Properly Immersed Singly Periodic
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1. Introduction

In 1867, Riemann [16] discovered a 1-parameter family of minimal surfaces foli-
ated by circles and lines in parallel planes. Since then, many other mathematicians
have characterized these examples from different points of view. Some of these
characterizations can be seenin [1; 2; 4; 6; 14; 19].

Very recently, Meeks, Pérez, and Ros [9] have characterized the plane, the
catenoid, the helicoid, and the Riemann examples as the only properly embedded
genus-0 minimal surfaces with an infinite number of symmetries, and it is conjec-
tured (see [8] and [18]) that this result remains valid without the hypothesis of an
infinite number of symmetries.

In particular, the Riemann examples are the only properly embedded minimal
tori with a finite number of planar ends ®®/ 7", whereT is the group generated
by a nontrivial translation, which improves the aforementioned results.

Previously, Pérez and Ros [15] had proved that there are no properly embedded
minimal surfaces of genus 1 and a finite number of planar eni#s/if,, where
Sy is a group generated by a screw motion of arggie 0.

Observe that the Meeks—Pérez—Ros theorem can be stated by saying that any
properly embedded minimal torus &%/ 7" with 2»n ends is a covering of a torus
in R3/(T/n) with two ends.

In this paper we study the same kind of questions in the more general immersed
case:ls a properly immersed minimal torus wiglk ends inR3/ 7 a covering of a
torus inR%/(7/n) with two ends1.6pez, Ritoré, and Wei [6] have found all com-
plete minimal immersed tori ifR%/ 7 with two parallel planar embedded ends.
This moduli space consists of a countable number of regular curves and, with the
exception of Riemann examples, each one of these curves contains at least one
point that provides a surface with vertical flux, and hence they are not embedded
(see [7] and [15]).

We give an affirmative answer to the question just posed when dealing with
properly immersed minimal tori with four planar ends. Toward that end, we prove
the following theorem.
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THEOREM A. Any properly immersed minimal torus ¥/ 7 with four parallel
embedded planar ends is the liftlk/ 7 of a properly immersed minimal torus in
R3/(T/2) with two ends.

However, for properly immersed tori with six ends the answer is negative, and
it is natural to think that the same occurs for an arbitrary number of ends as
well. In this sense, Theorem A is the best possible. In fact, we have proved the
following.

THEOREM B. The space of properly immersed minimal tori with six horizontal
embedded planar ends and vertical fluxify 7~ consists of a countable number
of regular curves.

Any surface in these curves is invariant under either an oRlscrew motion
or an order3 rotation around a vertical axis. Moreover, the conjugate surface
exists as a singly periodic minimal surface and belongs to this space, too.

The curves in Theorem B are parameterized by certain homology classes on a
fixed compact genus-1 surfadé,, and the underlying complex structure of any
surface in these curves is always the same: the hexagonal torus. Moreover, each
curve contains a point that gives a highly symmetric surface, and the whole curve
is obtained by deforming it in the way described by Lopez and Ros in [7].

This family contains the first known immersed tori with a finite number of pla-
nar ends irR%/Sy, 6 nontrivial. In this cased = 27/3 and the number of ends
is two. These examples prove that Pérez—Ros theorem [15] about minimal tori in-
variant under a screw motion does not remain valid in the more general immersed
case. We have included some pictures (see Figures 1, 2, 3, and 4) that correspond
to the most symmetric examples in this family.

The fundamental tool used in this work is the Weierstrass representation for
minimal surfaces.

=
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Figurel Two differentfundamental domains with respectto the screw metign
corresponding to the immersion,, given in Section 4. The image shows that the
two planar ends intersect each other in a straight line, and they are asymptotic to the
same plane at infinity. Furthermore, the surface contains another double straight line
orthogonal to the ends, and the surface does not intersect itself further.
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Figure 2 A translational fundamental domain of the example in Figure 1 as a sur-
face inR% 7T, whereT is generated b)b‘fm. Note that pairs of ends come at the
same height and are parallel.

This paper is laid out as follows. In Section 2 we recall some basic facts about
singly periodic minimal surfaces, emphasizing the classic Weierstrass representa-
tion of minimal surfaces and the results of Osserman [12], Jorge—Meeks [5], and
Meeks—Rosenberg [10]. In Section 3 we study the moduli space of properly im-
mersed singly periodic minimal torus with four parallel embedded planar ends,
and we also prove Theorem A (see Theorem 1). In Section 4, we prove that The-
orem A is not true if we let the torus have six ends. To obtain this result, we
construct the family of surfaces of Theorem B.

2. Preliminaries

In this work we use the Weierstrass representation for singly periodic minimal
surfaces (see [10]).

Let X: M — RR3 be a proper minimal immersion of a surfakein 3-dimen-
sional Euclidean space, invariant under a cyclic grgugf translations. We sup-
pose thatX is not the covering of any surface. Using isothermal parametérs,
has a natural conformal structure, and we lalgel;) as its Weierstrass data. The
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Figure 3 A fundamental domain iiR%/7 of the conjugate surface to the example
given in Figure 2. The figure shows that the surface is invariant under an order-3 rota-
tion, and there are two triads of ends asymptotic to the same plane at infinity.

Figure 4 A half of the surface in Figure 3. The image shows that there exists a
circle contained in a plane of symmetry of the surface.
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Gauss map ok is a meromorphic function oft, andj is a holomorphic 1-form
onM.

We can work with the quotieny = M /7T because both the Gauss map and the
holomorphic 1-form are translation-invariant, and so pass to the quotient. Then
we have a minimal immersioki: M — R%/ T whose Weierstrass representation
we label ag g, ).

Moreover,X = Re( [(¢1, 2, ¢3)), Where

) .
91= 311 - 8. ¢2=l§n(1+g2), b3 = ng @)

are holomorphic 1-forms oM satisfying
3
> lgil? #0. 2
j=1

In particular, the group of periods

{ Re(/y <I>> [yl e Ha(M, Z) }

coincides with7, where® = (¢1, ¢2, ¢3).
Conversely, iff andn are a meromorphic map and a holomorphic 1-form on the
Riemann surface/ and if & = (¢4, ¢2, ¢3) asin (1), then

X:Re(/CI))

defines in a natural way a branched conformal minimal immer¥ion/ — R3,
whereM is the Riemann surface associated to the multivaluated functiod:on
Re([ ®). The immersiorX is unbranched if and only ifp1, ¢2, ¢3) satisfies (2).
One can observe that induces a minimal immersiok : M — R3/T, whereT

is a subgroup generated by a nontrivial translation, if and only if the group of peri-
ods of X coincides with7. Moreover,X is not thetrivial covering of any surface
X': M’ — R%T (i.e., genericallyX ~(p) contains only one pointp € X(M))

if and only if X : M — R3 is not the covering of any surface.

Suppose thaX : M — R3/T is a properly immersed minimal torus withem-
bedded parallel planar ends, whéfeis a cyclic group generated by a nontriv-
ial translation. Any properly embedded planar end has finite total curvature (for
details see [10; 11]), and it has a well-defined limit normal vector.

Then, the surfac@/ is conformally equivalent to a toru® punctured inn
points, M = M — {Ps, ..., P,}. Moreover, the Weierstrass data, ) extend
meromorphically taV, and the total curvature d is given by

C(M) :/ K =2n(x(M) —n) = —4nmx.
M

SinceC(M) = —4m deq g), it follows that dedg) = n (for details see [10] and
[12]).
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Taking into account that the ends of the surface are parallel, we can suppose,
after a rotation irR3, that the normal vector at the ends are vertical. Because the
ends ofM are embedded and of planar type, the Gauss map is branched at the
ends and the 1-formps is holomorphic (see [5], [10], and [12] for details). Since
M is a torusgs has no zeroes (see [3]). Henge'({0, oo}) = {P4, ..., P,} and
the branching number gf at P; is equal to (i =1, ..., n); that is, all the ends
are of Riemann type (see [12]). In particularis even and, up to relabeling, the
classic divisors of and¢3 are

p2...p2
[6l= 55—, [¢al=1 3)
Q% Q2 3
wheren = 2k andQ; = P;,; (i =1,..., k). See [3] for a complete exposition

of this matter.
The ends ofX: M — R3/7T are planar and of finite total curvature, so for any
closed loopy contained in a conformal disk @ff and winding once around any

end we have
Re(/(¢1, @2, ¢3)) =0.
Y

Thus, elementary algebraic arguments lead to
Residuén, P;) = Residuéng?, Q;) =0

foralli, j € {1, ..., k}. In particular, the group of periods of M can be written

as follows:
{ Re(f <I>> [yl € Hi(M, Z) }
Y

Furthermore, there is a homology bagis 8} of H#1(M, Z) such that Refa P) =
0 and Rej;g ®) generate§’. .

As usual, we say that has vertical flux iR if and only if X does. This means
that, for any closed curvg in M, the vector In(f? ®) is vertical, where

& = (Zia- . Sia+ .7

In other words,/, ® = A(0,0, 1), » € C.
We say that the surfacé: M — R3/T hasvertical fluxin R%/7 if and only if

Im(/ <I>> = 21(0,0,1), Im</<b> =122(0,0,1), Ay AzeR.
o B

These concepts have a natural physical interpretation. We refer, for instance, to
[17] and [13] for a good exposition.
3. Singly Periodic Minimal Tori with Four Planar Ends

In this section we study the space of properly immersed minimal t&%ifi” with
four parallel embedded planar ends, wh&rés a nontrivial group generated by
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a translation. Our main theorem asserts that any such surface can be made by at-
taching two copies of an immersed two-ended minimal toruR3(7/2). This

last family of surfaces has been completely described by Lépez, Ritoré, and Wei
in [6].

In order to obtain these results, we need to describe both the complex struc-
ture and Weierstrass data arising out of a four-ended singly periodic torus (see the
proof of Theorem 1).

Following the notation fixed in Section 2, we suppose that¥ — R%/ T is a
properly immersed minimal torus with four parallel embedded planar ends, where
T is the group generated by a nontrivial translatiorRh Furthermore, we as-
sume thatX is not a trivial covering of a two-ended minimal surfaké: M’ —

R3/T.
The main theorem of this section is as follows.

TueoreM 1. The minimal immersioiX : M — R3 coincides witht : N — R3,
whereY : N — R%/(7/2) is a properly immersed minimal torus with two parallel
embedded planar ends.

As mentioned in the preceeding section, the 1-fggms holomorphic inM and,
up to rigid motions, the divisor of the Gauss mapg$ & (P? - P3)/(Q% - 03)
where{P1, P2, 01, Q»} € M are the ends ok.

To prove the theorem, we distinguish two different cases:
(a) there exists a meromorphic functipon M verlfylng =g
(b) there doesiot exist any meromorphic functionon M satisfyingz? = g.

Theorem 1 is a consequence of the following two lemmas.

Lemma 1. If g = z2, wherez is a degree2 meromorphic function o, then
there exists a holomorphic involutidn M — M without fixed points leavingy
invariant and satisfying*(¢,) = ¢; (j =1 2, 3).

Proof. The divisor ofz is given by g] = (P1- P2)/(Q1- Q>). Furthermore, using
the classic Riemann—Hurwitz relation (see [3, p. 102]), the funethas four ram-
ification points—in this case, all with branching number 1. {®{, R, R3, R4}
denote the set of ramification points gfand labelz(R;)) = r;, e C — {0} (i =
12,34, r #rj, i # j). Upto a homothetical change of variables, we can sup-
pose that; - r5 - r3 - r4 = 1 Classical theory of compact Riemann surfaces (see
[3]) implies the existence of a meromorphic functioron M such that

w(P)? = (z(P) —r1) - (2(P) = r2) - (z(P) — r3) - (z(P) — ra)
= 2(P)* + asz(P)® + azz(P)? + a1z(P) +1 VP e M,
and we can use this equation for representing our surface as follows:
M ={(z,w) € (CU{oo})? | w? =z*+ asz® + a»z® + a1z + 1}.
Up to this biholomorphism,
PL= (0D, Py=(0.-D, {01 02} =z Yoo,
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and the Weierstrass dataXfare (recall that we have done a homothetical change
of variables in the function):

d
g:Af,nngf,,mBeC—w}

Taking into account that Residgg P1) = Residugng?, Q1) = 0 (see Section 2),
an easy computation giveg = az = 0.
Defining I(z, w) = (—z, —w), the lemma holds. O

Lemma 2. If g does not have a well-defined square rootMnthen there exists
a holomorphic involution : M — M without fixed points leavin@/ invariant
and satisfying*(¢;) = ¢; (j =1, 2, 3).

Proof. The Riemann—Roch theorem applied to the diviBof(Q1 - Q>) (see [3,
pp. 73-77]) and our hypothesis imply the existence of a degree-2 meromorphic
functionk on M satisfying

P-Z

[h] = ——.

01-02
whereZ e M — {P,, 01, Q»}. Definingy = g/h?, we have
P}
ﬁ.
Using the classic Riemann—Hurwitz relation (see [3]), the funciidmas four
ramification points, all of them with branching number 1. The set of ramification
points ofy is given by{ Pz, Z, R1, R}, whereRy, R, € M — { P, Z}; as before,
there exists a meromorphic functianon M such that

w(P)? = y(P) - (y(P) — y(R1)) - (y(P) — y(R2)) VPEM.
We can use this equation for representing our surface as follows:
M = {(y, w) € (CU{oo})? | w? = y(y — y(RD)(y — ¥(R2)) }.
Up to this biholomorphism,
P;=1(0,0), Z=(00,00), Ri1=(y(R1),0), Rz=(y(R2),0).

We shall prove thaP; is a branch point of, that is, Py € {Z, Ry, R»}.

Suppose thaP; is not a branch point of. Up to a homothetical change of vari-
ables, we assume thatP;) = 1. To determine the Weierstrass dataof we
compute the functioh. A direct application of the Riemann—Roch theorem gives
that the complex vector space of meromorphic functionsibhaving at most
single poles at the point8; and Z, and no other singularities, has dimension 2.
Furthermore, this space is generatedhyw + w(P1))/(y — 1)}.

Since Jh belongs to this space, there exist two constants € C (A # 0)

such that 1 1 (Po+
w(ri w
= ————+1).
h MA( y—1 )

] =

Hence
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(y — 1%y

(w(P1) +w + A(y —1)2’
where A, B € C — {0}. Taking into account that Residgg P;) = O (see Sec-
tion 2), it is not hard to deduce that= w(P1). Therefore,

1 1 wP)y+w

h VA y-1
and thusP; is a pole ofr, thatis, P, € {Q1, Q>}. This is obviously a contradiction.

Hence we canassumetiate {Z, R, R»}. We distinguish two cases as follows.

(i) P1e{Ry, Ry}
(i) Pr=7Z.
Consider case (i). Up to relabeling, we can supp@se: R;. By using, as before,
the Riemann—Roch theorem, we obtain

dy
g=A ng =B—,
w

1 1 < w N )\)
h™ JA\y—y(Py) ’
whereA, A€ C (A # 0). Therefore,
(v = y(P1)%y o= 5%
(w + A(y — y(P)?’ w’

whereA, B € C — {0}. Since Residug), P;) = 0, an easy computation yields
A = 0. Thus,

1 1 ( w )
h ™ JA\y—y(P)
and soP; is a pole ofk, which is absurd. This case is impossible.

Now consider case (ii). Becauge is a double zero of and a double pole of,
we deduce that/k = (1/v/A)(y — 1), A€ C — {0, y(R1), y(R2)}, A C — {0}.
Up to a homothetical change of variables we can supposel. In particular,
{01, 02} = y~X(1). Then, itis clear that

y dy
=A— =B,
8 (y—1?2 ng w
whereA, B € C — {0}. Writing

(y = Y(R)) - (y — ¥(R2)) = (y = D? + ar(y — 1) + ao,

we have, up to the sign, Residug?, Q1) = AB(ag — al)/Z\/cT%. Since this
number vanishes (see Section 2), we deducedthat a;.
DefiningI(y, w) = (1/y, —w/y?), the lemma holds. O

Proof of Theorem 1From Lemmas 1 and 2, there exists a holomorphic involution
without fixed points/: M — M leaving M invariant and satisfying*(®) =

®. If we label N as the Riemann surfack/{I), then the natural projection

7. M — N = M/(I)is atwo-sheeted unbranched covering. On the other hand,
forany P e M,
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I(P) P
X(I(P)) — X(P) = Re( f cp) LT = Re( f mcp)) T
P 1(P)

I(P)
_ —Re</ <1>) +T = X(P) — X(I(P))
P

and so .
2(XU(P)) —X(P)=0+T.

Hence, either R@]P'(P) ®)eT or Re(j;f”’) ®) € T/2. In the first caseX: M —
R3/T is a trivial covering of the surfacé: N — R%/T defined byX = Y o 7,
which is absurd. In the second case, we defineV — R%/(7/2) as

Yomr =mgoX,

whererg: RY/T — R%/(7/2) is the natural projection.
Itis clear now that’ is:a prgperly immersed minimal tori with two parallel em-
bedded planar ends aitl= Y, which concludes the proof. O

Note that Theorem 1, together with [6], gives (in the embedded case) uniqueness
for the Riemann examples only for the case of four ends. See [9]for a more general
setting.

4. A Family of Singly Periodic Minimal Tori
with Six Parallel Embedded Planar Ends

In the preceeding section we proved that the moduli space of singly periodic prop-
erly immersed tori irR® with four parallel embedded planar ends can be identified
with the corresponding space of tori with two ends. However, this result does not
remain valid for tori with six ends, and it is natural to think that the same occurs
in the general case ofkZndsk > 3.

In this section we present a family of properly immersed minimal toR7
with six horizontal embedded planar ends, whegrés the group generated by
a vertical translation. These examples have some interesting properties. Among
them we emphasize that they have vertical fluR# 7", group7 is generated by a
vertical vector, the conjugate surface is well-defined as a singly periodic minimal
surface, and they are invariant under a nontrivial group of symmetries. Of course,
these surfaces are not embedded (see [7; 9; 15]). In fact, some of the planar ends
contained in the surfaces are placed at the same heidt.iRinally, we prove
that these surfaces can be characterized as the unique properly immersed mini-
mal tori inR/ 7" with six horizontal embedded planar ends with vertical group of
periods and vertical flux iR/ 7.

4.1. The New Family of Examples
Let M, be the genus-1 compact Riemann surface:

Mo = {(z.v) € (CU {oo)? | v¥ = 2° +1).
Label{ Py, P,, P3} = z7X(c0) andQ; = (0,0'1) (i = 1, 2, 3), whereg = ¢27i/3,
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Consider onMo = Mg — {P1, P», P3, Q1, Q», O3} the following Weierstrass
data:

1 dz

8 = 2 nt:Bﬁv BE(C, |B|:1’ arqB)e[ova[s (4)

Z

defineds = (3151~ g°), 5181+ %), 1pg) asin (1).

Let o be a closed curve iM,. Suppose there exists another closed cire
M such thafe, B} is a homology basis ok (Mo, 7).

The main achievement of this section is the following theorem.

THEOREM 2. There exists a uniquB(x) € C, |B(x)| = 1, arg(B(x)) € [0, «[,
such that the meromorphic dad) yield a minimal immersion

P
Xo: Mg — R¥YT,, X, (P) = Re(/ <I>B<a>) +7T,

satisfying
o [onw) =0 (el o))
a B

where g is any closed curve i, such that{a, 8} is a homology basis of
H1(Mo, Z).

In order to prove this theorem and obtain some geometrical consequences, we need
to introduce some notation and make some topological comments.
First, define the following conformal mappings:

J,R,S,T: My — My,
10

J(z,v) = (0z,0%v),  R(z,v) = (Z’ —>,

b4
S(z,v) = (z,v), T(z,v) = (z,0v);

as beforeg = ¢27i/3,
Itis clear that/3 = T3 = R? = §2 = 1, . Furthermore,

RoS=SoR, RoT =ToR,
RoJ=J1oR, SoJ=J"los, (5)
ToJ=JoT, ToS=SoTL
An easy computation yields
T(01) = Qa, T(Q2) = Qs,
S(Q1) = 01, S$(Q2) = QOs, (6)
J(Q1) = Qs, J(Q2) = O1.

Note that, up to relabeling?;, = R(Q;) (i = 1,2, 3) and hence, from (5), we
have:
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Figure 5 The curves, ¢z, andcs.

T(P1) = Po, T(Py) = P3,
S(Py) =P,  S(Pp) = Ps, (7)
J(P1) = Py, J(P3) = Ps.

At this point we can describe a homology basistyf. Letc;(r) (i = 1, 2, 3) be
the oriented closed curves in theplane illustrated in Figure 5. We assume that
¢;i(0) e R andc;(0) < —1fori =1, 2 and that3(0) = re™3forr > 1. Let y,(¢)

(i =1, 2, 3) be the unique lift of; () to M, satisfying arguv(y;(0))) = 7/3 (i =
12,3).

In the following we identifyy and its homology clasg/ for any closed curve

y lying in Mo. Elementary topological arguments imply that the set

{((TH(y))1i=123 j=0,1}

generates the grouly(Mo, 7).
The following lemma will allow us to describe a homology basis.

LemMma 3. The following formulae hold

d .
=30 (=123)
vi v
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where

1
dt
0= |, TR

Proof. Givena, b € C, we label 1, b] as the oriented segment with initial point
a and final pointh. An elementary analytic continuation argument gives:

dZ —4mi dZ —47i dZ
R
nv [-1.0] [Vl [0,e7i/3] V]
1
; dt
— —4mi/3 _ 1
¢ ')y a9
Voo

+(e—4ni/3_1)e71i/3/ _3p’

0o A—1%2R

with p as defined in the lemma.
Applying the same arguments to the closed curvgandys, we obtain the
other equalities. O

Let oy, oo be two cycles inH1(Mo, Z). It is well known (see e.g. [3]) that the
equalityo; = a» holds if and only if]a1 w = faz w for any holomorphic 1-form
w on M. In our caseM, is a torus and so the complex vector space of holo-
morphic 1-forms has dimension 1. Furthermore, the 1-f@dgyv?} is a basis of
this space. This last remark, together with Lemma 3 and the ideftitiz /v?) =
6(dz/v?), imply that

T.(y) =y2, T(y2)=vs vit+ty2+ys=0. (8)
Hence, any of the sely;, y;} (i, j € {1, 2, 3}, i < j) is a homology basis af/,.

In what follows, we fix the basis df1(Mo, Z) as{y1, y»} and write
o =my1+nyz, m,neZ, gcdim,n) =1

We are now ready to prove Theorem 2.

Proof of Theorem 2To solve the period problem, it suffices to find a constant
B(a) €C, |B(a)| =1, arg(B(a)) €0, [, satisfying:

Re(/ cbg@,)) =0.

If this equation holds, then the group of periods

Ta = { Re(/ cDB(a)) ‘ y € Hi(Mo, Z) }
y

would be_cyclic and generated by the vectg(y%ecbg(a)), whereg is any closed
curve of Mg such thafw, B8} is a basis of{1(My, Z). These facts would conclude
the proof.
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In order to obtain this, observe first that, for aBy the 1-formsn andnzg?
are exact. In fact,

z%dz

dz v
ng =B 2 =d(Bv), 71382=BZZ? =d(—32>- 9)

It follows from Lemma 3 that

o [o0) = (00re fms)) = (cord [, ms))
_ m<0, 0, Re(B /n i—i)) + n<0, 0, Re(B /yz ff-i))

= (0,0, —3p Re((m + no)B)).
Choosing the uniqu@(«) such that

2 (Im+no]\?
B(Ol) = — m s al’g(B(a))e[O,n[, (10)

the theorem holds. O
In what follows we labeh, = np@) and®, = Pp().

REmMARK 1. From (9), the group of periods of,: My — R3/T, is vertical,
and this surface has vertical flux R/ 7. Thus, we can define a real 1-parameter
deformation ofX, as follows:

S = { X} Mo — R¥%T, | % €]0, +o00[}

whereX? is the immersion associated to the Weierstrass@dta g’ = rg, n’ =
(1/AM)nq), A €]0, +oo[. This deformation was first introduced by L6pez and Ros
[7], and it played a fundamental role in [6] as well.

As usual, we denot®? = (n%(1— (gM)?), sk @+ (g1)?), nkgh).
The next two remarks follow as a consequence of (10).

REMARK 2. The conjugate surfaceX’)* associated to the meromorphic data
(Mo, g*, in’) is well-defined onM as a singly periodic minimal surface and co-
incides, up to rigid motions, with the immersiaf. : Mo — R3/T,., wherea* =
m*y1+n*y, m* = (im—2n)/d, n* = (2m—n)/d, andd = gcd(m —2n, 2m —n).

ReEMARK 3. Up to rigid motions, the immersiors} o T and X’ o T2 coincide
with X ()LTZ),,(a) and X%*(a), respectively. Moreover, a precise expression for the
curves(T?),(«) andT,(«) can be derived from (8). Hence these two immersions
can be identified withx .

Note also thatB((T?),(x))? = #?B(x)? and B(T.(«))? = 6B(x)? (see (10)).
Then, if we use this normalization, we could suppose without loss of generality
that ardB(«)) € [0, 7/ 3.

We shall now study the symmetry of the surfaceXijn
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First, denoteM; = (—6:~1,0) (i = 1, 2, 3), whered = ¢%7/3, Observe that
{M1, M2, M3} C Mo is the set of ramification points of the meromorphic function
z on My. Furthermore, an easy computation gives:

J(M1) = M5>, J(M32) = M3,
S(M1) = M, S(M32) = M, (11)
R(M1) = My, R(M3) = M.
Up to translations, we assume thg}(M1) = 0+ 7,, that s,
P
xXkp) = Re(/ c1>§) +7., VPeM,.

M

Using (9) andv(M;) = 0, we deduce that
X%(P)

1/1 v(P)\ i[1 v(P) P dz
=Re| B(a)[ =( =v(P) + 1 — Zv(P) -1 — -
e( (“)<2<x”( o z(P))’ 2<A”( ) z(P))’ /M vz)) s
ProrosiTiON 1. If m +n = 0 (mod 3, then the automorphismi induces on
X2 (M) arotation around therz-axis by an angle oRr/3.
If m+n # 0(mod 3, thenJ induces a screw motion of ord8that is the prod-

uct of a translation along thes-axis and a rotation about this axis by an angle of
27/3.

Proof. Note that
JNgh =0g",  J(mieh) =njg’,

whered = ¢27/3. Then
(P =T D), 12)

where.7 is the matrix
co(%) -—sin(Z&) 0
J = (sin(%”) cos(%) 0) :
0 0 1
Taking (11) and (12) into account, we obtain
'XL(J(P)) ="Vo+ T -'X,(P) VP € My,

whereiio = Re( [, 2 ). SinceJ? = 1y, it follows that o € 7.
On the other hand, if we writ6 = py1+ gy2 andgm — pn =1(p,q € Z)
then, from Lemma 3, we have

Ta = ((0,0, =30 Re(B()(p + ¢6))))

e={(o0 o)

and so, from (10),
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To computedy, let ¢ be the curve in the-plane given byc(t) = e" (¢ €
[z, 57/3]) and takey as the unique lift of the curveto M, satisfying

arg(v(y (4r/3))) = 0.
Thus, by Stokes’s theorem, we obtain

Bo = <o, 0, Re(B(a) / d—i))
y v
dz dz
= Re| B 0,0, — —i—/ —))
e( (a)< /[—1,0] lv|2 (0,13 |v]2

Using (10) and the definition ¢f in Lemma 3 yields
(m +n)pv/3
2lm+nb| )’
By looking at our last expression fgt,, we see that the proposition holds. [

Up = :I:(O, 0,

REMARK 4. A straightforward computation yields the following.

(i) If Jinduces aotationon X’ (My), then the end®,, P,, P; are placed at one
height and the end@1, 0>, Q3 are placed at another height.

(i) If J induces ascrew motionon X*(Mo), then there exist three couples of
ends such that each couple is placed at different heights, but the ends in each
couple are placed at the same height.

CoroLLARY 1. The automorphisni induces a rotation ork’: Mo — R%/T,
if and only if J induces a screw motion on the conjugate surfex¢)*: Mo —
R¥ Tor.

Proof. From Remark 2, the conjugate surface coincides With, wherea* =
m*y1+n*y, m* = (m—2n)/d, n* = (2m—n)/d, andd = gcd(m —2n, 2m —n).

First, observe that eithet = 1 ord = 3. In order to obtain this, note that
m* +n* = 3(m — n)/d andm* — n* = —(m + n)/d and take into account that
gcd(m, n) = ged(m + n, m —n) = 1. On the other hand/m* + 3n = m +n and
dn* — 3m = —(m + n).

If m + n is a multiple of 3 thend = 3 and som* 4+ n* = m — n. Since
gcdim + n, m —n) = 1, m* + n* is not a multiple of 3Conversely, ifn* + n* =
3(m —n)/d is not a multiple of 3thend = 3. Taking into account once again that
dm* + 3n = m + n, it follows thatm + n is a multiple of 3 Using Proposition 1,
the corollary holds. O

To finish this section, we make some more comments about the symmetry of the
surfaces inz,,.

(1) The automorphisn® extends to a symmetry of! if and only if A = 1 In
this case we note tha&(M,) = M, andR*(®,) = R - &, where

1 0 O
R:(O -1 0).
0 0 -1
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HenceR induces a reflection about thg-axis, and this axis is not contained
in X,(Mp). Therefore, the reflections about the straight lidg€s; — axis) and
J?(x, — axis) leave X, (My) invariant, too.

(2) The automorphisns extends to a symmetry of” if and only if B(«)? € R,
that is, eithex = y1 or & = y1 + 2. In this caseS(M;) = M; andS*(®}) =

S - ®%, where either
-1 0 O
S:( 0 1 0)
0 0 -1

1 0O
S:(O -1 O)
0 01

if B(a) = 1anda = y; + 2y2. ThusS induces onX’(My) either a reflection
about thex,-axis that is contained in the surface fifa) = i) or a symmetry
with respect to théxy, x3)-plane (if B(a) = 1). Moreover, eitherX, (Mo) con-
tains the straight lineg(x, — axis) andJ?(x, — axis) (if B(a) = i) or X, (Mo)
is invariant under the symmetry with respect to the plahgss, x3) — plang and
J?((x1, x3) — plane (if B(x) = 1).

In the caseB(«) = i, the three straight lines are self-intersection curves. To
see this, note that the fixed point setSaifh M, consists on a regular closed curve
containing the point®; and Q.

(3) The case. = 1 andB(«)? € R is particularly interesting. The automor-
phismS o R induces (in addition) oX,, (M) either a reflection about the-axis
(if B(a) = i) or a symmetry with respect to the,, x,)-plane (if B(a) = 1). In
both cases, the surface has twelve symmetries.

If B(a) = i then thexs-axis is a double line also containedXr, (My). For, ob-
serve that o R fixes the pointg/; and(L, +/2) and thatX,,(M1) = X,,((1, ¥/2))
(see Figures 1 and 2). B = 1 then the image under the immersion contains a
circle that lies in a horizontal plane of symmetry of the surface (see Figure 4).

We give a brief outline of how to prove this. The projection to thglane of
the nodal sef\ associated to the harmonic functiontm + z2v) in M, (see Fig-
ure 6) is a real algebraic variety of dimension 1 that has only one compact irre-
ducible component if© — {0}. The lift ¢(s) of this component tgV" is a curve that
satisfies the following conditions.

(1) c(s) is a planar curve (i.ex3(c(s)) = constant, and it is contained in the
nodal set of the Shiffman field (i.e., its planar curvature is constant).

(2) The sefc(s), s € R} is invariant under the automorphisgn R.

(3) TheimmersiorX 2, (c(s)) covers four times a circle iR®, and this circle
is hence a self-intersection curve (see Figure 7).

Note that the fixed point set &fo R gives also a planar curve included in a hor-
izontal plane of symmetry, and that the distance between this plane and the one
containing the circle is a half of the length of the period vector (see Figures 3
and 4).

if B(a) =i anda = y,, or
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eZni/3

—2mi/3

Figure 6 The projection on the-plane of the curve(s) in Mo.

4.2. Unigueness of the New Family of Examples

We next present a uniqueness theorem for the family of surfegs « € B, B
is a basis ofH1(Mo, Z) }.

Let X: M — R%T be a properly immersed minimal torus wittplanar paral-
lel embedded ends, whefeis a cyclic group generated by a translation. As men-
tioned in Section 2y = 2k for k > 1. Without loss of generality, we assume that
the normal vectors at the endsMf are vertical.

THEOREM 3. Suppose thaX has vertical flux ifR3/ 7", and that group7 is gen-
erated by a vertical translation. Thén> 3. Moreover, the equality holds if and
only if the immersionX coincides—up to biholomorphisms, rigid motions, and
scaling—withx?, wherex €]0, +oo[ anda € B, B is a basis ofH1(Mo, Z).

Proof. Label (M, g, n) as the Weierstrass data of the immersionand define
® = (¢, P2, ¢3) asin (1). We know (see Section 2) that
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Figure 7 A curve in the surfacé,, »,,(Mo). This curve is the intersection of the
surface with a horizontal plane that is very close to a plane of symmetry of the sur-
face. This plane of symmetry intersects Wb, ,»,,(Mo) in circle X, ,2,,(c(s)).

MEM_{P].?"'?PI(7Q1""’Qk}’

where M is a compact genus-1 Riemann surface. Furtherm@re;) extends
meromorphically toM, and we can suppose without loss of generality that the
classic divisors associated gaandn are given by

_ PP 0f---0F
[g]—Q%ka, [n]—P2 P2

Since the generator ¢f is vertical, the real part of the periods of the 1-forms
¢1, ¢ vanish. On the other hand, has vertical flux ifR3/7” and so these periods
are real numbers. We deduce that any perioghof, vanishes and these 1-forms
are exact, that is to say,andg?y are exact.

If X has four ends (i.ek = 4) then it is not hard to prove, using elementary ar-
guments, thah cannot be exact. Anyway, in this case and from Theorem 1 we can
identify X with a two-sheeted covering of a torus with only two ends. However,
in this casgk = 1) the 1-forms; andg?» are not exact (there are no meromorphic
functions of degree 1 on a torus). Therefore, we concludektha8B.

In what follows, we suppose= 3. We want to find the Weierstrass representa-
tion for the immersionX when there are six ends. The following deductions have
this purpose.

Write n = dh, where

0} .
[h— h(Q)]_W i=123
The functionf = 1/(g ]_[?zl(h — h(Q)))) satisfies
_ Py P, Ps
1= 01-02- 03

and sog = Kf2for K eC.
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On the other hand, the Riemann—-Roch theorem applied to the digigor
(Q01- Q2) (see[3, pp. 73—77]) implies the existence of a meromorphic fungtion
verifying
03-Z
01- 07
whereZ e M — {Q1, Q). An easy computation givesi{ — h(Q3)) fy] = Q3/Z
and soZ = Qs; that is,

[1/y] =

. C
~ y(h—h(Q3)’

If we label {Q3, S1, So, S3} as the set of ramification points @f then the clas-
sic theory of compact Riemann surfaces (see [3, p. 102]) gives the existence of a
meromorphic functionw satisfying

f CeC—{0}. (13)

3
w? =[]0 = y($)) = y* + azy* + a1y + ac;
i=1
we can use this equation to represent, up to biholomorphisms, theMorus

Up to a homothetical change of variables, we can suppgse 1 (observe that
y~1(0) = {Q1, Q>} contains two different points and that 0 is not the image of any
ramification point ofy).

The Riemann—Roch theorem implies that the vector space of meromorphic func-
tions having atQ3 at most one pole of order 3 and no other singularities has di-
mension 3. Furthermore, itis generatedhyy, w}. Since ¥ (h — h(Q3)) belongs
to this space, it is not hard to conclude that

h—h(Q) = —2> (14)
M1y + o+ w
for suitable constant®, (g, 1y € C. Substitutingh — h(Q3) for this function in
(13) yields f = (C/D)(u1y + po + w)/y, and so

2 / 2
+ + B d
A,(my Mzo w) 7 . / y ' y’ (15)
y A" (p1y + o+ w)c w

whereA’ = KC?/D? andB’ e C — {0}. Recalling that/h = n and using (14) and
(15), we obtairi; = a = uy = 0. From (15), we deduce that

, (o + w)?
y2w

g’n=AB dy.

Because this 1-form is also exact, the same holds for the 1-form

3 2
c o gttt
yew

dy = g°n + 2B'A'uod(1/y).

Thus,

2
+3
/'u’02 dy
w

T —2A'B'd(w/y) = A'B
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is exact, which implieg.3 = —3. Up to the changéy, w) — (y, —w), we can
supposeLy = v/3i.
Define

—V3i
=V3¥2i—2 _ and v=2"Y
¢ w + +/3i w + /3i

Then a straightforward computation gives

A
=341 g= = gn:BF
for suitable constanta, B € C — {0}. Therefore M is biholomorphic to the sur-
face My defined in Section 4.1, and up to this biholomorphisth= M,. More-
over, up to rigid motions and scaling, we can assumedhati e R, and|B| =
1, argB) €[0, n[.
If we label{«, B} as a basis o#{1(Mo, Z) such that R(Efa ®) = 0, then The-
orem 2 yieldsB = B(«) and, as a consequence of Remark 1= X*. This fact
completes the proof. O
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