On Axiom H

Eric L. SWENSON

1. Boundaries of Groups

The study of boundaries of groups originated in the study of limit sets of Kleinian
and Fuchsian groups. This idea was generalized by Gromov to boundaries of neg-
atively curved groups and CAU) boundaries of groups [8]. In [3], Bestvina and
Mess prove that, whe@ is negatively curved, theth Cech cohomology groups
(with coefficients in a ringr) of the Gromov boundary af are isomorphic to the

(n + Dth cohomology groups af with coefficients in the group rin@G.

In [2], Bestvina extends this result to include more general types of boundaries
of groups. He also gives some results relating the global and local Steenrod ho-
mology of boundaries of groups, weaker results for general boundaries of groups,
and stronger results when the boundary in question is the Gromov boundary of a
negatively curved group. These later results are based on thezpafitihe Gro-
mov boundary satisfying what is called Axiom H. A proof is given that all points
of the Gromov boundary satisfy Axiom H.

In this note, we show that not all points of the Gromov boundary satisfy Ax-
iom H, butthat almost all points of the Gromov boundary satisfy Axiom H. We also
establish a slightly weaker result relating the local and global Steenrod homology
of the Gromov boundary.

The following is a short synopsis of the setting and some of the results of
Bestvina’s paper [2].

DEFINITION.  Acompactfinite-dimensional contractible locally contractible met-
ric spaceX is called aEuclidean retract(or ER). A closed subsef of an ER

X is called aZ-setif there is a deformatiork,: X — X with ho = id and
h(X)NZ=40.

DEeFINITION. A sequencéA;) of subsets of a metric spageis anull sequence
if the diameters diaf;) — 0 asi — oo.

DEFINITION.  LetG be a group. AZ-structure orG is a pair(X, Z) that satisfies
the following axioms.

(1) X isanER.

(2) Z c XisaZ-set.
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(3) X = X — Z admits a covering space action@fwith compact quotient. .
(4) The collection of translates of a compact seXiforms a null sequence K.

When these axioms are satisfietlis called aboundaryof G.

The most important example of a boundary of a group is the Gromov boundary of
a torsion-free negatively curved gro@p The space& in this example is the Rips
complex ofG. That(X, dG) forms aZ-structure is demonstrated in [3].

DEFINITION.  Let (X, Z) be aZ-structure orG. A sequencd/; D U D - - - of
open sets irX is basicfor z € Z if there is a sequenc#; D W, > --- of neigh-
borhoods ot € X forming a basis at such that the sequencgd; N X} andU;
are cofinal in each other.

The following are numbered as in [2].

ProrosiTioN 1.10. Suppose thdl is a countable field, and that is a boundary
of G.

(1) If H91Y(G; LG) is finite-dimensional, then
HI™G;LG) = H\y(X) = Hy(Z) <~ Hy(Z, Z — {z})

is injective for allz € Z.
(2) If there is az € Z with H,(Z, Z — {z}) countable, then‘"}(G; LG) is
finite-dimensional.

Here, the homology off is the Steenrod homology.

AxiomH. We say aZ-structure orG satisfies Axiom H if, for every € Z, there
is a basic sequendg such that, for every > 1 and every compad& cC X, there
existsg € G such that

() g(ULLUK) Cc U, and

(i) g, > U, for somem > n.

ProrosiTioN 1.17. Let Z be a boundary of; and assume Axiom H. [f. is a
countable fieldg > 0, andz € Z, then one of the following holds for Steenrod
homology with coefficients ih.

(1) The natural mapH,(Z) — H,(Z, Z — {z}) is an isomorphism and the two
vector spaces are finite-dimensional.
(2) H,(Z, Z — {z}) is uncountable.

ProrosiTioN 1.18. If the group G is negatively curved and is the Gromov
boundary ofG, then Axiom H holds foZ.

This completes the synopsis of the pertinent parts of Bestvina’s paper. As one can
see, Propositioh.17 is a verymportant result relating the homology group to local
homology groups in Steenrod homology. Unfortunately, we will see that Propo-
sition1.18 is &lse in general; in particular, we show that Axiom H is not satisfied
whenZ is the Gromov boundary of the free group of rank 2.
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Notice that Axiom H is in fact a local condition. In this paper, we will say that
z € Z, a boundary of a groug, “satisfies Axiom H” if there is a basic sequence
for z satisfying the conditions of Axiom H.

CounTEREXAMPLE. If Z is the Gromov boundary df,, the free group of rank
2,thenZ fails to satisfy Axiom H.

Proof. We first show that if a point € Z satisfies Axiom H then any basic se-
guence for; will have a subsequence satisfying Axiom H. I{&t,} be the basic
sequence of that satisfies Axiom H, and |¢¥;} be any other basic sequence for

z. Now simply choose subsequendd3 } and{U,,,} with V;, C U,,, andV}, D

U,,,. We can do this since any two basic sequences will be cofinal in each other.
Since{U,,} satisfied the conditions Axiom H, it follows th&/,,, } will also. We

now show tha{V;,} satisfies the conditions of Axiom H. L&t be a compact sub-

set of X. By Axiom H, there exists & € G such thatg(U,, U K) C U,, and
g(Un,) D Uy, for somer > n. Thus

gV, UK) C g(Un, UK) C Uy, CV,,.

For the other condition, notice thatV;,) D g(Un,) D U., D V;, for somes >
r > n, since{U,, } and{V},} are cofinal in each other.

WhenG is a negatively curved group ardflis its Gromov boundary, we can
replaceX with any other proper geodesic metric spaeon which G acts co-
compactly and properly discontinuously by isometries;dafZ satisfied Axiom H
before, then it still will. This follows from Theorem 5 in the next section.

Thus, forF, = (a, b), we may takeX to be the Cayley graph (4-valence tree)
of F,. The elements o can be thought of as the freely reduced rays that start
at the identity verteX. For such a ray, fori > 0 let U; be that component of
the complement of the midpoint of thith edge ofR that contains the end at.

In this setting, this corresponds to a half-space neighborho®&J(défined in the
next section). It follows thafU;} is a basic sequence f&e Z.

We now identify a ray that fails to satisfy Axiom H. L&be the ray starting at
0 given byabaabaaabaaaab. . .. Notice that, for any # 1, R N g(R) will con-
tain at most one edge labelled bySuppose, by way of contradiction, thatsat-
isfies Axiom H. This implies that there is a subsequefi¢¢ of {U;} that satisfies
the conditions of Axiom H. Let be the oriented edge & whose midpoint was
used to defind/; oriented in the direction oR. Let S be the subray ok whose
first edge ise. Let I be the maximal initial segment ¢f that contains only one
edge labeled by. Fix n > length ofI.

Let ¢ € G such thatg(Vy) C V,. This implies that eitheg(e) C S with the
orientation preserved or thatS) N S = @ andg(e) points away froms. In the
latter caseg(V;) N S = ¢ for all i, sog(V,) 2 V; for all j. Thus we may as-
sume thag(e) C S with the orientation preserved. This implies, by definition of
I, thatg(S) NS C g(I). Sincen is larger than the length df, it follows that
if e, is the edge off whose midpoint is used to defing, theng(e,) N S = @,
whenceg(V,) NS = @. In particular,g(V,) contains nd/,, for anym, contradict-
ing Axiom H. O
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In the next section we will define the notion of a “line transitive pointZinThe
set of line transitive points of the Gromov boundargatisfy Axiom H; as shown
in [7], these form a set of full measure i

ProrosiTioN 1. If z € Z (the Gromov boundaly and if z is a line transitive
point, then Axiom H is satisfied at

The proof will be given in the next section. Because (in the proof of Proposition
1.17)Bestvina uses only that the poink Z satisfies Axiom H, it follows from
Proposition 1 that Propositidhl7 issatisfied at almost all points of the Gromov
boundary. We now give a slightly weaker global version of Propostitn for

the Gromov boundary of a negatively curved group.

MaIN THEOREM. Let Z be the Gromov boundary of a negatively curved group.

If L is a countable field ang > 0, then one of the following holds for Steenrod

homology.

(1) Forall z € Z, the natural mapH, (Z) — H,(Z, Z — {z}) is an isomorphism
and the two vector spaces are finite-dimensional.

(2) H,(Z, Z — {z}) is uncountable for somee Z.

The proof requires some very technical results and will be given in the next section.
The following question is left open.

QuEsTION. IsBestvina’s Propositioh17true for all points of the Gromov bound-
ary of a negatively curved group?

For this to be false, there would have to be a countable fiedohd a negatively

curved groupG with Gromov boundary with the property that, for somg > 0,

(i) H,(Z, Z — {z}) is uncountable for somee Z (to avoid the hypothesis of the
Main Theorem) and

(ii) dim H,(Z) <dimH,(Z, Z — {y}) < R for somey € Z (this follows from
Propositionl.10,sinceH, (Z, Z — {y}) must be countable at a pointwhere
Propositionl.17 fails),

where these Steenrod homology groups have coefficierits Motice that thisy

cannot be a line transitive point &f.

2. Definitions and Proofs

Let X be a proper geodesic metric space with metrié geodesic interva{seg-
ment, ray, or line) is an isometric embeddifig/ — X, where[ is an interval
(segment, ray, or line) dk. The image ofS is denoted bys.

When the words segment, ray, line, triangle, polygon, et cetera are used, it is to
be understood that they are geodesic. Unless stated otherwise, all closed rays are
parameterized using arc length by {@).

DEerFINITION. A triangle in X is said to bes-thin if any point on the triangle is
within § of one of the other two sides of the triangle.
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DerINITION.  We sayX is §-hyperbolicif all triangles inX ares-thin. A groupG
is callednegatively curvedf some locally finite Cayley graph @ is §-hyperbolic
for somes > 0.

For the time beingX will be a proper geodesi&-hyperbolic metric space.

DEeFINITION. Two raysR, S C X areequivalentdenotedrR ~ S, if there is an
N > 0 such thatR c Nbh(S, N). The equivalence class of a rdyis denoted
by [S].

ReMARK. If R andS$ are equivalent rays then, fers 0, d(R(r), §) < 26.

DerFiNiTION.  We definedX to be the set of equivalence classes of rays. The
elements obX are calledpointsat co.

RemArk. If all triangles ares-thin, then (a) allz-gons are(n — 2)8-thin and
(b) idealn-gons (i.e.n-gons with one or more vertices 06X ) are dn — 2)8-thin.

DEFINITION. Let T be a closed set of with a € X. Defineny(a) = {re T :
d(t,a) = d(T,a) }. Notice that, in generalry(a) is not a single point. For e
T we definenT‘l(t) ={x e X :t enr(x)}; we extend this tédX by defining
x € 8X to be inx; X(z) if and only if there is some raR representing with R C

mke).

DEeFINITION. Let T be some geodesic interval (segment, ray, or line) with
domain?. Define thehalf-space

H(T,t) ={x € X :a >t forsomea e T *(m;(x))}.
Define the correspondindjsk
D(T,t) = {[S]€dX : lim d(S(s), X — H(T, 1)) = 0o}

The disks so defined form the basis of a natural topology (equivalent to Gromov’s)
ondX such thabX is compact metrizable (see [1]) abA is finite-dimensional in
the case where the isometry group¥oécts cocompactly oX (see [9]). Also, the
union of a half-space with its corresponding disk forms a neighborhood of every
point of the disk in the natural compactificatidh= X U 39X of X. WhenX is a
locally finite Cayley graph of the grou@, 0X is called theGromov boundarpf
G (this is independent of the choice of locally finite Cayley graph).

We now need some results about half-spaces.

LEmMA 2 [4, 3.2.1]. Let X be s-hyperbolic withR, S geodesics oK and p €
RN S.If RN B(p,48) = SN B(p,4s) and the orientations oR and S match
around p, then the half-spaces ok and S defined atp are equaj that is,

H(R, R"Y(p)) = H(S, S (p)).

Lemma 3[4, 3.2.0]. Half-spaces on equivalentrays nestuniformly. Thatis, there
isaK > Osuchthat, ifS and R are equivalent rays, we can reparameterizand
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S using arc length so thali(S,t + K) C H(R,t) and H(R,t + K) C H(S,1)
forallr > 0.

DEFINITION. Let G be a group acting via homeomorphisms on a compact Haus-
dorff spaceY. A sequencdyg;) of distinct elements of; is called aconvergence
sequencdf there are pointsV, P €Y, therepelling pointandattracting pointof

(gi) respectively, such that for any neighborhdéd= Y of P and any compact

K cYwithN¢K, ¢g"(K)cU foralln > 0.

The groupG is called aconvergence grouf every sequence of distinct ele-
ments ofG has a convergence subsequence. Widga a convergence group, a
pointy € Y is alimit point if y is the attracting or repelling point of some conver-
gence sequence 6f; the collection of all limit points ofG is called thdimit set
of G and is denoted\G.

Convergence groups in this very general setting are given a nice treatment by Tukia
[10].

DEFINITION. SUpPpPOSES is a convergence group acting on a sp#ceith AG
compact Hausdorff. A point € AG is line transitiveif, given any distincis, v €
AG, there exists a sequenée;} of elements ofG such thatg;(x) — u and
gi(y) > vforallyeY — {x}.

Proof of Proposition 1.Let Z be the Gromov boundary of the negatively curved
groupG. Let I be a locally finite Cayley graph af. By [6], G acts onl' =
Z UT as a convergence group with limit s&6¢ = Z. Letz € Z be a line transi-
tive point of Z. Let L be a line inI" that hag as one endpoint ande Z as the
other. LetR be a subray of. that represents and lety € I" be the initial point
of R. By the definition of line transitive, there exists a sequefigé C G such
thatg;(z) — z andg;(y) — v forall y e Z — {z}. Replacing(g;) with a subse-
guence, we may assume tigatR) — L’ a line, which will have endpoints and
z. Reparameteriz& andL’ as in Lemma 3 so thatf (R, + K) C H(L',r) and
H(L',t+ K) C H(R, 1) forallt > 0, whereK is the constant of Lemma 3. Let
U, =Int(H(R,n + K)). Clearly,{U,} is a basic sequence for

We will show that{U,} satisfies Axiom H. LeC be a bounded subset bfand
n > 0. Thereis an > 0 such thag,-(l@) DL([-48,n+ K +45+1]), L'(0) C
gi(R([n + K, 00))), andC C g;(U,). By Lemma 2,¢;(U,) D Int(H(L', 0)). By
Lemma3U; C Int(H(L', 0)). Thus,g; }(U1U B) C U,. As before, by Lemma 2
and Lemma 3V, D g;(U,,) for m with g;(R(m)) € L'([n+ K, n+ K +1]). Since
R and L’ are parameterized by arc length, there will exist suclmas n. Thus
glfl(Un) O U,, and the basic sequenf¥;} satisfies Axiom H.

As we saw in the proof of the Counterexamplyill still satisfy Axiom H even
if we change the ambient space frdito the Rips complex (or any other proper
geodesic metric space on whichacts cocompactly and properly discontinuously
by isometries). O

DerFiNITION. Let Y and W be metric spaces. We say thHatand W arequasi-
isometrigK) for someK > O if there are functiong: ¥ — Wandg: W — Y
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suchthatl(f(y), f(y")) < Kd(y,y)+K forally, y’ € Y andd(g(w), g(w")) <
Kd(w,w')+K forallw, w’ € W. Also, forally e Y andw € W, d(go f(¥), y) <
K andd(f o g(w), w) < K. The functionsf andg are calledquasi-isometries,
and together they form guasi-isometry inverse pair.

We now need some results about quasi-isometries.

THEOREM 4 [5]. Let W and Y be proper geodesic metric spaces wkhs-
hyperbolic. IfW is quasi-isometric tar, then(a) W is e-hyperbolic for some
¢ > 0and (b) the quasi-isometry functions induce homeomorphisms betiéen
and d0Z that are inverse to each other.

THEOREM 5 [4, 4.2.3]. LetY, W, f, and g be as in the definition of quasi-
isometry K) with Y §-hyperbolic. Then there exists dn dependent only ok
and §, with the following property For any raysR C Y andS C W that cor-
respond under the boundary homeomorphisms, if the endpoRi©équal tog
(the endpoint of) then, for any: > O, there is arm > 0 such that

H(S,m+L)UD(S,m+L)C g X(H(R,n) U D(R, n))
C H(S,m —L)UD(S,m—L).

DEFINITION.  For a groupG with generating sef and ford > 0, theRip’s com-
plex P, is a simplicial complex whose vertex setiswhere{gs, . . ., g,} is a sim-
plex exactly wheni(g;, g;) < d (where this is the word metric @ with respect
toC) forall i, j.

Ford > §,dim Z, we may computél, (Z) andH,(Z, Z—{z}) usingP, (see [3]).

Proof of the Main TheoremWe need only consider the case where, for every
z€Z, H,(Z, Z — {z}) is countable. Fix € Z; we will show that (1) holds for
thisz. Let G be a negatively curved group withas its Gromov boundary. L&t
be the Rips complex with which we computg (Z2) andH,(Z, Z — {z}). LetT
be the Cayley graph a& with the same generating set as was usedfor

There is a natural inclusioyi of I' into the 1-skeleton oP. We can thus con-
structg: P — T by sending each point af to a closest point of". Since the
metric onP is obtained by giving each simplex the metric of a Euclidean simplex
with edge lengths= 1, it follows that if p € o (whereo is a simplex inP) then
f o g(p) lies in the 1-skeleton of. Notice thatg o f is the identity onl". The
functions f andg will form a quasi-isometry inverse pair.

For any half-spacéf(S, n), let f*(H(S,n) = starf(H(S, n)). Let R be aray
in T that represents. Let U; = f*(H(R,i)). Using Theorem 5, one can show
that{U;} forms a basic sequence far

We now argue as in [2]. Note tha,(Z, Z — {z}) = Iiiqu’-il(U,-) and

(provided the coefficients are in a fiel#l)", ,(U;) is the dual ofH! ™ (Uy). Thus
H,(Z, Z — {z}) is isomorphic to the dual oﬂrﬁlf”(w). Forsome: > 1V =

Im[HI™(U,) — HI T (Uy)] has dimension < oo because otherwise the dual of



10 Eric L. SWENSON

I(im Hé’*l(Ui) would be uncountable, contradicting the fact tRg(Z, Z — {z})
is countable. Chooseso thats is minimal. Using Bestvina’s PropositidrilO, it
can be shown that dirHCq“(P) < s. It now suffices to show that the sequence
{Hc‘”l(Ui)} is pro-isomorphic td—IC‘”l(P), which is true as a result of the follow-
ing claim.

Claim. There exists anv > 0 such that, for any ray, the imageW =
IMHITYFH(H(S, n+ N))) — HIT(F*(H(S, n))) maps isomorphically onto
HI™Y(P).

Recall thatHf*l(P) is finite-dimensional. As we argued fot
dimWw > dim H4(P)

with equality only if W maps isomorphically taH I P). By way of contra-
diction, suppose there exist a sequence of ®ays I' (whose domains contain
[0, c0) but may be larger) and a monotonic increasing sequence of positive inte-
gersn; such thatw; = Im(HI ™ (f*(H(S;, n)))) — HITY(f*(H(S;, 0))) has
the property that dini; > dim HZ™(P).

We first show that dinW; < oo for all i > 0. Suppose not; then, by tak-
ing a subsequence, we may assume Wiaits infinite-dimensional for ali. By
using the group action, we may assume tk&0) is the identity verte0 of T.
Taking a subsequence, we may assume $hat> S where a prioriS is a geo-
desic interval withS(0) = 0 andS containing [Q co) in its domain. By Lemma 2,
half-spaces i are locally defined. Thus, by taking a subsequence we may as-
sume that(S;, 0) = H(S, 0) foralli. Foranym > Oand alli > m, H(S, m) =
H(S;, m) and soH(S,m) D H(S;,n;) whenn; > m. Thus W, is a subspace
of IM(HIT(F*(H(S, m)))) — HIT(F*(H(S, 0))), which will have infinite di-
mension for each:. However, as we saw beforél, (Z, Z — S(oc0)) will be un-
countable, which is a contradiction. Thus, taking a subsequence, we may assume
that dimW; < oo for all i.

We now change the parameterization of t)eby subtractings:; so that the
domain ofS; now contains fn;, co) instead of [0 c0). Now

Wi = Im(HIPN A (H(S, 00) — HEIPN(H S, —ni)).
Using the group action, we may assume tf{&) is 0. Taking a subsequence, we
may assume tha;, — S, whereS is now a line through the identity vertex. By
Lemma 2, half-spaces if are locally defined. Thus, by taking a subsequence,
we may assume th# (S;, 0) = H(S, 0)) forall i. For anym > 0 and alli > m,
n; > mandH(S, —m) = H(S:, —m). Since dimW; > dim HZ™(P), it follows
that dim(Im (HZ ™ (f*(H(S, 0))) — HIP(F*(H(S, —m))) > dim(HI T (P)).
By the argument of the previous paragraph, dhm(Hc"”(f*(H(S, 0)))) —
Hﬁ*l(f*(H(S, —m))) < oo for all m > 0. However, P is the nested union of
{F*(H(S, —m))} and soHI ™ (P) = lim HITN(F*(H(S, —m))), which is absurd
since we have just shown that difd? "(P)) < dim(lim HITYF(H(S, —m)))).
This completes the claim and the proof. O
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