre theory could
be applied to the questions raised in [6] and for providing valuable references.

2. Absence of Point Spectrum

Let M be a connected complete Riemannian manifold. The symbwill de-
note the Laplacian acting on functions definedénAssume thav’ is a bounded
and continuously differentiable function. The Schrodinger operatdr+ V is
essentially self-adjoint [7] ol€3°M. Suppose that € L2M N C2M satisfies
—Au + Vu = Au (A > 0). Thenu lies in the domain oA + V, considered as
an unbounded operator @t M. It follows [7] that|Vu| € L?M and

/|W|2=—/ uAu.
M M

We assume that/ admits a prope€? exhaustion functiop with certain prop-
erties. Suppose tha(x) denotes the geodesic distance frone M to a fixed
basepoinp € M. Let g denote the metric tensor 8. The symbok (r) will sig-
nify a function satisfying:(r) — 0 asr — oo. The following properties will be
required for our exhaustion functidnin the complement of a compact g€t

PROPERTIES 2.1.
(i) c1r < b < cor for some positive constants andcs.
(i) 1 —e(r) < Vbl <1+e).
(i) |Hessh? — 2g| < (r).
(iv) |dADB?| < &(r).
Hered denotes the exterior derivative afid| is the pointwise norm of the ten-
sorT.

Suitable conditions must also be imposed upon our potential fundtioa
L*M N C*M. Let X signify the vector field 2Vh. We assume thaV satis-
fies the following properties i — K, wherekK is compact.

PROPERTIES 2.2.
(i) VI <e@).
(i) XV <e@).

The main result of this section is the following theorem.

THEOREM 2.3. Supposea: € L?M N C?M satisfies—Au + Vu = iu on M
(A > 0). Assume tha/ admits an exhaustion functi@grsatisfying Properties 2.1
and the potential functio satisfies Properties 2.2. Then= 0.
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The proof of Theorem 2.3 will be presented in a sequence of lemmas. The over-
all strategy is essentially a unique continuation back from infinity. The function
u is originally assumed only to be ib?M. By employing the Mourre theory and
Rellich identities, we progressively show thaties in more and more restric-
tive weightedL? spaces. Intuitivelyu vanishes to infinite order at infinity. A
Carleman-type argument then shows thatust be identically zero.

The first step was already taken in [6] as follows.

LemmMma 2.4. For all positive integerg,
/ b*[u? + |Vu|?] < oo.
M

Proof. This was proved as Proposition 3.6 of [6]. Property 2.1(iv) is not needed
and Property 2.1(ii) is only used in the weaker farpx |Vb| < c». O

Let H = —A + V. If ¢ € C2M then defined = V¢ + 1A¢. One verifies that
A: CPM — C§M is afirst-order skew symmetric operator. The synibadill
denote a component of the covariant derivafW of the tensofl. Repeated in-
dices denote a sum of contractions with respect to the metfur main tool will
be the following (Mourre-type) estimate.

Lemma 2.5. If f e CPM then
(H.Af. f) =2 / Hessp (/. Vf) + / (A), fif — / oV 1.
M M M

Proof. One computes the commutatd{ [A] = HA — AH,

[H, Al f = =20 fix — 20 f; — 3(D°9) f — ¢V f.
The lemma then follows by partial integration. O

We takegp = b2 and invoke Properties 2.1 and 2.2. For any 0, there exist a
constant > 0 and a compact sé& such that, forf € C°M,

<Af,Hf>+<Hf,Af>z2/Mfo—sfo’-’+|Vf|2—c/Kf2+|Vf|2. (2.6)

Let F = F(¢) € C?M be an increasing function @f. Assume thatF' < c3
and|VF| + |HessF| < c4b* for somek > 0. We will apply (2.6) with f = efu,
whereu is the eigenfunction of Theorem 2.3. Althougtis no longer compactly
supported, the more general use of (2.6) is justified by a standard cutoff function
method (the cutoff function depends upbn Properties 2.1 and Lemma 2.4 are
used to remove the error terms in the limit.

Sinceu is an eigenfunction off, an elementary calculation gives

Hf = ,rf — 2F, fi + |VF|’f — (AF)f.

We write VF = wVg with w = F'(¢) > 0. Assume thatw € C?M and
|Vw| + |[Hessw| < c4b* for somek > 0. One observes that
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Hf = Af 4+ |VF|>f — 2wAf — (V¢ - Vw) f.
SettingBf = 2wAf + (V¢ - Vw) f, we have
Hf = Af + |VF|*f — Bf.

Observe that the first order operatersind B are skew adjoint o€§° M.
Using Lemma 2.4 and cutoff functions defined in terma (b justify the partial
integrations) one finds that

(Af. Hf) + (Hf. Af) = (Af. [VFI’f — 2wAf — (V¢ - Vw) )
+(IVFPf = 2wAf — (V¢ - Vw) f, Af).
Sincew > 0, we deduce
(Af. Hf) + (Hf. Af) < (Af. IVFI’f = (V$ - Vw) f)
+(IVFI’f — (V¢ - Vw) f, Af).
Using the skew symmetry and definition Afyields
(Af. Hf) + (Hf, Af) < (f. Vo (Vg - Vw — |[VF|?) f).
Moreover, sinceB is skew-symmetric,
(f. Hf) = Mf. )+ (IVF L. f).

Substitution of the last two formulas into (2.6) gives
/V¢<V¢-Vw—|VF|2>szA/ f2+/ f2|VF|2—cff2+|Vf|2. (2.7)
M M M K

Here f = efu andHu = \u.

To proceed further, we make specific choices ForThese choices are moti-
vated by the proofs required in the rigorous justification of the virial theorem in
guantum mechanics [8]. Some care is needed to justify the convergence of the in-
tegrals at each stage. Suppose thahdy are positive constants. We define a
function of the real variable by

xs(t) =/(1+s2x2)_1dx.
0

Observe thaj(t) < ¢,, wherec; depends only upos. Moreover, with a con-
stantc independentof, |x.(1)| <1, |x/(t)] < c/t,and|x”(t)| < ¢/t2. We apply
@7)with F = F, = yx,(Q+ b*Y?).

An elementary calculation yields the formulas

2
Vo (|VF[?) = %[x;x;’<1+ b2 Y2 — (x)2(1+ b?) 2] Vg

2
n %(X;)Z(H b2t Hessp (Y, Vb)

and
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v[3., - 3., -
Vo (Vo - Vw) = Z[EX‘V(H b?)~52 _ EX-Y(H b?)~2

1

+ g[x;/(1+ b1 = x.(1+ b?)~¥?] Hessp (V. V).
Consequently, with a constargindependent of, we have
Vo (IVF?)| < csy? and |V$(V - Vw)| < csy (L+b%) 2,
Substitution in (2.7) gives, with a constarnindependent of and for a compact

SetK,
c(y2+y)/f22k/ fz—c/f2+|Vf|2.
M M K

If y is sufficiently small, we get

kf 2 < 2c/ 2+ |Vf2 (2.8)
M K
We may now deduce the following lemma.

LemMma 2.9. If y > Ois sufficiently small, then
/ u?exp[2y A+ b%Y?] < 0.
M

Proof. For each fixed, lim,_,o x,(t) = t. Thus lim_,o F;, = y(1+ b®¥2. The
lemma follows because the constarnh (2.8) is independent of and sincef =
explFlu. O

By analogy with Lemma 2.4, we want to improve Lemma 2.9 by showind that
also lies in an exponentially weightéd space. This improvement is provided by
our next lemma.

LemMa 2.10. If Hu = Au andu expa(1+ b?)Y?] € L?M for somex > 0, then
|Vu| exploe(1+ b?)¥?] € L2M.

Proof. Let f = efu with F = a(1+4 b?)Y?. As before, one verifies thaif
Af + |VF|>f — Bf. Here B is the skew-symmetric operator given IBf
2F; f; + (AF) f. If o = (D) is a standard cutoff function, then

(V, V(@?f)) + (Vf, 0°f) = (Hf, ©°f)
= Mf. 0%f) + (f. 0*|VF’f) — (Bf. 0°f).
However,(Bf. »?f) = —(f. w?Bf) — 2(f. F(w?) f). Thus,
(Vf. @*Vf) + (Vf. fV0?) + (Vf, 0°f)
= Mo 0°f) + (£, 0°|VFIPf) + (f, Fi(@?)i f).
Since|VF| is bounded, the lemma now follows by lettingt 1. O
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Now letag = sup{ o | exple(d+ b»)Y?Ju € L?M }. We plan to show thatg =
oo. In order to argue by contradiction, we suppose thak oco. Choosex; > 0
andy > Owith a1 < ap < a3 + y. Our strategy is to rework the argument lead-
ing to Lemma 2.9, starting from (2.7), but with a different choicefoiLet F =
a1(1+b2)Y2 + yx (A4 b>Y?). Although F is now unbounded, the definition of
a1 and Lemma 2.10 suffice to justify the partial integrations.

Straightforward calculations give

Vo (|VF|?) = %(al +yx)x" A+ %)Y vp|*

1
— S+ yx A+ b* 2 Vpl!

4
1 N2 2\—1
+ §(a1+yx )1+ b%) " Hessp(Ve, Vo)
and
V¢ (Vo - Vw)

13 , _
= Z[E(aﬁ yx )L+ b2 Ve

3 1
- %x”(l+ bE AVt + Syx A+ b2>3/2|w>|4]
1
- E[Vx”(1+ b)) — (a1 + yx ) A+ bD)"Y?| Hessp (V. V).

If y is sufficiently small and witkg independent of, by Properties 2.1, we thus
have
Vo (IVF?)| < e(b)af + coay,

|V (Ve - Vw)| < coan(1+ b 7V2,

Herees(b) — 0 asb — oo.
Using (2.7), we deduce that there is a constafimdependent of ) and a com-

pact setk such that
[T R
M K

Lettings | 0, one deduces thatexp((a1 + y)(1+ b®)Y?) e L2M. This contra-
diction shows thatg is infinite. We have established the following.

LEmMmA 2.11. Forall « > 0,

/[u2 + |Vu|? exp[2o(1+ b?)Y?] < .
M

One more application of formula (2.7) is needed. This time we chdose
a1+ b2Y2. Observe that

|VF|? = 20?1+ b?) | Vg|? > (1— e(b))a?
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with ¢(b) — 0 asb — oo. The estimates before Lemma 2.11 hold with= «;
andy = 0.

In our previous argument, the second term on the right-hand side of the in-
equality (2.7) was dropped. This term is now used to strengthen our result. One
has

/E(b)(a2+ca)f22/ /\f2+/(1—s(b))a2f2—cf £2 4 9P
M M M K

Moreover, if is sufficiently large and is a sufficiently large compact set, then

x/ fzgc(1+a2)/ F2 4+ |Vf)?
M K

with ¢ andK independent of. By Lemma 2.11, we may take to be arbitrarily
large. Sincef = uexpla(l+ »?)Y?], this forcesu = 0 outside a compact set.
By unique continuation, for second-order elliptic equations we hawe0 on all
of M. This completes the proof of Theorem 2.3. O

The following corollary concerns an interesting class of examples of manifélds
where Theorem 2.3 is applicable.

CoroLLARY 2.12. Suppose that/” is a complete connected Riemannian mani-
fold satisfying, fom > 3:
(i) Ricci(M) > 0, the Ricci curvature ofM is nonnegative
(i) Vol B,(t) > ct", geodesic balls have Euclidean volume gravethd
(i) |K| < cr—2, sectional curvature decays quadratically.

If V satisfies Properties 2.2, thenA + V has no positive eigenvalues.

Proof. The required exhaustion functiérwas constructed by Cheeger and Cold-
ing [3] and Colding and Minicozzi [4]. Properties @i)-(iii) are stated explicitly
in [4, p. 28]. For (iv), recall thabAb = (n — 1)|Vb|?. Consequently,

Ab? = 2n|Vb|? = Lnb~?|Vb??
and
VAb? = —nb~3|Vb?|>Vb + nb~?Hessh? - Vb2
Thus|VAb?| < ch~t and Property 2.1(iv) holds. O

REMARK. The proof of Theorem 2.3 may readily be modified to yield a more gen-
eral result. Suppose only thatAu + Vu = Au holds in the complemem — K

of a compact sek. If M — K has no bounded components, then we conclude that
u=0inM - K.

3. Absence of Singular Continuous Spectrum

We proceed to establish the absence of a singular continuous spectrum for cer-
tain asymptotically Euclidean spaces. The result will follow by application of the
abstract Mourre theory of [2]. Our argument requires the following strengthened
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version of Properties 2.1 concerning our propéexhaustion functioh. Suppose
there exists am > 0 such that, in the complement of a compact set, one has the
following.

PrOPERTIES 3.1.

(i) c1r < b < cor for some positive constants andcs.
(i) 1|Vb| —1] < cbe.
(i) |Hessh? — 2g| < cb~*.
(V) [(BP)ks| + 10 sik] < cb™*.

Herec is a positive constant. We sum over the repeated ikdex

Set¢ = b? andX = V. The operatold = —i(X + 3 div X) is symmetric on
CS°M. Moreover, ifT, is the one-parameter group generatedkofheniA is the
infinitesmal generator of the unitary one-parameter group<w,

divX
Uif(x) = exp[f T(Tvx)dsilf(’rtx)~
0

By Stone’s theorem (see [8]) is essentially self-adjoint.

SupposeéHd = —A + V is the Schrddinger operator @i, and assume that is
bounded and smooth. The domain#fis the second Sobolev spatle = { f €
L?M | Af € LM } (see [7]). The potential functiol will be required to obey
the following stronger version of Properties 2.2.

PROPERTIES 3.2.
(i) VI <cb®.
(i) | XV|<cbe.

Let the first Sobolev space be denoted My = { f € L?M | |Vf| € L?M }.
The symbolS will stand for the commutato$ = [H, iA]. A prerequisite for the
Mourre theory is the next lemma.

LemmMma 3.3. S is a bounded operator frorfi{; to H_;.

Proof. One computes the bracket

Sf =[H.iAlf = —2¢i;fi; — 2¢ju f; — 2(A%P) f — XV,

where the subscripts denote covariant derivatives and repeated indices are con-
tracted. If f € C?M then these are classical derivatives, but foe H; the
derivatives may be interpreted in the distribution sense.

Suppose thaf, g € H;. Let| f|| denote the norm of in Hy, that s,

||f||2=/Mf2+|Vf|2-
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We consider the four terms in the pairit§)f, g). The second and fourth terms are
clearly bounded. Moreover,

/Cbkjfkjg = —/¢kjjfkg - /¢kjfkgj,

/¢iijjfg = —/¢iijﬁg - /¢iijfgj~

Hence the brackes extends fronCg°M to a bounded operatet: H, — H_;.

O
Lety € C*®(R™), with ¥/(x) = 0 in a neighborhood of = 0 and withyr(x) =1
in a neighborhood af = oco. Let || S| denote the norm af as an operator from
H; to H_;. Lemma 3.3 may be improved as follows.

LemMma 3.4. We may writeS = S; + S,, where the decomposition satisfies
() 1Sl + 182l <,

(i) [I[S1, iA]ll < ¢, and

(iil) [y b/)S2| < ct™*

for somes > 0 and sufficiently large € R™.

Proof. LetS; = —4A andS, = S+ 4A. Then (i) isimmediate from Lemma 3.3.
For (i), we note that[Sy, iA] = [H,iA] + XV = S + XV, whereXV is con-
sidered as a multiplication operator. Thus (ii) follows from Lemma 3.3 and the
boundedness giX V|. The operatosS; is given by

Saf = —2(¢xj — 28%) fix — 2Bjur fi — 3(A*) f — X V.

Then (iii) follows from Properties 3.1 and 3.2, using the method of Lemma 3.3.
O
The main result of this section is our next theorem.

THEOREM 3.5. Suppose thaHH = —A + V is a Schrddinger operator for the
complete Riemannian manifod. Assume thad/ admits an exhaustion function
b with the Properties 3.1. If the potenti¥ll satisfies Properties 3.2, theé# has no
singular continuous spectrum.

Proof. Given the foregoing preliminaries and the abstract theory of [2], it suf-
fices to establish a Mourre inequality. Letlenote the characteristic function of a
closed bounded interval on the positive real line. We need to show that, for some
a > 0 and compact operatat, one has

X(H)Sx(H) > ax*(H) + C. (3.6)

If feC3°M, then partial integration gives

/M f5f =2 /M Hessp (VF, Vf) + /M (AB) 1 — /M XV
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By a standard cutoff function argument, the same formula holds for
fex(H)LM.

If K is a sufficiently large compact set, then Properties 3.1 and 3.2 yield

[ rsr=2 [ 1vree [ erui-c [ f2eivi
M M M K
Assume that @ = inf supporty) > 0andf € x(H)L,M. Then

| ur = [ 5+ [ vr
/MfoEZa/MfZ-

Combining these formulas gives

foszoc/Mfz—C/KferIVflz.

The required estimate (3.6) now follows from the Rellich embedding lemma for
Sobolev spaces on compact sets. O

The next corollary gives an interesting class of examples where Theorem 3.5 is
applicable.

CoroLLARY 3.7. Supposethau” is a complete Riemannian manifold satisfying,
forn > 3:
(i) Vol B,(r) > ct", geodesic balls have Euclidean volume gravethd
(i) |K| < cr—2¢, the sectional curvature decays faster than quadratically.
Herer is the geodesic distance from the baseppint

Assume thaV obeys Properties 3.2. Then the Schrédinger operatar + V
has no singular continuous spectrum.

Proof. For these spaces, there is a compacksstich thatM — K is diffeomor-
phic to a quotient ofR" — Bg(¢) by a finite subgroup 0O (n). Moreover, there
exist harmonic coordinates on a neighborhood of infinity satisfying the estimates

_ 0gij _
g =38; +0(x|™*) and |x|=2 = O(x|™®)
Bxk

for somee > 0 (see [1]).
We takep = b? = > x2. It suffices to verify Properties 3.1. Parts (i) and (ii)
are immediate. For (iii), one calculates

dp =2 xidx;, and Hesg =2 dxidx;+2) xVdx;.

The result follows because the Christoffel symbols satiE,f;y = 0(]x|7*%). To
establish (iv), we use the harmonicity of the coordinatgsTaking the trace of
Hessp givesA¢ = 2gkk. Thus|gwu| = |[dA¢| = O(|x|F¢). Since the curva-
ture decay is faster than quadratic, we also Hayg| = O(|x|~*¢). O
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