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1. Introduction

In 1867, Riemann [16] discovered a 1-parameter family of minimal surfaces foli-
ated by circles and lines in parallel planes. Since then, many other mathematicians
have characterized these examples from different points of view. Some of these
characterizations can be seen in [1; 2; 4; 6; 14; 19].

Very recently, Meeks, Pérez, and Ros [9] have characterized the plane, the
catenoid, the helicoid, and the Riemann examples as the only properly embedded
genus-0 minimal surfaces with an infinite number of symmetries, and it is conjec-
tured (see [8] and [18]) that this result remains valid without the hypothesis of an
infinite number of symmetries.

In particular, the Riemann examples are the only properly embedded minimal
tori with a finite number of planar ends inR3/T , whereT is the group generated
by a nontrivial translation, which improves the aforementioned results.

Previously, Pérez and Ros [15] had proved that there are no properly embedded
minimal surfaces of genus 1 and a finite number of planar ends inR3/Sθ , where
Sθ is a group generated by a screw motion of angleθ 6= 0.

Observe that the Meeks–Pérez–Ros theorem can be stated by saying that any
properly embedded minimal torus inR3/T with 2n ends is a covering of a torus
in R3/(T/n) with two ends.

In this paper we study the same kind of questions in the more general immersed
case:Is a properly immersed minimal torus with2n ends inR3/T a covering of a
torus inR3/(T/n)with two ends?López, Ritoré, and Wei [6] have found all com-
plete minimal immersed tori inR3/T with two parallel planar embedded ends.
This moduli space consists of a countable number of regular curves and, with the
exception of Riemann examples, each one of these curves contains at least one
point that provides a surface with vertical flux, and hence they are not embedded
(see [7] and [15]).

We give an affirmative answer to the question just posed when dealing with
properly immersed minimal tori with four planar ends. Toward that end, we prove
the following theorem.
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Theorem A. Any properly immersed minimal torus inR3/T with four parallel
embedded planar ends is the lift toR3/T of a properly immersed minimal torus in
R3/(T/2) with two ends.

However, for properly immersed tori with six ends the answer is negative, and
it is natural to think that the same occurs for an arbitrary number of ends as
well. In this sense, Theorem A is the best possible. In fact, we have proved the
following.

Theorem B. The space of properly immersed minimal tori with six horizontal
embedded planar ends and vertical flux inR3/T consists of a countable number
of regular curves.

Any surface in these curves is invariant under either an order-3 screw motion
or an order-3 rotation around a vertical axis. Moreover, the conjugate surface
exists as a singly periodic minimal surface and belongs to this space, too.

The curves in Theorem B are parameterized by certain homology classes on a
fixed compact genus-1 surfacēM0, and the underlying complex structure of any
surface in these curves is always the same: the hexagonal torus. Moreover, each
curve contains a point that gives a highly symmetric surface, and the whole curve
is obtained by deforming it in the way described by López and Ros in [7].

This family contains the first known immersed tori with a finite number of pla-
nar ends inR3/Sθ , θ nontrivial. In this case,θ = 2π/3 and the number of ends
is two. These examples prove that Pérez–Ros theorem [15] about minimal tori in-
variant under a screw motion does not remain valid in the more general immersed
case. We have included some pictures (see Figures 1, 2, 3, and 4) that correspond
to the most symmetric examples in this family.

The fundamental tool used in this work is the Weierstrass representation for
minimal surfaces.

Figure1 Two different fundamental domains with respect to the screw motionS2π/3

corresponding to the immersionXγ1 given in Section 4. The image shows that the
two planar ends intersect each other in a straight line, and they are asymptotic to the
same plane at infinity. Furthermore, the surface contains another double straight line
orthogonal to the ends, and the surface does not intersect itself further.
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Figure 2 A translational fundamental domain of the example in Figure 1 as a sur-
face inR3/T, whereT is generated byS3

2π/3. Note that pairs of ends come at the
same height and are parallel.

This paper is laid out as follows. In Section 2 we recall some basic facts about
singly periodic minimal surfaces, emphasizing the classic Weierstrass representa-
tion of minimal surfaces and the results of Osserman [12], Jorge–Meeks [5], and
Meeks–Rosenberg [10]. In Section 3 we study the moduli space of properly im-
mersed singly periodic minimal torus with four parallel embedded planar ends,
and we also prove Theorem A (see Theorem 1). In Section 4, we prove that The-
orem A is not true if we let the torus have six ends. To obtain this result, we
construct the family of surfaces of Theorem B.

2. Preliminaries

In this work we use the Weierstrass representation for singly periodic minimal
surfaces (see [10]).

Let X̃ : M̃ → R3 be a proper minimal immersion of a surfaceM̃ in 3-dimen-
sional Euclidean space, invariant under a cyclic groupT of translations. We sup-
pose thatX̃ is not the covering of any surface. Using isothermal parameters,M̃

has a natural conformal structure, and we label(g̃, η̃) as its Weierstrass data. The



510 F. J. Lópe z & D. Rodrígue z

Figure 3 A fundamental domain inR3/T of the conjugate surface to the example
given in Figure 2. The figure shows that the surface is invariant under an order-3 rota-
tion, and there are two triads of ends asymptotic to the same plane at infinity.

Figure 4 A half of the surface in Figure 3. The image shows that there exists a
circle contained in a plane of symmetry of the surface.
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Gauss map of̃X is a meromorphic function oñM, andη̃ is a holomorphic 1-form
on M̃.

We can work with the quotientM = M̃/T because both the Gauss map and the
holomorphic 1-form are translation-invariant, and so pass to the quotient. Then
we have a minimal immersionX : M → R3/T whose Weierstrass representation
we label as(g, η).

Moreover,X = Re(
∫
(φ1, φ2, φ3)), where

φ1= 1

2
η(1− g2), φ2 = i

2
η(1+ g2), φ3 = ηg (1)

are holomorphic 1-forms onM satisfying

3∑
j=1

|φj |2 6= 0. (2)

In particular, the group of periods{
Re

(∫
γ

8

)
: [γ ] ∈H1(M,Z)

}
coincides withT , where8 = (φ1, φ2, φ3).

Conversely, ifg andη are a meromorphic map and a holomorphic 1-form on the
Riemann surfaceM and if8 = (φ1, φ2, φ3) as in (1), then

X̃ = Re

(∫
8

)
defines in a natural way a branched conformal minimal immersionX̃ : M̃ → R3,

whereM̃ is the Riemann surface associated to the multivaluated function onM:
Re(

∫
8). The immersionX̃ is unbranched if and only if(φ1, φ2, φ3) satisfies (2).

One can observe that̃X induces a minimal immersionX : M → R3/T , whereT
is a subgroup generated by a nontrivial translation, if and only if the group of peri-
ods ofX̃ coincides withT .Moreover,X is not thetrivial covering of any surface
X ′ : M ′ → R3/T (i.e., genericallyX−1(p) contains only one point∀p ∈X(M))
if and only if X̃ : M̃ → R3 is not the covering of any surface.

Suppose thatX : M → R3/T is a properly immersed minimal torus withn em-
bedded parallel planar ends, whereT is a cyclic group generated by a nontriv-
ial translation. Any properly embedded planar end has finite total curvature (for
details see [10; 11]), and it has a well-defined limit normal vector.

Then, the surfaceM is conformally equivalent to a torus̄M punctured inn
points,M ≡ M̄ − {P1, . . . , Pn}. Moreover, the Weierstrass data(g, η) extend
meromorphically toM̄, and the total curvature ofM is given by

C(M) =
∫
M

K = 2π(χ(M)− n) = −4nπ.

SinceC(M) = −4π deg(g), it follows that deg(g) = n (for details see [10] and
[12]).
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Taking into account that the ends of the surface are parallel, we can suppose,
after a rotation inR3, that the normal vector at the ends are vertical. Because the
ends ofM are embedded and of planar type, the Gauss map is branched at the
ends and the 1-formφ3 is holomorphic (see [5], [10], and [12] for details). Since
M̄ is a torus,φ3 has no zeroes (see [3]). Henceg−1({0,∞}) = {P1, . . . , Pn} and
the branching number ofg atPi is equal to 1(i = 1, . . . , n); that is, all the ends
are of Riemann type (see [12]). In particular,n is even and, up to relabeling, the
classic divisors ofg andφ3 are

[g] = P 2
1 · · ·P 2

k

Q2
1 · · ·Q2

k

, [φ3] = 1, (3)

wheren = 2k andQi = Pk+i (i = 1, . . . , k). See [3] for a complete exposition
of this matter.

The ends ofX : M → R3/T are planar and of finite total curvature, so for any
closed loopγ contained in a conformal disk of̄M and winding once around any
end we have

Re

(∫
γ

(φ1, φ2, φ3)

)
= 0.

Thus, elementary algebraic arguments lead to

Residue(η, Pj ) = Residue(ηg2,Qi) = 0

for all i, j ∈ {1, . . . , k}. In particular, the group of periodsT of M can be written
as follows: {

Re

(∫
γ

8

)
: [γ ] ∈H1(M̄,Z)

}
.

Furthermore, there is a homology basis{α, β} ofH1(M̄,Z) such that Re(
∫
α
8) =

0 and Re(
∫
β
8) generatesT .

As usual, we say thatX has vertical flux inR3 if and only if X̃ does. This means
that, for any closed curvẽγ in M̃, the vector Im(

∫
γ̃
8̃) is vertical, where

8̃ =
(

1

2
η̃(1− g̃2),

i

2
η̃(1+ g̃2), η̃g̃

)
.

In other words,
∫
α
8 = λ(0,0,1), λ∈C.

We say that the surfaceX : M → R3/T hasvertical fluxin R3/T if and only if

Im

(∫
α

8

)
= λ1(0,0,1), Im

(∫
β

8

)
= λ2(0,0,1), λ1, λ2 ∈R.

These concepts have a natural physical interpretation. We refer, for instance, to
[17] and [13] for a good exposition.

3. Singly Periodic Minimal Tori with Four Planar Ends

In this section we study the space of properly immersed minimal tori inR3/T with
four parallel embedded planar ends, whereT is a nontrivial group generated by
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a translation. Our main theorem asserts that any such surface can be made by at-
taching two copies of an immersed two-ended minimal torus inR3/(T/2). This
last family of surfaces has been completely described by López, Ritoré, and Wei
in [6].

In order to obtain these results, we need to describe both the complex struc-
ture and Weierstrass data arising out of a four-ended singly periodic torus (see the
proof of Theorem 1).

Following the notation fixed in Section 2, we suppose thatX : M → R3/T is a
properly immersed minimal torus with four parallel embedded planar ends, where
T is the group generated by a nontrivial translation inR3. Furthermore, we as-
sume thatX is not a trivial covering of a two-ended minimal surfaceX ′ : M ′ →
R3/T .

The main theorem of this section is as follows.

Theorem 1. The minimal immersioñX : M̃ → R3 coincides withỸ : Ñ → R3,

whereY : N → R3/(T/2) is a properly immersed minimal torus with two parallel
embedded planar ends.

As mentioned in the preceeding section, the 1-formηg is holomorphic inM̄ and,
up to rigid motions, the divisor of the Gauss map is [g] = (P 2

1 · P 2
2)/(Q

2
1 ·Q2

2),

where{P1, P2,Q1,Q2} ∈ M̄ are the ends ofX.
To prove the theorem, we distinguish two different cases:

(a) there exists a meromorphic functionz on M̄ verifying z2 = g;
(b) there doesnot exist any meromorphic functionz on M̄ satisfyingz2 = g.
Theorem 1 is a consequence of the following two lemmas.

Lemma 1. If g = z2, wherez is a degree-2 meromorphic function onM̄, then
there exists a holomorphic involutionI : M̄ → M̄ without fixed points leavingM
invariant and satisfyingI ?(φj ) = φj (j = 1,2,3).

Proof. The divisor ofz is given by [z] = (P1 ·P2)/(Q1 ·Q2). Furthermore, using
the classic Riemann–Hurwitz relation (see [3, p.102]), the functionz has four ram-
ification points—in this case, all with branching number 1. Let{R1, R2, R3, R4}
denote the set of ramification points ofz, and labelz(Ri) = ri ∈ C − {0} (i =
1,2,3,4, ri 6= rj, i 6= j). Up to a homothetical change of variables, we can sup-
pose thatr1 · r2 · r3 · r4 = 1. Classical theory of compact Riemann surfaces (see
[3]) implies the existence of a meromorphic functionw on M̄ such that

w(P )2 = (z(P )− r1) · (z(P )− r2) · (z(P )− r3) · (z(P )− r4)
= z(P )4 + a3z(P )

3+ a2z(P )
2 + a1z(P )+1 ∀P ∈ M̄,

and we can use this equation for representing our surface as follows:

M̄ ≡ { (z, w)∈ (C ∪ {∞})2 | w2 = z4 + a3z
3+ a2z

2 + a1z+1}.
Up to this biholomorphism,

P1= (0,1), P2 = (0,−1), {Q1,Q2} = z−1(∞),
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and the Weierstrass data ofX are (recall that we have done a homothetical change
of variables in the functionz):

g = Az2, ηg = B dz
w
, A,B ∈C− {0}.

Taking into account that Residue(η, P1) = Residue(ηg2,Q1) = 0 (see Section 2),
an easy computation givesa1= a3 = 0.

DefiningI(z, w) = (−z,−w), the lemma holds.

Lemma 2. If g does not have a well-defined square root onM̄, then there exists
a holomorphic involutionI : M̄ → M̄ without fixed points leavingM invariant
and satisfyingI ?(φj ) = φj (j = 1,2,3).

Proof. The Riemann–Roch theorem applied to the divisorP1/(Q1 ·Q2) (see [3,
pp. 73–77]) and our hypothesis imply the existence of a degree-2 meromorphic
functionh on M̄ satisfying

[h] = P1 · Z
Q1 ·Q2

,

whereZ ∈ M̄ − {P2,Q1,Q2}. Definingy = g/h2, we have

[y] = P 2
2

Z2
.

Using the classic Riemann–Hurwitz relation (see [3]), the functiony has four
ramification points, all of them with branching number 1. The set of ramification
points ofy is given by{P2, Z,R1, R2}, whereR1, R2 ∈ M̄ − {P2, Z}; as before,
there exists a meromorphic functionw on M̄ such that

w(P )2 = y(P ) · (y(P )− y(R1)) · (y(P )− y(R2)) ∀P ∈ M̄.
We can use this equation for representing our surface as follows:

M̄ ≡ { (y,w)∈ (C ∪ {∞})2 | w2 = y(y − y(R1))(y − y(R2)) }.
Up to this biholomorphism,

P2 = (0,0), Z = (∞,∞), R1= (y(R1),0), R2 = (y(R2),0).

We shall prove thatP1 is a branch point ofy, that is,P1∈ {Z,R1, R2}.
Suppose thatP1 is not a branch point ofy.Up to a homothetical change of vari-

ables, we assume thaty(P1) = 1. To determine the Weierstrass data ofX, we
compute the functionh. A direct application of the Riemann–Roch theorem gives
that the complex vector space of meromorphic functions onM̄ having at most
single poles at the pointsP1 andZ, and no other singularities, has dimension 2.
Furthermore, this space is generated by{1, (w + w(P1))/(y −1)}.

Since 1/h belongs to this space, there exist two constantsA, λ ∈ C (A 6= 0)
such that

1

h
= 1√

A

(
w(P1)+ w
y −1

+ λ
)
.

Hence
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g = A (y −1)2y

(w(P1)+ w + λ(y −1))2
, ηg = B dy

w
,

whereA,B ∈ C − {0}. Taking into account that Residue(η, P1) = 0 (see Sec-
tion 2), it is not hard to deduce thatλ = w(P1). Therefore,

1

h
= 1√

A

w(P1)y + w
y −1

and thusP2 is a pole ofh, that is,P2 ∈ {Q1,Q2}. This is obviously a contradiction.
Hence we can assume thatP1∈ {Z,R1, R2}.We distinguish two cases as follows.

(i) P1∈ {R1, R2}.
(ii) P1= Z.
Consider case (i). Up to relabeling, we can supposeP1= R1. By using, as before,
the Riemann–Roch theorem, we obtain

1

h
= 1√

A

(
w

y − y(P1)
+ λ

)
,

whereA, λ∈C (A 6= 0). Therefore,

g = A (y − y(P1))
2y

(w + λ(y − y(P1))2
, ηg = B dy

w
,

whereA,B ∈ C − {0}. Since Residue(η, P1) = 0, an easy computation yields
λ = 0. Thus,

1

h
= 1√

A

(
w

y − y(P1)

)
and soP2 is a pole ofh, which is absurd. This case is impossible.

Now consider case (ii). BecauseP1 is a double zero ofh and a double pole ofy,
we deduce that 1/h = (1/√A)(y − λ), λ∈C− {0, y(R1), y(R2)}, A∈C− {0}.
Up to a homothetical change of variables we can supposeλ = 1. In particular,
{Q1,Q2} = y−1(1). Then, it is clear that

g = A y

(y −1)2
, ηg = B dy

w
,

whereA,B ∈C− {0}. Writing

(y − y(R1)) · (y − y(R2)) = (y −1)2 + a1(y −1)+ a0,

we have, up to the sign, Residue(ηg2,Q1) = AB(a0 − a1)/2
√
a3

0. Since this
number vanishes (see Section 2), we deduce thata0 = a1.

DefiningI(y,w) = (1/y,−w/y2), the lemma holds.

Proof of Theorem 1.From Lemmas 1 and 2, there exists a holomorphic involution
without fixed pointsI : M̄ → M̄ leavingM invariant and satisfyingI ?(8) =
8. If we label N as the Riemann surfaceM/〈I 〉, then the natural projection
π : M → N = M/〈I 〉 is a two-sheeted unbranched covering. On the other hand,
for anyP ∈M,
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X(I(P ))−X(P ) = Re

(∫ I(P )

P

8

)
+ T = Re

(∫ P

I(P )

I ?(8)

)
+ T

= −Re

(∫ I(P )

P

8

)
+ T = X(P )−X(I(P ))

and so
2(X(I(P ))−X(P )) = E0+ T .

Hence, either Re(
∫ I(P )
P

8) ∈ T or Re(
∫ I(P )
P

8) ∈ T/2. In the first case,X : M →
R3/T is a trivial covering of the surfaceY : N → R3/T defined byX = Y B π,
which is absurd. In the second case, we defineY : N → R3/(T/2) as

Y B π = π0 BX,
whereπ0 : R3/T → R3/(T/2) is the natural projection.

It is clear now thatY is a properly immersed minimal tori with two parallel em-
bedded planar ends and̃X = Ỹ, which concludes the proof.

Note that Theorem 1, together with [6], gives (in the embedded case) uniqueness
for the Riemann examples only for the case of four ends. See [9] for a more general
setting.

4. A Family of Singly Periodic Minimal Tori
with Six Parallel Embedded Planar Ends

In the preceeding section we proved that the moduli space of singly periodic prop-
erly immersed tori inR3 with four parallel embedded planar ends can be identified
with the corresponding space of tori with two ends. However, this result does not
remain valid for tori with six ends, and it is natural to think that the same occurs
in the general case of 2k ends,k ≥ 3.

In this section we present a family of properly immersed minimal tori inR3/T
with six horizontal embedded planar ends, whereT is the group generated by
a vertical translation. These examples have some interesting properties. Among
them we emphasize that they have vertical flux inR3/T , groupT is generated by a
vertical vector, the conjugate surface is well-defined as a singly periodic minimal
surface, and they are invariant under a nontrivial group of symmetries. Of course,
these surfaces are not embedded (see [7; 9; 15]). In fact, some of the planar ends
contained in the surfaces are placed at the same height inR3. Finally, we prove
that these surfaces can be characterized as the unique properly immersed mini-
mal tori inR3/T with six horizontal embedded planar ends with vertical group of
periods and vertical flux inR3/T .

4.1. The New Family of Examples

Let M̄0 be the genus-1 compact Riemann surface:

M̄0 = { (z, v)∈ (C ∪ {∞})2 | v3 = z3+1}.
Label{P1, P2, P3} = z−1(∞) andQi = (0, θ i−1) (i = 1,2,3),whereθ = e2πi/3.
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Consider onM0 = M̄0 − {P1, P2, P3,Q1,Q2,Q3} the following Weierstrass
data:

g = 1

z2
, ηB · g = B dz

v2
, B ∈C, |B| = 1, arg(B)∈ [0, π [; (4)

define8B = ( 1
2ηB(1− g2), i2ηB(1+ g2), ηBg) as in (1).

Let α be a closed curve in̄M0. Suppose there exists another closed curveβ in
M̄0 such that{α, β} is a homology basis ofH1(M̄0,Z).

The main achievement of this section is the following theorem.

Theorem 2. There exists a uniqueB(α) ∈ C, |B(α)| = 1, arg(B(α)) ∈ [0, π [,
such that the meromorphic data(4) yield a minimal immersion

Xα : M0→ R3/Tα, Xα(P ) = Re

(∫ P

8B(α)

)
+ Tα

satisfying

Re

(∫
α

8B(α)

)
= 0, Tα =

〈
Re

(∫
β

8B(α)

)〉
,

whereβ is any closed curve inM̄0 such that{α, β} is a homology basis of
H1(M̄0,Z).

In order to prove this theorem and obtain some geometrical consequences, we need
to introduce some notation and make some topological comments.

First, define the following conformal mappings:

J,R, S, T : M̄0→ M̄0,

J(z, v) = (θz, θ2v), R(z, v) =
(

1

z
,
v

z

)
,

S(z, v) = (z̄, v̄), T (z, v) = (z, θv);
as before,θ = e2πi/3.

It is clear thatJ 3 = T 3 = R2 = S2 = 1M̄0
. Furthermore,

R B S = S B R, R B T = T B R,
R B J = J−1 B R, S B J = J−1 B S,
T B J = J B T, T B S = S B T −1.

(5)

An easy computation yields

T(Q1) = Q2, T (Q2) = Q3,

S(Q1) = Q1, S(Q2) = Q3,

J(Q1) = Q3, J(Q2) = Q1.

(6)

Note that, up to relabeling,Pi = R(Qi) (i = 1,2,3) and hence, from (5), we
have:
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Figure 5 The curvesc1, c2, andc3.

T (P1) = P2, T (P2) = P3,

S(P1) = P1, S(P2) = P3,

J(P1) = P2, J(P2) = P3.

(7)

At this point we can describe a homology basis ofM̄0. Let ci(t) (i = 1,2,3) be
the oriented closed curves in thez-plane illustrated in Figure 5. We assume that
ci(0) ∈R andci(0) < −1 for i = 1,2 and thatc3(0) = reπi/3 for r > 1. Let γi(t)
(i = 1,2,3) be the unique lift ofci(t) to M̄0 satisfying arg(v(γi(0))) = π/3 (i =
1,2,3).

In the following we identifyγ and its homology class [γ ] for any closed curve
γ lying in M̄0. Elementary topological arguments imply that the set

{ (T j )?(γi) | i = 1,2,3, j = 0,1}
generates the groupH1(M̄0,Z).

The following lemma will allow us to describe a homology basis.

Lemma 3. The following formulae hold:∫
γi

dz

v2
= −3ρθ i−1 (i = 1,2,3),
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where

ρ =
∫ 1

0

dt

(1− t3)2/3
∈R+.

Proof. Givena, b ∈ C, we label [a, b] as the oriented segment with initial point
a and final pointb. An elementary analytic continuation argument gives:∫

γ1

dz

v2
= (e−4πi/3−1)

∫
[−1,0]

dz

|v|2 + (e
−4πi/3−1)

∫
[0,eπi/3]

dz

|v|2

= (e−4πi/3−1)
∫ 1

0

dt

(1− t3)2/3

+ (e−4πi/3−1)eπi/3
∫ 1

0

dt

(1− t3)2/3
= −3ρ,

with ρ as defined in the lemma.
Applying the same arguments to the closed curvesγ2 andγ3, we obtain the

other equalities.

Let α1, α2 be two cycles inH1(M̄0,Z). It is well known (see e.g. [3]) that the
equalityα1 = α2 holds if and only if

∫
α1
ω = ∫

α2
ω for any holomorphic 1-form

ω on M̄0. In our case,M̄0 is a torus and so the complex vector space of holo-
morphic 1-forms has dimension 1. Furthermore, the 1-form{dz/v2} is a basis of
this space.This last remark, together with Lemma 3 and the identityT ?(dz/v2) =
θ(dz/v2), imply that

T?(γ1) = γ2, T?(γ2) = γ3, γ1+ γ2 + γ3 = 0. (8)

Hence, any of the sets{γi, γj } (i, j ∈ {1,2,3}, i < j) is a homology basis of̄M0.

In what follows, we fix the basis ofH1(M̄0,Z) as{γ1, γ2} and write

α = mγ1+ nγ2, m, n∈Z, gcd(m, n) = 1.

We are now ready to prove Theorem 2.

Proof of Theorem 2.To solve the period problem, it suffices to find a constant
B(α)∈C, |B(α)| = 1, arg(B(α))∈ [0, π [, satisfying:

Re

(∫
α

8B(α)

)
= 0.

If this equation holds, then the group of periods

Tα =
{

Re

(∫
γ

8B(α)

) ∣∣∣∣ γ ∈H1(M̄0,Z)
}

would be cyclic and generated by the vector Re(
∫
β
8B(α)), whereβ is any closed

curve ofM̄0 such that{α, β} is a basis ofH1(M̄0,Z). These facts would conclude
the proof.
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In order to obtain this, observe first that, for anyB, the 1-formsηB andηBg2

are exact. In fact,

ηB = B z
2 dz

v2
= d(Bv), ηBg

2 = B dz

z2v2
= d

(
−B v

z

)
. (9)

It follows from Lemma 3 that

Re

(∫
α

8B

)
=
(

0,0,Re

(∫
α

ηBg

))
=
(

0,0,Re

(∫
mγ1+nγ2

ηBg

))
= m

(
0,0,Re

(
B

∫
γ1

dz

v2

))
+ n

(
0,0,Re

(
B

∫
γ2

dz

v2

))
= (0,0,−3ρ Re((m+ nθ)B)).

Choosing the uniqueB(α) such that

B(α)2 = −
( |m+ nθ |
m+ nθ

)2

, arg(B(α))∈ [0, π [, (10)

the theorem holds.

In what follows we labelηα = ηB(α) and8α = 8B(α).
Remark 1. From (9), the group of periods ofXα : M0 → R3/Tα is vertical,
and this surface has vertical flux inR3/T . Thus, we can define a real 1-parameter
deformation ofXα as follows:

6α = {Xλ
α : M0→ R3/Tα | λ∈ ]0,+∞[ }

whereXλ
α is the immersion associated to the Weierstrass data(M0, g

λ = λg, ηλα =
(1/λ)ηα), λ ∈ ]0,+∞[. This deformation was first introduced by López and Ros
[7], and it played a fundamental role in [6] as well.

As usual, we denote8λ
α = ( 1

2η
λ
α(1− (gλ)2), i2ηλα(1+ (gλ)2), ηλαgλ).

The next two remarks follow as a consequence of (10).

Remark 2. The conjugate surface(Xλ
α)
? associated to the meromorphic data

(M0, g
λ, iηλα) is well-defined onM0 as a singly periodic minimal surface and co-

incides, up to rigid motions, with the immersionXλ
α? : M0→ R3/Tα? ,whereα? =

m?γ1+n?γ2, m
? = (m−2n)/d, n? = (2m−n)/d, andd = gcd(m−2n,2m−n).

Remark 3. Up to rigid motions, the immersionsXλ
α B T andXλ

α B T 2 coincide
with Xλ

(T 2)?(α)
andXλ

T?(α)
, respectively. Moreover, a precise expression for the

curves(T 2)?(α) andT?(α) can be derived from (8). Hence these two immersions
can be identified withXλ

α.

Note also thatB((T 2)?(α))
2 = θ2B(α)2 andB(T?(α))2 = θB(α)2 (see (10)).

Then, if we use this normalization, we could suppose without loss of generality
that arg(B(α))∈ [0, π/3[.

We shall now study the symmetry of the surfaces in6α.
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First, denoteMi = (−θ i−1,0) (i = 1,2,3), whereθ = e2πi/3. Observe that
{M1,M2,M3} ⊂ M0 is the set of ramification points of the meromorphic function
z on M̄0. Furthermore, an easy computation gives:

J(M1) = M2, J(M2) = M3,

S(M1) = M1, S(M2) = M3,

R(M1) = M1, R(M2) = M3.

(11)

Up to translations, we assume thatXλ
α(M1) = 0+ Tα, that is,

Xλ
α(P ) = Re

(∫ P

M1

8λ
α

)
+ Tα ∀P ∈M0.

Using (9) andv(M1) = 0, we deduce that

Xλ
α(P )

= Re

(
B(α)

(
1

2

(
1

λ
v(P )+ λv(P )

z(P )

)
,
i

2

(
1

λ
v(P )− λv(P )

z(P )

)
,

∫ P

M1

dz

v2

))
+ Tα.

Proposition 1. If m + n ≡ 0 (mod 3), then the automorphismJ induces on
Xλ
α(M0) a rotation around thex3-axis by an angle of2π/3.
If m+n 6≡ 0 (mod 3), thenJ induces a screw motion of order3 that is the prod-

uct of a translation along thex3-axis and a rotation about this axis by an angle of
2π/3.

Proof. Note that

J ?(gλ) = θgλ, J ?(ηλαg
λ) = ηλαgλ,

whereθ = e2πi/3. Then
J ?(t8λ

α) = J · t8λ
α, (12)

whereJ is the matrix

J =
 cos

(
2π
3

) − sin
(

2π
3

)
0

sin
(

2π
3

)
cos

(
2π
3

)
0

0 0 1

 .
Taking (11) and (12) into account, we obtain

tXλ
α(J(P )) = tEv0 + J · tXλ

α(P ) ∀P ∈M0,

whereEv0 = Re(
∫ M2
M1

8). SinceJ 3 = 1M0, it follows that 3Ev0 ∈ Tα.
On the other hand, if we writeβ = pγ1+ qγ2 andqm − pn = 1 (p, q ∈ Z)

then, from Lemma 3, we have

Tα = 〈(0,0,−3ρ Re(B(α)(p + qθ)))〉
and so, from (10),

Tα =
〈(

0,0,
3
√

3ρ

2|m+ nθ |
)〉
.
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To computeEv0, let c be the curve in thez-plane given byc(t) = eti (t ∈
[π,5π/3]) and takeγ as the unique lift of the curvec toM0 satisfying

arg(v(γ (4π/3))) = 0.

Thus, by Stokes’s theorem, we obtain

Ev0 =
(

0,0,Re

(
B(α)

∫
γ

dz

v2

))
= Re

(
B(α)

(
0,0,

∫
[−1,0]

dz

|v|2 +
∫

[0,e−πi/3]

dz

|v|2
))
.

Using (10) and the definition ofρ in Lemma 3 yields

Ev0 = ±
(

0,0,
(m+ n)ρ√3

2|m+ nθ |
)
.

By looking at our last expression forTα, we see that the proposition holds.

Remark 4. A straightforward computation yields the following.

(i) If J induces arotationonXλ
α(M0), then the endsP1, P2, P3 are placed at one

height and the endsQ1,Q2,Q3 are placed at another height.
(ii) If J induces ascrew motionon Xλ

α(M0), then there exist three couples of
ends such that each couple is placed at different heights, but the ends in each
couple are placed at the same height.

Corollary 1. The automorphismJ induces a rotation onXλ
α : M0 → R3/Tα

if and only ifJ induces a screw motion on the conjugate surface(Xλ
α)
? : M0 →

R3/Tα? .
Proof. From Remark 2, the conjugate surface coincides withXλ

α?, whereα? =
m?γ1+n?γ2, m

? = (m−2n)/d, n? = (2m−n)/d, andd = gcd(m−2n,2m−n).
First, observe that eitherd = 1 or d = 3. In order to obtain this, note that

m? + n? = 3(m − n)/d andm? − n? = −(m + n)/d and take into account that
gcd(m, n) = gcd(m+ n,m− n) = 1.On the other hand,dm?+ 3n = m+ n and
dn? − 3m = −(m+ n).

If m + n is a multiple of 3, then d = 3 and som? + n? = m − n. Since
gcd(m+ n,m− n) = 1, m? + n? is not a multiple of 3. Conversely, ifm? + n? =
3(m−n)/d is not a multiple of 3, thend = 3. Taking into account once again that
dm? + 3n = m+ n, it follows thatm+ n is a multiple of 3. Using Proposition 1,
the corollary holds.

To finish this section, we make some more comments about the symmetry of the
surfaces in6α.

(1) The automorphismR extends to a symmetry ofXλ
α if and only if λ = 1. In

this case we note thatR(M1) = M1 andR?(8α) = R ·8α, where

R =
( 1 0 0

0 −1 0
0 0 −1

)
.
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HenceR induces a reflection about thex1-axis, and this axis is not contained
in Xα(M0). Therefore, the reflections about the straight linesJ(x1 − axis) and
J 2(x1− axis) leaveXα(M0) invariant, too.

(2) The automorphismS extends to a symmetry ofXλ
α if and only ifB(α)2 ∈R,

that is, eitherα = γ1 or α = γ1+ 2γ2. In this case,S(M1) = M1 andS?(8λ
α) =

S ·8λ
α, where either

S =
(−1 0 0

0 1 0
0 0 −1

)
if B(α) = i andα = γ1, or

S =
( 1 0 0

0 −1 0
0 0 1

)
if B(α) = 1 andα = γ1+ 2γ2. ThusS induces onXλ

α(M0) either a reflection
about thex2-axis that is contained in the surface (ifB(α) = i) or a symmetry
with respect to the(x1, x3)-plane (ifB(α) = 1). Moreover, eitherXα(M0) con-
tains the straight linesJ(x2 − axis) andJ 2(x2 − axis) (if B(α) = i) orXα(M0)

is invariant under the symmetry with respect to the planesJ((x1, x3)−plane) and
J 2((x1, x3)− plane) (if B(α) = 1).

In the caseB(α) = i, the three straight lines are self-intersection curves. To
see this, note that the fixed point set ofS in M̄0 consists on a regular closed curve
containing the pointsP1 andQ1.

(3) The caseλ = 1 andB(α)2 ∈ R is particularly interesting. The automor-
phismS BR induces (in addition) onXα(M0) either a reflection about thex3-axis
(if B(α) = i) or a symmetry with respect to the(x1, x2)-plane (ifB(α) = 1). In
both cases, the surface has twelve symmetries.

If B(α) = i then thex3-axis is a double line also contained inXγ1(M0). For, ob-
serve thatS BR fixes the pointsM1 and(1, 3

√
2) and thatXγ1(M1) = Xγ1((1,

3
√

2))
(see Figures 1 and 2). IfB = 1 then the image under the immersion contains a
circle that lies in a horizontal plane of symmetry of the surface (see Figure 4).

We give a brief outline of how to prove this. The projection to thez-plane of
the nodal setN associated to the harmonic function Im(zv+ z2v̄) inM0 (see Fig-
ure 6) is a real algebraic variety of dimension 1 that has only one compact irre-
ducible component inC−{0}. The lift c(s) of this component toN is a curve that
satisfies the following conditions.

(1) c(s) is a planar curve (i.e.,x3(c(s)) = constant), and it is contained in the
nodal set of the Shiffman field (i.e., its planar curvature is constant).

(2) The set{c(s), s ∈R} is invariant under the automorphismS B R.
(3) The immersionX(γ1+2γ2)(c(s)) covers four times a circle inR3, and this circle

is hence a self-intersection curve (see Figure 7).

Note that the fixed point set ofS B R gives also a planar curve included in a hor-
izontal plane of symmetry, and that the distance between this plane and the one
containing the circle is a half of the length of the period vector (see Figures 3
and 4).



524 F. J. Lópe z & D. Rodrígue z

Figure 6 The projection on thez-plane of the curvec(s) in M0.

4.2. Uniqueness of the New Family of Examples

We next present a uniqueness theorem for the family of surfaces{6α : α ∈ B, B
is a basis ofH1(M̄0,Z) }.

LetX : M → R3/T be a properly immersed minimal torus withn planar paral-
lel embedded ends, whereT is a cyclic group generated by a translation. As men-
tioned in Section 2,n = 2k for k ≥ 1. Without loss of generality, we assume that
the normal vectors at the ends ofM are vertical.

Theorem 3. Suppose thatX has vertical flux inR3/T , and that groupT is gen-
erated by a vertical translation. Thenk ≥ 3. Moreover, the equality holds if and
only if the immersionX coincides—up to biholomorphisms, rigid motions, and
scaling—withXλ

α, whereλ∈ ]0,+∞[ andα ∈B, B is a basis ofH1(M̄0,Z).

Proof. Label (M, g, η) as the Weierstrass data of the immersionX, and define
8 = (φ1, φ2, φ3) as in (1). We know (see Section 2) that
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Figure 7 A curve in the surfaceXγ1+2γ2(M0). This curve is the intersection of the
surface with a horizontal plane that is very close to a plane of symmetry of the sur-
face. This plane of symmetry intersects withXγ1+2γ2(M0) in circleXγ1+2γ2(c(s)).

M ≡ M̄ − {P1, . . . , Pk,Q1, . . . ,Qk},
whereM̄ is a compact genus-1 Riemann surface. Furthermore,(g, η) extends
meromorphically toM̄, and we can suppose without loss of generality that the
classic divisors associated tog andη are given by

[g] = P 2
1 · · ·P 2

k

Q2
1 · · ·Q2

k

, [η] = Q2
1 · · ·Q2

k

P 2
1 · · ·P 2

k

.

Since the generator ofT is vertical, the real part of the periods of the 1-forms
φ1, φ2 vanish. On the other hand,X has vertical flux inR3/T and so these periods
are real numbers. We deduce that any period ofφ1, φ2 vanishes and these 1-forms
are exact, that is to say,η andg2η are exact.

If X has four ends (i.e.k = 4) then it is not hard to prove, using elementary ar-
guments, thatη cannot be exact. Anyway, in this case and from Theorem 1 we can
identifyX with a two-sheeted covering of a torus with only two ends. However,
in this case(k = 1) the 1-formsη andg2η are not exact (there are no meromorphic
functions of degree 1 on a torus). Therefore, we conclude thatk ≥ 3.

In what follows, we supposek = 3.We want to find the Weierstrass representa-
tion for the immersionX when there are six ends. The following deductions have
this purpose.

Write η = dh, where

[h− h(Qi)] = Q3
i

P1 · P2 · P3
, i = 1,2,3.

The functionf = 1/(g
∏3

i=1(h− h(Qi))) satisfies

[f ] = P1 · P2 · P3

Q1 ·Q2 ·Q3

and sog = Kf 2 for K ∈C.
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On the other hand, the Riemann–Roch theorem applied to the divisorQ3/

(Q1 ·Q2) (see [3, pp. 73–77]) implies the existence of a meromorphic functiony

verifying

[1/y] = Q3 · Z
Q1 ·Q2

,

whereZ ∈ M̄ − {Q1,Q2}. An easy computation gives [(h− h(Q3))fy] = Q3/Z

and soZ = Q3; that is,

f = C

y(h− h(Q3))
, C ∈C− {0}. (13)

If we label {Q3, S1, S2, S3} as the set of ramification points ofy, then the clas-
sic theory of compact Riemann surfaces (see [3, p. 102]) gives the existence of a
meromorphic functionw satisfying

w2 =
3∏
i=1

(y − y(Si)) = y3+ a2y
2 + a1y + a0;

we can use this equation to represent, up to biholomorphisms, the torusM̄.

Up to a homothetical change of variables, we can supposea0 = 1 (observe that
y−1(0) = {Q1,Q2} contains two different points and that 0 is not the image of any
ramification point ofy).

The Riemann–Roch theorem implies that the vector space of meromorphic func-
tions having atQ3 at most one pole of order 3 and no other singularities has di-
mension 3. Furthermore, it is generated by{1, y, w}.Since 1/(h−h(Q3)) belongs
to this space, it is not hard to conclude that

h− h(Q3) = D

µ1y + µ0 + w (14)

for suitable constantsD,µ0, µ1∈C. Substitutingh − h(Q3) for this function in
(13) yieldsf = (C/D)(µ1y + µ0 + w)/y, and so

g = A′ (µ1y + µ0 + w)2
y2

, η = B ′

A′
y2

(µ1y + µ0 + w)2
dy

w
, (15)

whereA′ = KC2/D2 andB ′ ∈C− {0}. Recalling thatdh = η and using (14) and
(15), we obtaina1= a2 = µ1= 0. From (15), we deduce that

g2η = A′B ′ (µ0 + w)2
y2w

dy.

Because this 1-form is also exact, the same holds for the 1-form

τ = B ′A′ y
3+1+ µ2

0

y2w
dy = g2η + 2B ′A′µ0d(1/y).

Thus,

τ − 2A′B ′d(w/y) = A′B ′µ
2
0 + 3

y2w
dy
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is exact, which impliesµ2
0 = −3. Up to the change(y,w)→ (y,−w), we can

supposeµ0 =
√

3i.
Define

z =
√

3
3
√

2i
y

w +√3i
and v = w −√3i

w +√3i
.

Then a straightforward computation gives

v3 = z3+1, g = A

z2
, gη = B dz

v2

for suitable constantsA,B ∈C− {0}. Therefore,M̄ is biholomorphic to the sur-
faceM̄0 defined in Section 4.1, and up to this biholomorphism,M = M0. More-
over, up to rigid motions and scaling, we can assume thatA = λ∈R+ and|B| =
1, arg(B)∈ [0, π [.

If we label{α, β} as a basis ofH1(M̄0,Z) such that Re(
∫
α
8) = 0, then The-

orem 2 yieldsB = B(α) and, as a consequence of Remark 1,X = Xλ
α. This fact

completes the proof.
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