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1. Introduction

In general, not much is known about minimal submanifolds of Euclidean space
of high codimension. In [1], Anderson studies complete minimal submanifolds of
Euclidean space with finite total scalar curvature, trying to generalize classical re-
sults of minimal surfaces. More recently, Moore [10] continues the study of this
kind of minimal submanifolds.

Harvey and Lawson [6] also study a particular family of minimal submanifolds
of complex Euclidean space, thespecial Lagrangiansubmanifolds—that is, ori-
ented minimal Lagrangian submanifolds. They have the property of being abso-
lutely volume minimizing. Among other things, they construct important exam-
ples of the previously mentioned minimal Lagrangian submanifolds. Following
their ideas, new examples of this kind of submanifolds are also obtained in [2].
This family is well known in the case of surfaces, because an orientable minimal
surface ofC2 is Lagrangian if and only if it is holomorphic with respect to some
orthogonal complex structure onR4 (see [3]).

Among the examples constructed by Harvey and Lawson in [6], we emphasize
the one given in Theorem 3.5. In this example, we emphasize one of its connected
components, which is defined by

M0 = {(x, y)∈Cn ≡ Rn × Rn; |x|y = |y|x;
Im(|x| + i|y|)n = 1; |y| < |x| tan(π/n)}.

Besides being a minimal Lagrangian submanifold of complex Euclidean space
Cn, M0 is invariant under the diagonal action of SO(n) onCn ≡ Rn × Rn. This
paper is inspired by this example. We start by showing that it is a very regular
example with many similar properties to the classical catenoid. So, from now on
we will refer toM0 as theLagrangian catenoid.Topologically it isR × Sn−1.

Geometrically it is foliated by(n − 1)-dimensional round spheres ofCn, and it
has finite total scalar curvature (see Proposition 1). Whenn = 2 it has total curva-
ture−4π, being one of the examples described by Hoffman and Osserman in [7].
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In this case, the Lagrangian catenoid can be written as the following holomorphic
surface ofC2:

M0 =
{(
z, 1

z

)∈C2; z∈C∗}.
In [4] for surfaces and in [8] for higher dimension, it was proved that the catenoid,

the Riemann surfaces, and the generalized catenoid are the only (nonflat) minimal
hypersurfaces of Euclidean spaceRn+1 foliated by pieces of(n−1)-dimensional
round spheres ofRn+1. In Theorem 1, the Lagrangian version of this result is ob-
tained, showing that here there are no examples similar to the Riemann minimal
surfaces.

Theorem 1. Let φ : M → Cn be a minimal(nonflat) Lagrangian immersion of
an n-dimensional manifoldM. ThenM is foliated by pieces of round(n − 1)-
spheres ofCn if and only if φ is congruent(up to dilations) to an open subset of
the Lagrangian catenoid.

The proof of Theorem 1 is first given forn ≥ 3. Theorem 1 in the casen = 2 is a
consequence of our next, more general result.

Theorem 2. Let φ : Mn → Cm be a (nonflat) complex immersion of a com-
plex n-dimensional Kähler manifoldM. ThenM is foliated by pieces of round
(2n− 1)-spheres ofCm if and only ifn = 1 andφ is congruent(up to dilations)
to an open subset of the Lagrangian catenoid.

On the other hand, using results of Anderson [1] and Enomoto [5], we find that
any complete minimal submanifoldM (of dimensionn ≥ 3) of finite total scalar
curvature and properly immersed in Euclidean spaceRm has a compactification
by an inversion. This means that there exists a compactn-dimensional submani-
fold M̄ of Rm passing through the origin such thatM is the image ofM̄ − {0} by
the inversionF : Rm ∪ {∞} → Rm ∪ {∞} defined byF(p) = p/|p|2. Following
these ideas, we obtain a global characterization of the Lagrangian catenoid in the
family of minimal submanifolds with finite total scalar curvature, which is given
in the following result.

Theorem 3. LetM be ann-dimensional(n ≥ 3), complete minimal(nonflat)
submanifold with finite total scalar curvature immersed in Euclidean spaceR2n.

Then the compactification by the inversion ofM is Lagrangian for a certain orthog-
onal complex structure onR2n if and only ifM is (up to dilations) the Lagrangian
catenoid.

We mention that Lawlor [9] generalizes the Lagrangian catenoid by constructing a
family of complete Lagrangian minimal submanifolds ofCn with finite total scalar
curvature.

Whenn = 2, and assuming that the minimal surface admits a compactification
by the inversion, the proof also works and the result is true.

The method used here is different from the one used in the case of Euclidean
space [4; 8] and, in some sense, it follows some ideas developed in [11]. Basi-
cally it consists of proving that the foliation of the submanifoldφ : M → Cn is
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invariant under the action of a uniparametric group of conformal transformations
ofM, and that the associated conformal vector fieldX satisfies the vectorial equa-
tionφ = fφ∗X,wheref is a smooth complex-valued function of constant length.
Integrating this equation we obtain our uniqueness results.

2. The Lagrangian Catenoid

LetCn be complex Euclidean space with complex coordinateszi (i = 1, . . . , n),
and let

� = i

2

n∑
i=1

dzi ∧ dz̄i

be its symplectic structure. If〈·, ·〉 denotes the Euclidean metric andJ the standard
complex structure onCn, then�(u, v) = 〈Ju, v〉 for vectorsu, v. Let φ : M →
Cn be an immersion of ann-dimensional manifoldM. Thenφ is calledLagrangian
if φ∗� ≡ 0.

If NM denotes the normal bundle ofφ, thenJ defines an isometry betweenTM
andNM such that

J∇ = ∇⊥J,
where∇ (resp.∇⊥) is the Levi–Civita connection (resp., the normal connection)
of the induced metric, which will be denoted again by〈·, ·〉.

Moreover, ifσ is the second fundamental form ofφ andAη the Weingarten
endomorphism associated to a normal vector fieldη, then

σ(u, v) = JAJuv
for vectorsu, v tangent toM. Denoting byH the mean curvature vector ofφ, the
1-formγ onM defined by

γ (v) = 〈JH, v〉
is closed and, up to a constant, is the knownMaslov 1-formonM.

Suppose now thatφ is a minimal immersion, that is,H = 0. If τ is the scalar
curvature of the submanifoldM, thenτ = −|σ|2. The total scalar curvature ofM
is defined by ∫

M

|σ|n dV

(see [1]), wheredV is the measure associated to the metric〈·, ·〉.
Let Sn−1 be the unit sphere inRn, and letφ0 : R× Sn−1→ Cn ≡ Rn × Rn be

the map given by
φ0(t, p) = cosh1/n(nt)eiβ(t)(p,0),

whereβ(t) = π
2n − 2

n
arctan

(
tanhnt2

)
. We point out thatβ(t)∈ (0, π

n

)
.

Proposition 1.

(a) φ0 is a minimal Lagrangian embedding such thatφ0(R× Sn−1) = M0.

(b) Whenn = 2, M0 can be identified with the holomorphic surface{(
z, 1

z

); z∈C∗}.
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(c) The induced metric byφ0 onR× Sn−1 is

〈·, ·〉 = cosh2/n(nt)(dt 2 + g0),

whereg0 is the standard metric onSn−1 of constant curvature1. In particular,
(M0, 〈·, ·〉) is complete.

(d) M0 is foliated by round(n−1)-spheres ofCn.
(e) M0 has finite total scalar curvature. In fact, ifσ is the second fundamental

form ofM0, then∫
M0

|σ|n dV = ((n+ 2)(n−1))n/2cn−1In,

wherecn−1 is the volume of the(n−1)-dimensional unit sphere,I2 = 1, I3 =
π/6 and

In = (n− 2)2

n(n−1)
In−2, n ≥ 4.

Proof. Since we know thatM0 is a minimal Lagrangian submanifold ofCn, (a) is
reduced to proving the equalityM0 = φ0(R × Sn−1) and thatφ0 is an embed-
ding. It is straightforward thatφ0(R × Sn−1) ⊂ M0. Conversely, givenz =
(x, y) ∈ M0, we take the onlyt ∈ R such thatβ(t) = arctan(|y|/|x|). Using
that |z|n sin(nβ(t)) = 1, it is easy to check that cosh1/n(nt) = |z| and then
φ0(t, x/|x| = y/|y|) = z. On the other hand, it is not difficult to prove that
φ0 is an embedding using thatβ = β(t) : R→ (0, π/n) is a 1:1 map.

Whenn = 2, (x, y) ∈ C2 belongs toM0 if and only if x/|x| = y/|y| and
|x||y| = 1/2; so, if we defineF : C2 → C2 by F(z,w) = √2(z, w̄), it happens
thatF(M0) = {(z,1/z); z∈C∗}.

Computingdφ0 from the explicit expression ofφ0, (c) is an easy exercise. It is
clear that{ t × Sn−1 | t ∈ R } defines a foliation onM0 by round(n − 1)-spheres
of Cn.

Finally, it is not difficult to prove that

|σ|2(t, p) = (n+ 2)(n−1)

cosh2(n+1)/n(nt)
.

Hence, using thatdV = cosh(nt)(dt + dV0), with dV0 the measure of the unit
sphereSn−1, and the Fubini theorem, the total scalar curvature ofM0 is computed
as follows: ∫

M0

|σ|n dV = ((n+ 2)(n−1))n/2cn−1

∫ ∞
−∞

dt

coshn(nt)
,

where cn−1 is the volume of the unit(n − 1)-sphere. The formula forIn =∫ ∞
−∞(dt/coshn(nt)) = (1/n) ∫ ∞−∞(dx/coshn x) follows from the equality∫

dx

coshn x
= sinhx

(n−1) coshn−1x
+ n− 2

n−1

∫
dx

coshn−2 x
.
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3. Proof of the Theorems

Proof of Theorem 1 withn ≥ 3. Proposition 1(d) states thatM0 is foliated by
round(n−1)-spheres ofCn.

Conversely, suppose thatM is foliated by pieces of round(n − 1)-spheres of
Cn. LetD be the corresponding foliation onM and letX be an orthogonal vector
field toD, tangential toM, such that|Xp| = r(p) for anyp ∈M, wherer(p) is
the radius of the round sphere where the leaf ofD containingp lies. Locally, we
can parameterizeM as(−δ, δ)×N in such a way thatX ≡ ∂/∂t and, for anyt ∈
(−δ, δ), {t} ×N is a leaf of the foliationD.

Thus,φ : {t} ×N → Cn is an embedding andφ({t} ×N) is an open subset of
a round(n−1)-sphere. Ifσ t is its second fundamental form, then

σ t = −r−2〈·, ·〉(φ − c), (1)

wherer(t) andc(t) are the radius and the center of the sphere. Butσ t = σ |
({t} × N) + θ t, whereθ t is the second fundamental form of the leaf{t} × N in
M. So we get

−r−2〈v,w〉(φ − c) = σ(v,w)− r−2〈∇vX,w〉X (2)

for any vectorsv andw tangent to the leaf{t} × N. Taking trace in the above
expression and using the minimality ofM, we obtain

(n−1)(φ − c) = σ(X,X)+ (n−1)aX (3)

for a certain functiona onM. Using (3) in (2), comparing tangent and normal
components, and taking into account thatv(|X|2) = 0 for any vectorv tangent to
the leaf{t} ×N, we deduce that

∇vX = av and (n−1)σ(v,w) = −r−2〈v,w〉σ(X,X) (4)

for any vectorsv,w tangent to the leaf{t} ×N.
On the other hand, we consider the 1-formα on {t} ×N defined by

α(v) = 〈J(φ − c), v〉.
Then, since the immersionφ is Lagrangian, the differential ofα is given by

dα(v,w) = 2〈Jφ∗(v),w〉 = 0.

In addition, the codifferential ofα is given by

δα =
n−1∑
i=1

〈J(φ − c), σ t(ei, ei)〉,

where{e1, . . . , en−1} is an orthonormal reference frame on{t} ×N. Using (1), we
have thatδα = 0. So,α is a harmonic 1-form, which can be extended on the whole
round sphere. Asn − 1≥ 2, we get thatα = 0. Thus the tangent component of
J(φ − c) is parallel toX. Hence, from (3) we obtain
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φ − c = aX + ρJX (5)

and
σ(X,X) = (n−1)ρJX, (6)

for a certain smooth functionρ onM. As |X| = r we remark thata2 + ρ2 = 1.
Differentiating equation (5) with respect to any vectorv ∈D and using (4) and

(6), it is easy to obtainv(a) = v(ρ) = 0, and soa andρ are functions oft.
Differentiating again the expression with respect toX, taking tangent and normal
components toφ, and using elementary properties ofφ, we reach

X − (c ′)> = a ′X + a∇XX − (n−1)ρ2X, (7)

J(c ′)⊥ = (n−1)aρX + ρ ′X + ρ∇XX, (8)

where> and⊥ stand for tangent and normal components toφ and where′ denotes
the derivative with respect toX ≡ ∂/∂t. From these equations it is easy to derive

ρJ(c ′)⊥ − a(c ′)> = ∇XX − aX.
Now, we write∇XX = hX +W, whereh is the functionh = X(|X|2)/2r 2 =

r ′/r andW is the projection of∇XX onD. Given any vector fieldV in D, differ-
entiating the last expression with respect toV yields

0= a(h− a)V − r−2a〈V,W 〉X + (∇VW )D,
0= ρ(h− a)JV + r−2ρ〈V,W 〉JX,

where(·)D stands for the component on the foliation. From the second equation
we deduce thatρW = 0 andρ(h−a) = 0. Also, the first equation says thataW =
0. Asa2+ρ2 = 1,we getW = 0, and hence the first equation leads toa(h−a) =
0. Using again thata2 + ρ2 = 1, we finally get∇XX = aX. Together with (4),
this implies that∇wX = aw for any vectorw tangent toM, which means thatX
is a closed and conformal vector field onM. Putting this information in (7) and
(8) yields

(c ′)> = (1− a ′ − a2 + (n−1)ρ2)X,

J(c ′)⊥ = (ρ ′ + naρ)X.
The first member depends ont, so differentiating with respect to anyv ∈ D and
using (4) and the fact thata2 + ρ2 = 1 yields

ρ ′ + naρ = 0, 1− a ′ − a2 + (n−1)ρ2 = 0, and c ′ = 0,

since divX does not vanish in a dense subset ofM. Solving these ODEs we obtain
thatc(t) is constant and then, up to a translation, we can takec(t) = 0. Using that
a2+ρ2 = 1,we have thata satisfies the equationa ′ = n(1−a2). The trivial solu-
tionsa(t) = ±1 imply thatρ = 0, and then the normal component of our immer-
sionφ vanishes. In this case, it is not difficult to see thatφ is a cone over a minimal
submanifold of a hypersphere ofCn. As φ is foliated by round(n−1)-spheres of
Cn, the minimal submanifold of the hypersphere must be totally geodesic and so
the cone is a hyperplane, which is impossible by the assumptions.
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Up to reparameterizations,a(t) = tanh(nt) is the nontrivial solution; then
ρ(t) = ±1/cosh(nt). Equation (5) says that

φ(t, x) = tanh(nt)
∂φ

∂t
± 1

cosh(nt)
J
∂φ

∂t
. (9)

Givenp ∈N, let γp : (−δ, δ)→ Cn be the curve defined by

γp(t) = φ(t, p).
Then, (9) says thatγp satisfies the ODE

γp(t) = tanh(nt)γ ′p(t)±
1

cosh(nt)
Jγ ′p(t),

which is equivalent to

γ ′p(t) =
(

tanh(nt)∓ i

cosh(nt)

)
γp(t).

A standard integration for this equation leads to

γp(t) = cosh1/n(nt)e∓if(t)γp(0),

wheref(t) = 2
n

arctan
(
tanhnt2

)
. Thus, up to a rotation in the plane where the

curveγp lies,γp is exactly

γp(t) = cosh1/n(nt)e∓iβ(t)γp(0).

(see Proposition 1). Using the definition ofγp, we get that our immersionφ is
given by

φ(t, p) = cosh1/n(nt)e∓iβ(t)φ(0, p).

It is clear that the two possible solutions are congruent, so we consider the second
one corresponding to the sign+.

Now φ(0,−) : N → Cn is a Lagrangian embedding of a round(n−1)-sphere.
We can parameterize it byφ(0, x) = (x,0)∈Rn×Rn ≡ Cn and, in this way, we
finish the proof.

Proof of Theorem 2.Because the method used to prove this theorem is very sim-
ilar to that used for Theorem 1, we will omit some explanations.

First, we recall some elementary properties of complex immersions. For any
vectorsv,w tangent toM and for any normal vectorξ, it is well known that

σ(v, Jw) = Jσ(v,w), (10)

AξJv = −AJξv = −JAξv. (11)

It is clear, following the same reasoning of Theorem 1, that

φ − c = aX + 1

2n−1
σ(X,X) (12)

and
∇vX = av, (2n−1)σ(v,w) = −r−2〈v,w〉σ(X,X) (13)
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for any vectorsv,w tangent to the leaf{t} × N, whereX is a vector field chosen
in the same way as in Theorem 1.

Since the tangent space toM at a pointp is complex, we define a complex sub-
space ofTpM of complex dimensionn− 1 byHp = {v ∈Dp; 〈v, JX〉 = 0}. For
any vectorv ∈ Hp and anyp ∈M we then obtain, taking into account (13), that
σ(v, Jv) = 0. So (10) and (13) say thatσ(v, v) = 0, σ(X,X) = 0, andσ(v,X) =
0,whence the immersionφ is totally geodesic, which is impossible by assumption.
We therefore haveHp = 0 and thusn = 1.

The complex surface is not totally geodesic, so from now on we will work out-
side of the isolated zeroes of its second fundamental form. Now differentiating (12)
with respect toJX, using (10), and comparing tangent and normal components,
we obtain that

Aσ(X,X)X = (1− a2)X, JX(a) = 0, (14)

(∇σ)(X,X,X) = −3aσ(X,X). (15)

Differentiating again the expression with respect toX, taking tangent and normal
components, and using (14) and (15), we have

c ′> = (2− a2 − a ′)X − a∇XX, (16)

c ′⊥ = 2aσ(X,X)− 2σ(∇XX,X), (17)

where, as before,> and⊥ stand for tangent and normal components toφ and ′

denotes the derivative with respect toX ≡ ∂/∂t. As in the proof of Theorem 1,
we write∇XX = hX+ αJX, whereh = X(|X|2)/2r 2 = r ′/r. Taking the tangent
component of the derivative of (17) with respect toJX yields

0= 2(1− a2){(a − h)JX − αX},
which implies, taking into acount thatσ has no zeroes (i.e.a2 < 1), thath = a
andα = 0. Now (16) and (17) can be written as

c ′> = (2(1− a2)− a ′)X, c ′⊥ = 0.

Differentiating again the first expression of the foregoing equation with respect to
JX and taking the normal component, we obtain thata ′ = 2(1− a2), which im-
pliesc ′> = 0. Hence the curvec(t) is constant and, up to a translation inCn, we
can takec = 0. Also, we have proved that∇vX = (log|X|)′v for any vectorv tan-
gent toM, which means thatX is a holomorphic vector field. Now we can choose
a complex parameterz = x + iy on our complex surface in such a way thatX ≡
∂/∂x and the metric is〈·, ·〉 = |X|2|dz|2. Equation (12) can therefore be written as

φ = (log|φx |)xφx + σ(∂/∂x, ∂/∂x) = φxx.
Sinceφ is a holomorphic or antiholomorphic immersion, this equation can be writ-
ten asφzz = φ or φz̄z̄ = φ. Integrating this equation, it is very easy to see that,
up to congruences and dilations, the solution isφ(z) = (ez, e−z), which finishes
the proof.
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Proof of Theorem 3.It is very easy to see that the compactification by the inver-
sion of the Lagrangian catenoid is Lagrangian.

Conversely, letφ : M → R2n be a (proper) minimal immersion with finite total
scalar curvature of a completen-dimensional manifoldM. Let

ψ = F B φ = φ

|φ|2 : M̄ → R2n

be its compactification by the inversion, whereM̄ is a compact manifold such that
M = M̄\ψ−1(0). It is easy to see that the induced metricg onM by the immersion
ψ is given by

g = |φ|−4〈·, ·〉
where, as always,〈·, ·〉 denotes the induced metric byφ.

On the other hand,φ is also given byφ = ψ/|ψ |2. Hence, making easy com-
putations (see e.g. [5, Lemma 2.1]) and using thatφ is a minimal immersion, we
obtain

dφ(v) = |ψ |−2dψ(v)− 2|ψ |−4〈dψ(v), ψ〉ψ (18)
and

0= H + 2|ψ |−2ψ⊥, (19)

whereH is the mean curvature ofψ and⊥ denotes the normal component toψ.
Let J be the orthogonal complex structure onR2n such thatψ is Lagrangian

with respect toJ. Then, by differentiating (19) and using elementary properties of
the Lagrangian immersions, we obtain

0= g(∇′vJH,w)+ 2g(∇′|ψ |−2, v)g(Jψ⊥,w)+ 2|ψ |−2g(∇′vJψ⊥, w),
where∇′ is the Levi–Civita connection of the induced metricg. Since the Maslov
1-form is closed, we have that the first term is symmetric. Also, differentiating the
expressionψ = ψ> + ψ⊥ and using elemetary properties of the Lagrangian im-
mersions yields thatg(∇′vJψ⊥, w) = g(σ ′(v,w), Jψ>) and, in particular, that the
third term is also symmetric. As a consequence, we obtain that the second term,
too, is symmetric, and so

α ′ ∧ β ′ = 0,

whereα ′ andβ ′ are the 1-forms on the submanifoldM given by

α ′(v) = 〈dψ(v), ψ〉, β ′(v) = 〈dψ(v), Jψ〉
for any vectorv tangent toM.

Now using again (18) and thatψ is a Lagrangian immersion, we get

〈dφ(v), Jdφ(w)〉 = 2|ψ |−6(α ′ ∧ β ′)(v,w) = 0,

which means thatφ is also a Lagrangian immersion with respect toJ. Moreover,
if α andβ are the 1-forms onM defined by

α(v) = 〈dφ(v), φ〉, β(v) = 〈dφ(v), Jφ〉
then it is easy to see thatα = −|ψ |−4α ′ andβ = |ψ |−4β ′. So our immersionφ
not only is Lagrangian but also satisfies the following property:

α ∧ β = 0. (20)
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LetA = {p ∈M; αp = 0} andB = {p ∈M; βp = 0}. If A = M then|φ|2 is
constant, which is impossible by the minimality ofφ. SoA is a proper subset of
M. Similarly, if B = M thenφ is tangent to the submanifold and, using a similar
reasoning as in the proof of Theorem 1,φ is a cone over a minimal submanifold of
a hypersphere ofR2n, which is not complete unlessM was a cone over a totally
geodesic submanifold of a hypersphere. In this caseM is a Lagrangian subspace,
which is impossible by the assumptions. Hence, as|φ| has no zeroes, we have
two disjoint closed subsetsA andB of M such thatM\(A ∪ B) is a nonempty
open subset ofM. Now, (20) says that onM\A we can writeβ = fα for a cer-
tain smooth functionf. So, takingX =

√
1+ f 2φ>, our immersionφ is given

onM\A by φ = aX + bJX, wherea andb are smooth functions onM\A sat-
isfying a2 + b2 = 1. Making a similar argument forB, we writeφ onM\B as
φ = a ′X ′ + b ′JX ′ with a ′2 + b ′2 = 1. It is clear that, on the nonempty subset
M\(A ∪ B), we can takeX ′ = X, a ′ = a, andb ′ = b. In this way, we have ob-
tained a vector fieldX, without zeroes and functionsa andb defined on the whole
M, such that

φ = aX + bJX with a2 + b2 = 1.

Let π : M̃ → M be the universal covering ofM, and letφ̃ = φ B π be the cor-
responding immersion inR2n. It is clear that the vector fieldX can be lifted to a
vector fieldX̃ on M̃ in such a way that

φ̃ = ãX̃ + b̃JX̃, (21)

whereã = a B π andb̃ = b B π.
Making similar reasonings as in the proof of Theorem 1, we obtain that

∇̃wX = ãw, σ̃(X̃, X̃) = (n−1)b̃JX̃, σ̃(X̃, v) = −b̃v, (22)

and thatv(ã) = 0 andv(b̃) = 0 for any vectorw tangent toM and any vectorv
orthogonal toX, with σ̃ the second fundamental form ofφ̃ and∇̃ the Levi–Civita
connection of the induced metric. Differentiating (21) with respect toX̃, using
(22), and comparing tangent and normal components, we obtain

1− ã ′ − ã2 + (n−1)b̃ = 0, b̃ ′ + nãb̃ = 0.

Thus, we arrive at the same situation as in Theorem1. Proceeding in a similar way,
we obtain

φ̃(t, p) = cosh1/n(nt)eiβ(t)φ̃(0, p).

Now we will studyφ̃0 : Ñ → Cn defined by

φ̃0(p) = φ̃(0, p).
First, asã(t) = tanh(nt), it is easy to get that|X̃| = |∂φ̃/∂t | = cosh1/n(nt).
Because (9) is true here, we thus haveφ̃0(p) = ±J(∂φ̃/∂t)(0, p) and so can
deduce that

|φ̃0|2 = 1, 〈dφ̃0(v), Jφ̃0〉 = 0 (23)
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for any vectorv tangent toÑ. If 5 : S2n−1(1) → CP n−1 is the Hopf fibration of
the unit sphere over the complex projective space, then (23) says thatφ̃0 is a hor-
izontal immersion ofÑ in S2n−1, and so5 B φ̃0 : Ñ → CP n−1 is a Lagrangian
immersion. Using (22) and the fact that span{φ̃, Jφ̃} = span{∂φ̃/∂t, J(∂φ̃/∂t)},
it is clear that5 B φ̃ is also a minimal immersion.

We can now study the universal coveringπ : R× Ñ → M. Let

F = (F1, F2) : R× Ñ → R× Ñ
be a deck transformation of this covering. Sinceπ(F(t, p)) = π((t, p)), it fol-
lows thatφ̃(F(t, p)) = φ̃((t, p)) and, in particular, that they have the same length.
This means that cosh(nt) = cosh(nF1(t, p)) for any t ∈ R andp ∈ Ñ, and so
F1(t, p) = t. Also, asF is an isometry of the metric cosh2/n(nt)(dt 2 + g̃), we
have that

cosh2/n(nt) = cosh2/n(nt)(1+ |∂F2/∂t |2)
and so∂F2/∂t ≡ 0.

Thus we have proved that our deck transformationF is given by

F(t, p) = (t, F2(p)).

In this way, our original Riemannian manifold(M, 〈·, ·〉) is isometric to
(
R× N,

cosh2/n(nt)(dt 2 + g)), Ñ is the universal covering ofN, φ is given by

φ(t, p) = cosh1/n(nt)eiβ(t)φ(0, p),

andπ B φ0 : (N, g)→ CP n−1 is a minimal Lagrangian isometric immersion.
To finish the proof we need only show thatf = π B φ0 is totally geodesic. In

order to prove this, we shall use that our Lagrangian submanifold has finite total
scalar curvature. In fact, it is easy to see that

|σ|2(t, p) = (n+ 2)(n−1)

cosh2(n+1)/n(nt)
+ |σ̂ |2(p),

whereσ̂ is the second fundamental form of the immersionf. So, as|σ|2(t, p) =
|σ|2(−t, p), using the Fubini theorem and thatdV = cosh(nt)(dt + dVg) we
obtain ∫

M

|σ|n dV = 2
∫ ∞

0
cosh(nt)h(t) dt,

where

h(t) =
∫
N

(
(n+ 2)(n−1)

cosh2(n+1)/n(nt)
+ |σ̂|2(p)

)n/2

dVg.

Sinceh(t) ≥ 0 and
∫
M
|σ|n dV <∞, we have limt→∞ h(t) = 0. This means that∫

N
|σ̂|n dVg = 0 and so|σ̂| = 0. This finishes the proof.

Remark 1. The preceding description of the Lagrangian catenoid allows us to
show a method of construction of minimal Lagrangian submanifolds inCn. In
fact, given a minimal Lagrangian submanifold
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ψ : N → CP n−1

of an(n−1)-dimensional simply connected manifoldN, we define

φ : R×N → Cn

by
φ(t, p) = cosh1/n(nt)eiβ(t)ψ̃(p),

whereψ̃ : N → S2n−1(1) is the horizontal lift with respect to the Hopf fibration
(which is unique up to rotations ofS2n−1(1)) of ψ to S2n−1(1). Then it is easy to
check thatφ is a minimal Lagrangian immersion ofR×N intoCn.

This family of examples has a common property: any of these submanifolds ad-
mits a closed and conformal vector fieldX satisfyingσ(X,X) = ρJX for a cer-
tain smooth functionρ. Following ideas developed in [11], it can be proved that
this property characterizes the foregoing family of examples.
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