On a Minimal Lagrangian Submanifold
of C" Foliated by Spheres
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1. Introduction

In general, not much is known about minimal submanifolds of Euclidean space
of high codimension. In [1], Anderson studies complete minimal submanifolds of
Euclidean space with finite total scalar curvature, trying to generalize classical re-
sults of minimal surfaces. More recently, Moore [10] continues the study of this
kind of minimal submanifolds.

Harvey and Lawson [6] also study a particular family of minimal submanifolds
of complex Euclidean space, tBpecial Lagrangiarsubmanifolds—that is, ori-
ented minimal Lagrangian submanifolds. They have the property of being abso-
lutely volume minimizing. Among other things, they construct important exam-
ples of the previously mentioned minimal Lagrangian submanifolds. Following
their ideas, new examples of this kind of submanifolds are also obtained in [2].
This family is well known in the case of surfaces, because an orientable minimal
surface ofC? is Lagrangian if and only if it is holomorphic with respect to some
orthogonal complex structure @&t (see [3]).

Among the examples constructed by Harvey and Lawson in [6], we emphasize
the one given in Theorem 3.5. In this example, we emphasize one of its connected
components, which is defined by

Mo ={(x,y)eC"=R" x R"; |x|]y = |y|x;
Im(|x| +ilyD" =1 |y| < |x|tan(z/n)}.

Besides being a minimal Lagrangian submanifold of complex Euclidean space
C", My is invariant under the diagonal action of GQonC” = R" x R". This
paper is inspired by this example. We start by showing that it is a very regular
example with many similar properties to the classical catenoid. So, from now on
we will refer to My as theLagrangian catenoid . Topologically it isSR x S"~%.
Geometrically it is foliated byn — 1)-dimensional round spheres @f*, and it

has finite total scalar curvature (see Proposition 1). When2 it has total curva-

ture —4m, being one of the examples described by Hoffman and Osserman in [7].
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In this case, the Lagrangian catenoid can be written as the following holomorphic
surface ofC?:
Mo = {(z.3) eC* zeC*}.

In [4] for surfaces and in [8] for higher dimension, itwas proved that the catenoid,
the Riemann surfaces, and the generalized catenoid are the only (nonflat) minimal
hypersurfaces of Euclidean spak&™ foliated by pieces ofn — 1)-dimensional
round spheres dk"+1. In Theorem 1, the Lagrangian version of this result is ob-
tained, showing that here there are no examples similar to the Riemann minimal
surfaces.

THEOREM 1. Let¢: M — C" be a minimalnonfla) Lagrangian immersion of
an n-dimensional manifold. ThenM is foliated by pieces of roun¢t: — 1)-
spheres ofC" if and only if ¢ is congruentup to dilationg to an open subset of
the Lagrangian catenoid.

The proof of Theorem 1is first given far> 3. Theorem 1in the case= 2is a
consequence of our next, more general result.

THEOREM 2. Let¢: M" — C™ be a(nonfla)) complex immersion of a com-
plex n-dimensional Kéhler manifoldZ. ThenM is foliated by pieces of round
(2n — 1)-spheres ofC™ if and only ifn = 1and ¢ is congruentup to dilationg
to an open subset of the Lagrangian catenoid.

On the other hand, using results of Anderson [1] and Enomoto [5], we find that
any complete minimal submanifold (of dimension: > 3) of finite total scalar
curvature and properly immersed in Euclidean sg@tehas a compactification

by an inversion. This means that there exists a compatimensional submani-

fold M of R™ passing through the origin such thitis the image ofi/ — {0} by

the inversionF : R” U {oo} — R U {oco} defined byF(p) = p/|p|?. Following

these ideas, we obtain a global characterization of the Lagrangian catenoid in the
family of minimal submanifolds with finite total scalar curvature, which is given

in the following result.

THEOREM 3. Let M be ann-dimensional(n > 3), complete minima(nonflaj
submanifold with finite total scalar curvature immersed in Euclidean si&te
Then the compactification by the inversiobfs Lagrangian for a certain orthog-
onal complex structure oR?" if and only if M is (up to dilationg the Lagrangian
catenoid.

We mention that Lawlor [9] generalizes the Lagrangian catenoid by constructing a
family of complete Lagrangian minimal submanifoldg&fwith finite total scalar
curvature.

Whenn = 2, and assuming that the minimal surface admits a compactification
by the inversion, the proof also works and the result is true.

The method used here is different from the one used in the case of Euclidean
space [4; 8] and, in some sense, it follows some ideas developed in [11]. Basi-
cally it consists of proving that the foliation of the submanifgld M — C” is
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invariant under the action of a uniparametric group of conformal transformations
of M, and that the associated conformal vector figldatisfies the vectorial equa-
tiong = f¢. X, wheref is a smooth complex-valued function of constant length.
Integrating this equation we obtain our uniqueness results.

2. The Lagrangian Catenoid

Let C" be complex Euclidean space with complex coordinatgs =1, .. ., n),
and let

P
Q== dz; Ndz;
2; zi NdZ

be its symplectic structure. {f, -) denotes the Euclidean metric ahthe standard
complex structure oft”, then2(u, v) = (Ju, v) for vectorsu, v. Let¢: M —
C™" be animmersion of am-dimensional manifoldZ. Theng is calledLagrangian
if p*Q = 0.

If NM denotes the normal bundle ¢f thenJ defines an isometry betwe&M
andNM such that

JV =V,

whereV (resp.V+) is the Levi—Civita connection (resp., the normal connection)
of the induced metric, which will be denoted again(hy).

Moreover, ifo is the second fundamental form ¢fand A, the Weingarten
endomorphism associated to a normal vector figlthen

o(u,v) = JA v

for vectorsu, v tangent taV/. Denoting byH the mean curvature vector ¢f the
1-formy on M defined by
y(v) = (JH, v)

is closed and, up to a constant, is the kndviaslov 1-formon M.
Suppose now that is a minimal immersion, that i/ = 0. If 7 is the scalar
curvature of the submanifoltt, thent = —|o|?. The total scalar curvature of

is defined by
/ lo|" dV
M

(see [1]), wherelV is the measure associated to the mefie).
Let S"~! be the unit sphere iR”, and letgg: R x "1 — C" = R" x R” be
the map given by
¢o(t, p) = cost"(n1)e?V(p, 0),

whereB(r) = X — 2 arctar(tanh’4). We point out thaB(t) € (0, Z).
ProrosITION 1.

(@) ¢ois a minimal Lagrangian embedding such thigt(R x S"1) = M.
(b) Whenn = 2, M, can be identified with the holomorphic surface

(. ) zeC).
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(c) The induced metric byo onR x S"tis
(-, ) = cosif/"(nt)(d1* + go).

whereg is the standard metric of"~* of constant curvaturé In particular,
(Mo, (-, -)) is complete.

(d) M, is foliated by roundn — 1)-spheres ofC".

(e) My has finite total scalar curvature. In fact, df is the second fundamental
form of My, then

lo|"dV = ((n + 2)(n — 1)"%c,_1l,,

Mo

wherec,,_1 is the volume of thé: — 1)-dimensional unit spherd, = 1, I3 =
/6 and

(n — 2)?

" an=1

I,_>, n>4

Proof. Since we know tha#; is a minimal Lagrangian submanifold 6f*, (a) is
reduced to proving the equalityy = ¢o(R x S*1) and thatpg is an embed-
ding. It is straightforward thapo(R x S"~1) c M,. Conversely, givery =
(x,y) € My, we take the only € R such thatd(s) = arctan(|y|/|x|). Using
that |z|” sin(nB(r)) = 1, it is easy to check that co8h(nr) = |z| and then
do(t, x/|1x| = y/lyl) = z. On the other hand, it is not difficult to prove that
¢o is an embedding using that= B(¢): R — (0, 7/n) isa l:1 map.

Whenn = 2, (x,y) € C? belongs toMy if and only if x/|x| = y/|y| and
lx||y| = 1/2; so, if we defineF : C2 — C2 by F(z, w) = +/2(z, w), it happens
that F(Mg) = {(z, 1/z); z € C*}.

Computingd¢o from the explicit expression afy, () is an easy exercise. Itis
clear that{r x S"~* | t e R} defines a foliation o by round(n — 1)-spheres
of C".

Finally, it is not difficult to prove that

2 py= BT D
lo|“(t, p) = Cosh'g(n-rl)/n(m)'

Hence, using thadV = coshnt)(dt + dVy), with dVy the measure of the unit
sphereS”1, and the Fubini theorem, the total scalar curvaturgfgfis computed
as follows:

" dV = (1 + 2)(n — 1) e,y f T_d

Mo —o COsH(nt)’

wherec,_; is the volume of the unitn — 1)-sphere. The formula fof, =
[ (dt/cost (nt)) = (1/n) [ (dx/cosH x) follows from the equality

dx sinhx n—2 dx
= — + —— U
cosfx (m—1cosH*x n—-1J cosH “x
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3. Proof of the Theorems

Proof of Theorem 1 witlk > 3. Proposition 1(d) states thaf is foliated by
round(n — 1)-spheres ofC".

Conversely, suppose thaf is foliated by pieces of rounth — 1)-spheres of
C". LetD be the corresponding foliation ad and letX be an orthogonal vector
field to D, tangential toM, such thatX,| = r(p) for any p € M, wherer(p) is
the radius of the round sphere where the leagbafontainingp lies. Locally, we
can parameteriz#f as(—§, §) x N in such a way thak = 9/9r and, for anyr €
(=8, 9), {t} x N is a leaf of the foliatiorD.

Thus,¢: {t} x N — C" is an embedding andl({t} x N) is an open subset of
around(n — 1)-sphere. Ifo! is its second fundamental form, then

ol = —r 3, ) - o), (1)
wherer(t) andc(¢) are the radius and the center of the sphere. But o |
({t} x N) + 6, whered' is the second fundamental form of the I¢af x N in
M. So we get

—r v, w)($ — ¢) = (v, w) — r XV, X, w)X €
for any vectorsy andw tangent to the leaft} x N. Taking trace in the above
expression and using the minimality &f, we obtain

n=D(—c)=0(X,X)+ n—DaX (3)

for a certain functioru on M. Using (3) in (2), comparing tangent and normal
components, and taking into account thétx|%) = 0 for any vectow tangent to
the leaf{t} x N, we deduce that

VoX =av and (n—Do,w) = —r (v, w)o(X, X) (4)

for any vectora, w tangent to the leafft} x N.
On the other hand, we consider the 1-fazron {¢} x N defined by

a(v) = (J(¢ —c),v).
Then, since the immersiagfis Lagrangian, the differential of is given by
da(v,w) = 2(Jp.(v), w) = 0.

In addition, the codifferential af is given by

n—1

Sa =Y (J(@—c), 0 (e, e)),

i=1
where{es, . . ., e,_1} is an orthonormal reference frame gh x N. Using (1), we
have thaa = 0. So,« is a harmonic 1-form, which can be extended on the whole
round sphere. As —1 > 2, we get thatx = 0. Thus the tangent component of
J(¢ — ¢) is parallel toX. Hence, from (3) we obtain
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¢—c=aX+pJX (5)
and
o(X,X)=m—-1DpJX, (6)

for a certain smooth functiop on M. As | X| = r we remark that? + p2 =1

Differentiating equation (5) with respect to any vectar D and using (4) and
(6), it is easy to obtain(a) = v(p) = 0, and soa and p are functions of.
Differentiating again the expression with respecktaaking tangent and normal
components t@, and using elementary propertiesgfwe reach

X — () =a'X +aVxX — (n —1p?X, (7)
J(c)t = —DapX + p'X + pVx X, (8)

whereT and_L stand for tangent and normal componentg t;md whereé denotes
the derivative with respect t§ = 9/0r. From these equations it is easy to derive

pJ(c)t —a(c) = VxX —aX.

Now, we writeVx X = hX + W, where# is the functionz = X(|X|?)/2r? =
r'/r andW is the projection oVy X onD. Given any vector field/ in D, differ-
entiating the last expression with respec¥tgields

0=alh—a)V —r2a(V, W)X + (Vy W),
0=ph—a)JV +r%p(V, W)JX,

where(-)? stands for the component on the foliation. From the second equation
we deduce thgtW = 0 andp(h —a) = 0. Also, the first equation says that’ =

0. Asa®+p? = 1, we getW = 0, and hence the first equation leadgth —a) =

0. Using again that® + p? = 1, we finally getVx X = aX. Together with (4),

this implies thatv,, X = aw for any vectorw tangent toM, which means thakX

is a closed and conformal vector field an Putting this information in (7) and

(8) yields

(' =@—-a —a*+ @ —-DpdX,
J(c)"E = (p' +nap)X.

The first member depends onso differentiating with respect to anye D and
using (4) and the fact tha? + p2 = 1 yields

o' +nap=0, 1—a' —a’+m—-1p?=0, and ¢ =0,

since divX does not vanish in a dense subsetofSolving these ODEs we obtain
thatc(¢) is constant and then, up to a translation, we canté&ke= 0. Using that

a’?+ p? = 1, we have that satisfies the equatiarf = n(1—a?). The trivial solu-
tionsa(tr) = £1imply thatp = 0, and then the normal component of our immer-
siong vanishes. In this case, itis not difficult to see t#ia¢ a cone over a minimal
submanifold of a hypersphere &f'. As ¢ is foliated by roundn — 1)-spheres of

C", the minimal submanifold of the hypersphere must be totally geodesic and so
the cone is a hyperplane, which is impossible by the assumptions.
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Up to reparameterizationg,(t) = tanh(nt) is the nontrivial solution; then
p(t) = £1/coshnt). Equation (5) says that

1 BL)

coshint) ™ at

Givenp e N, lety,: (=4, 8) — C" be the curve defined by
Yp() = ¢(t, p).

Then, (9) says that, satisfies the ODE

o(t,x) = tanf’(nt)% + 9)

Jy, (1),

1) =tanh(nt)y/(t) + 1
Vp()— n)J/p() W

which is equivalent to

Yy (1) = (tanh(m) F m)ypu).
A standard integration for this equation leads to
vp(t) = costt"(n1)e™/ "y, (0),
where f(r) = farctar(tanh%). Thus, up to a rotation in the plane where the
curvey, lies, y, is exactly
¥p(t) = cost"(nt)e¥# Dy, (0).

(see Proposition 1). Using the definition gf, we get that our immersiot is
given by _
o (t, p) = costt"(nr)eT# ¢ (0, p).

It is clear that the two possible solutions are congruent, so we consider the second
one corresponding to the sigh
Now ¢ (0, —): N — C" is a Lagrangian embedding of a rouad— 1)-sphere.
We can parameterize it ly(0, x) = (x, 0) e R” x R” = C" and, in this way, we
finish the proof. O

Proof of Theorem 2Because the method used to prove this theorem is very sim-
ilar to that used for Theorem 1, we will omit some explanations.
First, we recall some elementary properties of complex immersions. For any
vectorsv, w tangent taM and for any normal vectdy, it is well known that
o(v, Jw) = Jo (v, w), (10)
AgJUZ—AJSU:—JAgv. (]_1.)

It is clear, following the same reasoning of Theorem 1, that

¢ —c=aX+

o _1U(X, X) (12)

and
V,X = av, 2n —Do,w) = —r (v, w)o(X, X) (13)
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for any vectors, w tangent to the leafr} x N, whereX is a vector field chosen
in the same way as in Theorem 1.

Since the tangent spaceMb at a pointp is complex, we define a complex sub-
space off,, M of complex dimension —1by H, = {ve D,; (v, JX) = 0}. For
any vectorv € H, and anyp € M we then obtain, taking into account (13), that
o(v, Ju) = 0. So (10) and (13) say thatv, v) = 0, (X, X) = 0, ando (v, X) =
0, whence the immersiaopiis totally geodesic, which is impossible by assumption.
We therefore havéf, = 0 and thus: = 1

The complex surface is not totally geodesic, so from now on we will work out-
side of the isolated zeroes of its second fundamental form. Now differentiating (12)
with respect ta/X, using (10), and comparing tangent and normal components,
we obtain that

Asx. )X = (1—adX, JX(a) =0, (14)
(Vo) (X, X, X) = —3ac(X, X). (15)

Differentiating again the expression with respecktaaking tangent and normal
components, and using (14) and (15), we have

T=2-a?>—a)X —aVxX, (16)
¢t =2a0(X,X) —20(Vx X, X), 7)

where, as before] and L stand for tangent and normal componentgtand’
denotes the derivative with respectXo= 9/9¢. As in the proof of Theorem 1,
we writeVx X = hX +aJX, whereh = X(|X|?)/2r? = r/r. Taking the tangent
component of the derivative of (17) with respect/i® yields

0=201-da®{(a—h)JX —aX)},

which implies, taking into acount that has no zeroes (i.@? < 1), thath = a
anda = 0. Now (16) and (17) can be written as

T=Q1l-a*—-a)Xx, c*+=0.

Differentiating again the first expression of the foregoing equation with respect to
JX and taking the normal component, we obtain thiat 2(1 — a?), which im-
pliesc’T = 0. Hence the curve(r) is constant and, up to a translationGri, we

can take = 0. Also, we have proved that, X = (log| X|)'v for any vectow tan-

gent toM, which means thaX is a holomorphic vector field. Now we can choose

a complex parameter= x + iy on our complex surface in such a way that

d/dx and the metric i§-, -) = | X|?|dz|?. Equation (12) can therefore be written as

¢ = (log|¢:)x¢x + 0(9/0x, 3/9x) = .

Sinceg is a holomorphic or antiholomorphic immersion, this equation can be writ-
ten asp,, = ¢ or ¢;: = ¢. Integrating this equation, it is very easy to see that,
up to congruences and dilations, the solutiot {8) = (e?, e~ %), which finishes

the proof. O
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Proof of Theorem 3lt is very easy to see that the compactification by the inver-
sion of the Lagrangian catenoid is Lagrangian.

Conversely, lepp: M — R?" be a (proper) minimal immersion with finite total
scalar curvature of a completedimensional manifold. Let

w=F0¢:jLMW+Rh
|12
be its compactification by the inversion, wheeis a compact manifold such that
M = M\y~X0). Itis easy to see that the induced metrion M by the immersion
Y is given by
g=1ol7*.")
where, as always;, -) denotes the induced metric iy
On the other handy is also given byp = v//|y|°. Hence, making easy com-
putations (see e.g. [5, Lemma 2.1]) and using tha a minimal immersion, we
obtain
de () = [y|2dy () — 21y |~ Hdy (). ¥)¥ (18)
and
0=H +2|y| 2y, (19)
whereH is the mean curvature @f and_L denotes the normal componento
Let J be the orthogonal complex structure RA* such thaty is Lagrangian
with respect ta/. Then, by differentiating (19) and using elementary properties of
the Lagrangian immersions, we obtain

0=g(V,JH,w) +2g(V'|y| 2, v)g(Jy, w) + 2/y| 2g(V,Jy ", w),

whereV’ is the Levi—Civita connection of the induced metgicSince the Maslov
1-form is closed, we have that the first term is symmetric. Also, differentiating the
expressiony = ' + ¥+ and using elemetary properties of the Lagrangian im-
mersions yields that(V,Jy+, w) = g(o'(v, w), JY") and, in particular, that the

third term is also symmetric. As a consequence, we obtain that the second term,

too, is symmetric, and so
a’'AB =0,

wherea’ andg’ are the 1-forms on the submanifald given by
a'(v) = (dy ), ¥),  B'v) = (dy), J¥)

for any vector tangent toM.
Now using again (18) and thdgt is a Lagrangian immersion, we get

(dp (v), Jdgp(w)) = 2|y~ °(’ A B") (v, w) =0,

which means thap is also a Lagrangian immersion with respecttdVioreover,
if « andp are the 1-forms o/ defined by

a) = (dp(v),9),  B) = (dp(v), Jp)

then it is easy to see that= —|y/|%a’ andp = |¥|~*B’. So our immersiorp
not only is Lagrangian but also satisfies the following property:

aAp=0. (20)
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LetA={peM; a, =0}andB = {p e M; B, = 0}. If A = M then|¢|?is
constant, which is impossible by the minimality@f So A is a proper subset of
M. Similarly, if B = M theng is tangent to the submanifold and, using a similar
reasoning as in the proof of Theorenglis a cone over a minimal submanifold of
a hypersphere dk?", which is not complete unles® was a cone over a totally
geodesic submanifold of a hypersphere. In this ddde a Lagrangian subspace,
which is impossible by the assumptions. Hence|¢ashas no zeroes, we have
two disjoint closed subset$ and B of M such thatM \(A U B) is a nonempty
open subset o#. Now, (20) says that oM\ A we can writef = fua for a cer-
tain smooth functionf. So, takingX = /1 + f2¢', our immersionp is given
on M\A by ¢ = aX + bJX, wherea andb are smooth functions o/ \ A sat-
isfying a? + b? = 1. Making a similar argument foB, we write ¢ on M\ B as
¢ =a'X' +b'JX' witha'? + b'?> = 1 Itis clear that, on the nonempty subset
M\(A U B), we can takeX’ = X, a’ = a, andb’ = b. In this way, we have ob-
tained a vector fieldl, without zeroes and functioasandb defined on the whole
M, such that

¢ =aX +bJX with a®>+b%>=1

Letw: M — M be the universal covering df, and letp = ¢ o = be the cor-
responding immersion iR?". It is clear that the vector field can be lifted to a
vector fieldX on M in such a way that

¢ =aX+hbJX, (21)
whered =aon andb = bo 7.
Making similar reasonings as in the proof of Theorem 1, we obtain that
Vo X =aw, 6(X,X)=m—-DbJX, &(X,v)=—buv, (22)

and thatv(a) = 0 andv(b) = 0 for any vectomw tangent toM and any vectop
orthogonal taX, with & the second fundamental form 6fand@ the Levi—Civita
connection of the induced metric. Differentiating (21) with respecktausing
(22), and comparing tangent and normal components, we obtain

1-a —a’+m—1b=0, b’ +nab = 0.

Thus, we arrive at the same situation as in Theorem 1. Proceeding in a similar way,
we obtain

¢(t, p) = cosh’"(n1)e?V (0, p).
Now we will studygo: N — C" defined by
$o(p) = $(0, p).

First, asa(r) = tanhns), it is easy to get thatX| = |§q§/8t| = cosh/"(nt).
Because (9) is true here, we thus haug p) = +J(3¢/0r)(0, p) and so can
deduce that

lpol? =1 (dgo(v), Jpo) =0 (23)
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for any vectory tangent toN. If IT: S2*~1(1) — CP"~1is the Hopf fibration of
the unit sphere over the complex projective - space, then (23) sayptisad hor-
izontal immersion ofV in S2*~1, and soIl o ¢o N —» CP"1lisa Lagranglan
immersion. Using (22) and the fact that span/¢} = sparfdg/ot, J(3¢/d1)},
it is clear thatll o ¢ is also a minimal immersion.

We can now study the universal covering R x N — M. Let

F=(F,F):RxN—>RxN

be a deck transformation of this covering. Sinog (¢, p)) = 7 ((¢, p)), it fol-
lows thatd (F (¢, p)) = ¢((z, p)) and, in particular, that they have the same length.
This means that coshr) = coshnFi(t, p)) for anyr € R andp € N, and so
Fi(t, p) = t. Also, asF is an isometry of the metric codti(nr)(d? + g), we
have that

cost/"(nt) = costt/"(nt)(L+ |0F»/9t|%)

and sodF, /ot = 0.
Thus we have proved that our deck transformafiois given by

F(t, p) = (t, F2(p)).

In this way, our original Riemannian manifold/, (-, -)) is isometric to(]R X N,
cost/"(nt)(dt? + g)), N is the universal covering d¥, ¢ is given by

¢ (t, p) = cost/"(nt) e (0, p),

andr o ¢o: (N, g) — CP"is a minimal Lagrangian isometric immersion.

To finish the proof we need only show that= 7 o ¢¢ is totally geodesic. In
order to prove this, we shall use that our Lagrangian submanifold has finite total
scalar curvature. In fact, it is easy to see that

(n+2)(n—-1)
COSH(?H’D/H( )
whereé is the second fundamental form of the immersjorso, aso|%(t, p) =

|o|?(—t, p), using the Fubini theorem and thdV = coshn?)(dt + dVy) we
obtain

lo?(t, p) = +161%(p),

lo|"dV = 2/ coshint)h(r) dt,
M 0

n+2)(n-1 P )n/Z
MO = |\ cosRo i nr) dv,.
® /N<cosr?<"+1)/n(m) +lo1%(p) ,

Sinceh(r) > 0 andfM|o|" dV < oo, we have lim_, o, () = 0. This means that
[yl61"dV, = 0 and sdé| = 0. This finishes the proof. O

where

ReMark 1. The preceding description of the Lagrangian catenoid allows us to
show a method of construction of minimal Lagrangian submanifoldS”inin
fact, given a minimal Lagrangian submanifold
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v: N — Cp"?t
of an(n — 1)-dimensional simply connected manifal we define
¢:Rx N—>C"

by
¢(t, p) = cosi/"(nt) e Oy (p),

wherey: N — S2*~1(1) is the horizontal lift with respect to the Hopf fibration
(which is unique up to rotations 67*~%(1)) of ¥ to S*"~1(1). Then it is easy to
check thaw is a minimal Lagrangian immersion & x N into C".

This family of examples has a common property: any of these submanifolds ad-
mits a closed and conformal vector fiedsatisfyingo (X, X) = pJX for a cer-
tain smooth functiorp. Following ideas developed in [11], it can be proved that
this property characterizes the foregoing family of examples.
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