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1. Introduction

LetMn be ann-dimensional submanifold in a Euclidean spaceEn+p of dimension
n+p. Denote byR the normalized scalar curvature and byH the mean curvature
of Mn.

Ōtsuki [O] introduced a kind of curvatures,λ1 ≥ λ2 ≥ · · · ≥ λp for M 2 in
E2+p, and showed that they can be used to study the geometry of surfaces in
higher-dimensional Euclidean space. Shiohama [S] proved that a complete ori-
ented surface inE2+p with λα = 0 (1≤ α ≤ p) is a cylinder. Chen [C1] classified
compact oriented surfaces inE2+p with λp ≥ 0.

In higher-dimensional cases, Chen [C3] introduced the notion ofαth scalar cur-
vatures,λ1 ≥ λ2 ≥ · · · ≥ λp for Mn in En+p, and found a relationship between
the αth scalar curvatures and the scalar curvature. Whenn = 2, it reduces to
that introduced bȳOtsuki [O]. Chen [C3] also proved that a closed submanifold
Mn (n ≥ 3) in En+p with

∫
Mn(λ1)

n/2 dV = cn andλα = 0 (2 ≤ α ≤ p) is an
n-sphere, wherecn is the volume of the unitn-sphere anddV denotes the volume
element ofMn.

In this paper, we give a further description of the behavior of theαth scalar
curvatures and obtain some applications of them. In Section 2, we first prove
thatλα ≤ 0 (2 ≤ α ≤ p) for any submanifoldMn in En+p. Then we prove an
inequality involving the integral ofλ1 for closedMn in En+p with R ≥ 0.

Suppose thatMn is closed inEn+p. The total mean curvature ofMn is defined
to be the integral

∫
Mn H

n dV. An interesting and outstanding problem is to find
the best possible lower bound of this integral in terms of the geometric or topo-
logic invariants ofMn. A special case of this problem is the famous Willmore’s
conjecture. There have been many results obtained on this problem. In Section 3
we give an estimate of the total mean curvature for closed submanifolds inEn+p

with R ≥ 0. The main result of this paper is the following theorem.

Theorem 3.1. LetMn be a closed submanifold inEn+p withR ≥ 0. Then∫
Mn

Hn dV ≥ 2κncn−1+
{

1− 2κn

(
cn−1

cn

)}∫
Mn

Rn/2 dV,
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whereκn = (
√
π/4)0

(
n
4

)/
0
(
n+2

4

)
. Moreover, the equality holds if and only if

Mn is imbedded as a hypersphere in an(n + 1)-dimensional linear subspace of
En+p.

2. Theααα th Scalar Curvatures of M n

Let f : Mn → En+p be an immersion of ann-dimensional closed manifoldMn

into a Euclidean spaceEn+p. Throughout this paper, we identifyMn with its im-
mersed image inEn+p and agree on the following index ranges: 1≤ i, j, k ≤ n;
1≤ α, β, γ ≤ p; n+1≤ r, s, t ≤ n+ p; 1≤ A,B,C ≤ n+ p.

Let (e1, . . . , en+p) be a local orthonormal frame field inT(En+p) such that
(e1, . . . , en) are tangent toMn. Let (ω1, . . . , ωn+p) be the dual coframe. Then
there is a unique connection 1-form(ωAB), the Levi–Civita connection form, such
that

dωA =
∑
B

ωAB ∧ ωB, ωAB + ωBA = 0, dωAB =
∑
C

ωAC ∧ ωCB.

Restricting these forms toMn, we haveωr = 0 for all r. Hence 0= dωr =∑
i ωri ∧ ωi for all r. By Cartan’s lemma we haveωri =

∑
j h

r
ijωj, wherehrij =

hrji for all i, j, andr.
The first and second fundamental forms are

I =
∑
i

(ωi)
2 and II=

∑
i,j,r

hrijωiωj er .

The shape operatorAe of Mn with respect to a normal vectore is the linear self-
adjoint operator onT(Mn) corresponding to the quadratic form IIe = 〈II , e〉. The
matrix forAer with respect to the base{e1, . . . , en} is Lr = (hrij )n×n. The mean
curvature vector fieldξ, the mean curvatureH, and the square length of the sec-
ond fundamental formS can be expressed asξ = ∑

r Hrer , H = |ξ|, andS =∑
i,j,r (h

r
ij )

2, whereHr = (1/n)
∑

i h
r
ii for everyr. The Riemannian curvature

tensor{Rijkl} and the normalized scalar curvatureR can be expressed as

Rijkl =
∑
r

(hrik h
r
jl − hrilhrjk), R =

∑
i,j

Rijij

n(n−1)
= n2H 2 − S

n(n−1)
. (2.1)

LetBν be the bundle of unit normal vectors ofMn in En+p. Then the(p −1)-
form dσp−1 = ωn+p,n+1 ∧ · · · ∧ ωn+p,n+p−1 can be regarded as a(p − 1)-form
on Bν. On the other hand, the volume element ofMn can be written asdV =
ω1 ∧ · · · ∧ ωn. Hence the(n + p − 1)-form dV ∧ dσp−1 can be regarded as the
volume element ofBν.

At an arbitrary point(x, e) ∈ Bν, denoteAe = (Aij ). We define thek th mean
curvatureKk(x, e) at (x, e) by

det(δij + tAij ) = 1+
∑
k

(
n

k

)
Kk(x, e)t

k, (2.2)

whereδij is the Kronecker delta,t is a parameter, and(
n

k

)
= n!

k!(n− k)! ;
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Kn(x, e) is the so-calledLipschitz–Killing curvatureat(x, e).We call the integral

K∗k (x) :=
∫
S
p−1
x

|Kk(x, e)|n/k dσp−1

over the sphereSp−1
x of all unit normal vectors atx thek th total absolute curvature

ofMn at x. Thek th total absolute curvature ofMn with respect tof is defined by

TAk(f ) := 1

cn+p−1

∫
Mn

K∗k (x) dV.

For all TAk(f ), we have the following lemmas.

Lemma 2.1 [CL2]. Let f : Mn → En+p be an immersion of a closed mani-
fold intoEn+p. ThenTAn(f ) ≥ µ(Mn) ≥ β(Mn), whereµ(Mn) is the Morse
number,βi(Mn) is theith Betti number, andβ(Mn) =∑n

i=0 βi(M
n).

Lemma 2.2 [C2; CL1]. Letf : Mn → En+p be an immersion of a closed man-
ifold into En+p. ThenTAk(f ) ≥ 2 for k = 1, . . . , n. The equality holds when
and only whenMn is imbedded as either a hypersphere ifk < n, or as a convex
hypersurface ifk = n, in an (n+1)-dimensional linear subspace ofEn+p.

To describe howK2(x, e) depends one, we take a local orthonormal frame field
{eA}n+pA=1 in a neighborhood ofx as before. Thene andAe can be expressed ase =∑

α yαen+α andAe =
∑

α yαLn+α, where
∑

α y
2
α = 1. In this case,K2(x, e) is

given by

K2(x, e) =
(
n

2

)−1∑
i<j

(AiiAjj − A2
ij ). (2.3)

Denote5 = (5αβ)p×p where

5αβ = 1

n(n−1)

∑
i,j

(hn+αii h
n+β
jj − hn+αij h

n+β
ij ) (2.4)

for all α andβ. Then5 is symmetric andK2(x, e) can be expressed as

K2(x, e) =
∑
α,β

5αβyαyβ. (2.5)

Choose a suitable local normal frame field{ēn+α}pα=1 such thatK2(x, e) can be
rewritten asK2(x, e) =

∑
α λαȳ

2
α, wheree = ∑α ȳαēn+α andλ1 ≥ λ2 ≥ · · · ≥

λp are the eigenvalues of5. We call such a frame field(x; e1, . . . , en; ēn+1, . . . ,

ēn+p) a Frenet–Ōtsuki frame,and we callλα (α = 1, . . . ,p) theαth scalar cur-
vature ofMn in En+p. By means of the method of definition, we see that theλα
are defined continuously on the whole manifoldMn and are differentiable on the
open subset in whichλ1 > λ2 > · · · > λp (see [C3]).

PutSn+α,n+β =
∑

i,j h
n+α
ij h

n+β
ij andSn+α = Sn+α,n+α =

∑
i,j (h

n+α
ij )2 for all α

andβ. Then5αβ can be expressed as

5αβ = 1

n(n−1)
(n2Hn+αHn+β − Sn+α,n+β) (2.6)
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for all α, β. Since the matrix(Hn+αHn+β)p×p is of rank 1 and(Sn+α,n+β)p×p is
positive semidefinite, it follows from (2.6) that there are at least(p −1) numbers
of the eigenvalues of5 that are less than or equal to zero. From the definition of
λα, we obtain the following proposition.

Proposition 2.1. LetMn (n ≥ 2) be a submanifold inEn+p with p ≥ 2. Sup-
pose thatλ1 ≥ λ2 ≥ · · · ≥ λp are theαth scalar curvatures ofMn. Then0 ≥
λ2 ≥ · · · ≥ λp everywhere onMn.

LetMn be a closed submanifold inEn+p with R ≥ 0. Chen [C3] established an
equality for the submanifoldM 2m in E2m+2 with R = 0 (see Corollary 2.1). In
this section, we will prove an inequality that generalizes his result.

Before starting our discussion, we need the following lemma.

Lemma 2.3. Let cn denote the volume of the unit sphereSn. If n ≥ 2, then

cn−1

cn
− 2√

π

0
(
n+2

4

)
0
(
n
4

) < 0. (2.7)

Proof. LetF(u) = 2 ln0(u)−ln0(u− 1
4)−ln0(u+ 1

4)andψ(u) = d ln0(u)/du.
Sinceψ ′′(u) = −2

∑∞
n=0(1/(u+ n)3) < 0 for u > 0, ψ(u) is a concave function

for u > 0. HenceF ′(u) = 2{ψ(u) − 1
2[ψ(u − 1

4) + ψ(u + 1
4)]} > 0. It follows

thatF(u) is a monotone increasing function foru ≥ 0. It is easy to see that

F(1) = ln
4

0( 1
4)0(1− 1

4)

= ln

(
4

π
sin

π

4

)
= ln

(
4

π

)
+ ln

(√
2

2

)
> ln

(√
2

2

)
.

ThereforeF(u) ≥ F(1) > ln(
√

2/2) for u ≥ 1, from which we have

02(u) > (
√

2/2)0(u− 1
4)0(u+ 1

4). (2.8)

Sincecn−1 = 2(
√
π )n/0(n/2), using the “duplication formula of gamma func-

tion” we have

cn−1

cn
− 2√

π

0
(
n+2

4

)
0
(
n
4

) = √20
(
n+1

4

)
0
(
n+3

4

)− 202
(
n+2

4

)
√
π0
(
n
4

)
0
(
n+2

4

) . (2.9)

Therefore (2.7) follows from (2.8) and (2.9) withu = n+2
4 ≥ 1.

Let us prove the main result of this section now. By using Proposition 2.1, we have

|K2(x, e)|n/2

= |Rȳ2
1 + λ2(ȳ

2
2 − ȳ2

1)+ · · · + λp(ȳ2
p − ȳ2

1)|n/2

≤ (Rȳ2
1 − λ2|ȳ2

2 − ȳ2
1| − · · · − λp|ȳ2

p − ȳ2
1|)n/2

≤ λn/2−1
1 (R|ȳ1|n − λ2|ȳ2

2 − ȳ2
1|n/2 − · · · − λp|ȳ2

p − ȳ2
1|n/2), (2.10)

where we have used thatf(u) = un/2 is convex in [0,+∞).
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We need the following spherical integrals∫
S
p−1
x

|ȳ1|n dSp−1= 2cn+p−1

cn
,∫

S
p−1
x

|ȳ2
r − ȳ2

1|n/2 dSp−1= 4√
π

0
(
n+2

4

)
0
(
n
4

) (cn+p−1

cn−1

) (2.11)

for r = 2, . . . ,p, which can be found in [W] or [C9, pp. 200, 228]. Integrating
both sides of (2.10) with respect toe onSp−1

x , we obtain

1

cn+p−1
K∗2(x)

≤ λn/2−1
1

{
λ1 · 4√

π

0
(
n+2

4

)
0
(
n
4

)
cn−1
+ 2R

cn−1

[
cn−1

cn
− 2√

π

0
(
n+2

4

)
0
(
n
4

) ]}. (2.12)

It is known thatR =∑α λα (see [C3]). From Proposition 2.1, we haveλ1 ≥ R ≥
0. Therefore, it follows from Lemma 2.3 and (2.12) that

1

cn+p−1
K∗2(x) ≤ λn/2

1 ·
4√
π

0
(
n+2

4

)
0
(
n
4

)
cn−1
+ 2Rn/2

cn−1

{
cn−1

cn
− 2√

π

0
(
n+2

4

)
0
(
n
4

) }. (2.13)

Then we can prove our next proposition.

Proposition 2.2. LetMn (n ≥ 2) be a closed submanifold inEn+p with R ≥
0. Then∫
Mn

λ
n/2
1 dV ≥ κncn−1

cn+p−1

∫
Mn

K∗2(x) dV +
{

1−2κn

(
cn−1

cn

)}∫
Mn

Rn/2 dV, (2.14)

whereκn = (√π/4)0
(
n
4

)/
0
(
n+2

4

)
.Moreover, if the equality in(2.14)holds then

λα = 0 (2 ≤ α ≤ p −1) onMn.

Proof. Integrating (2.13) onMn, we obtain (2.14). Suppose that the equality in
(2.14) holds. Then the relevant inequalities become equalities. PutP ={ x∈Mn |
R(x) > 0 }. It follows thatλ1= R in P, from which we haveλ2 = · · · = λp = 0
in P.

SetQ = { x ∈Mn | R(x) = 0 }. ThenMn = P ∪Q. It follows from the equal-
ity sign in (2.10) that at most one ofλ2, . . . , λp is not zero inQ. This, together
with the fact 0≥ λ2 ≥ · · · ≥ λp, yieldsλ2 = · · · = λp−1 = 0 in Q. From the
foregoing deductions, we haveλ2 = · · · = λp−1= 0 onP ∪Q = Mn. This com-
pletes the proof.

In the special case whenn = 2m, p = 2, andR = 0, the inequalities in (2.10)
are in fact equalities, and so is that in (2.14). Thus Proposition 2.2 reduces to the
following result of Chen.

Corollary 2.1 [C3]. Suppose thatM 2m is closed inE2m+2 withR = 0. Then∫
Mn

(λ1)
m dV = cm

2cm+1

∫
Mn

K∗2(x) dV. (2.15)



502 Z hong-Hua Hou

3. An Estimate of the Total Mean Curvature

Let f : Mn→ En+p be an immersion of the closed manifoldMn intoEn+p. The
total mean curvature ofMn with respect tof is defined by TM(f ) = ∫

Mn H
n dV

and is a conformal invariant whenn = 2. An interesting and outstanding problem
is to characterize those immersions that minimize the functional TM(f ). There
are many results obtained on this problem. Chen [C4] proved that

∫
Mn H

n dV ≥
cn, where the equality holds if and only ifMn is imbedded as a hypersphere in
an(n+ 1)-dimensional linear subspace ofEn+p whenn > 1. He also obtained a
lower bound of TM(f ) in terms of the Betti number ofMn for f with R ≥ 0 (see
e.g. [C6]).

In this section, we obtain a sharp estimate of the total mean curvature forMn

with R ≥ 0 in terms ofR. For this purpose, we first prove the following lemma.

Lemma 3.1. LetMn be a submanifold inEn+p. If λ1(x) ≥ 0 at a pointx ∈Mn,

thenH 2(x) ≥ λ1(x), where the equality sign holds atx when and only whenx is
a pseudo-umbilical point ofMn.

Proof. Let (x; e1, . . . , en; ēn+1, . . . , ēn+p) be a Frenet–̄Otsuki frame in a neigh-
borhood ofx. It follows thatn(n−1)λα = 2

∑
i<j [h

n+α
ii hn+αjj − (hn+αij )2] for every

α. Hence ∑
α>1

∑
i,j

(hn+αij )2 =
∑
α>1

(nHn+α)2 − n(n−1)
∑
α>1

λα.

On the other hand, we have∑
i

(hn+1
ii )

2 = 1

n−1

{∑
i<j

(hn+1
ii − hn+1

jj )2 + 2
∑
i<j

hn+1
ii hn+1

jj

}
.

Therefore,∑
i,j

(hn+1
ij )2 = nλ1+ 1

n−1

∑
i<j

(hn+1
ii − hn+1

jj )2 + 2n

n−1

∑
i<j

(hn+1
ij )2.

Using the fact
∑

α λα = R, we obtain

S =
∑
i,j

(hn+1
ij )2 +

∑
α>1

∑
i,j

(hn+αij )2

= n2λ1+ 2n

n−1

∑
i<j

(hn+1
ij )2 + 1

n−1

∑
i<j

(hn+1
ii − hn+1

jj )2

+
∑
α>1

(nHn+α)2 − n(n−1)R.

It is known thatn(n−1)R = n2H 2 − S. Therefore,

n2H 2 = n2λ1+ 2n

n−1

∑
i<j

(hn+1
ij )2

+ 1

n−1

∑
i<j

(hn+1
ii − hn+1

jj )2 +
∑
α>1

(nHn+α)2. (3.1)
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From (3.1) we haveH 2 ≥ λ1 and thatH 2 = λ1 if and only ifhn+1
ii = hn+1

jj , hn+1
ij =

0 for all i 6= j, andHn+α = 0 for all α > 1. Henceēn+1 has the same direction as
ξ andL̄n+1= HIn, which means thatx is a pseudo-umbilical point.

Remark 3.1. Chen [C5] has obtained Lemma 3.1 forn = 2.

Using Proposition 2.2, Lemma 2.2, and Lemma 3.1, we get the main result of this
paper.

Theorem 3.1. LetMn be a closed submanifold inEn+p withR ≥ 0. Then∫
Mn

Hn dV ≥ 2κncn−1+
{

1− 2κn

(
cn−1

cn

)}∫
Mn

Rn/2 dV,

and the equality holds when and only whenMn is imbedded as a hypersphere in
an (n+1)-dimensional linear subspace ofEn+p.

Let us conclude this section by giving another application of Proposition 2.2.

Proposition 3.1. LetMn be a closed submanifold inEn+p withR ≥ 0.Suppose
that {λα} are theαth scalar curvatures ofMn. Then∫

Mn

Hn dV ≥ κncn−1

cn+p−1

∫
Mn

K∗2(x) dV +
{

1− 2κn

(
cn−1

cn

)}∫
Mn

Rn/2 dV, (3.2)

whereκn = (√π/4)0
(
n
4

)/
0
(
n+2

4

)
. Moreover, the equality in(3.2) holds if and

only if either(a)Mn is imbedded as a hypersphere in an(n+1)-dimensional lin-
ear subspace ofEn+p or (b) Mn is pseudo-umbilical withR = 0 and λα = 0
(2 ≤ α ≤ p −1).

Proof. Note that (3.2) follows from (2.14) and Lemma 3.1. Suppose that the equal-
ity in (3.2) holds. It follows from Lemma 3.1 thatMn is pseudo-umbilical.

ConsiderM0 = { x ∈Mn | R(x) > 0 }. From the proof of Proposition 2.2, we
haveλ2 = · · · = λp = 0 inM0. ThusM0 is totally umbilical. From a result in
[C6, p. 50], we have that every connected component ofM0 is of constant curva-
ture. HenceR is constant inM0. ThereforeM0 = Mn or ∅ sinceR is continuous
onMn.

If M0 = Mn, thenMn is of constant curvature. ThusMn is imbedded as a hy-
persphere in an(n + 1)-dimensional linear subspace ofEn+p. If M0 = ∅, then
R = 0 onMn. Moreover, it follows from Proposition 2.2 thatλα = 0 (2 ≤ α ≤
p −1) onMn.

The converse is clear. This completes the proof of Proposition 3.1.

LetM 2 be a closed surface inE2+p. Then the normalized scalar curvatureR is just
the Gauss curvature and TA2(f ) is precisely the total absolute curvature. Using
Proposition 3.1 and Lemma 2.1, we can prove the following corollaries.

Corollary 3.1. LetM 2 be a closed surface inE2+p with nonnegative Gauss
curvature. If

∫
M2 H

2 dV ≤ (2+ π)π, thenM 2 is homeomorphic to a2-sphere.
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Corollary 3.2 [C8]. LetM 2 be a closed flat surface in a Euclidean spaceE2+p

withp ≥ 2. Then
∫
M2 H

2 dV ≥ 2π2. The equality holds when and only whenM 2

is imbedded as a Clifford torusT 2 = S1(a)× S1(a) ⊂ E 4 ⊂ E2+p, whereS1(a)

is a plane circle of radiusa.

Proof of Corollary 3.1 and 3.2.From Proposition 3.1, we have∫
M2
H 2 dV ≥ π

2

2
·
(

1

cp+1

∫
M2
K∗2 dV

)
+
(

1− π
4

)∫
M2
R dV, (3.3)

where the equality holds when and only when eitherM 2 is imbedded as a 2-sphere
orR = 0 onM 2.On the other hand, from Lemma 2.1 and Gauss–Bonnet formula,
we have

1

cp+1

∫
M2
K∗2 dV ≥ µ(M 2) ≥ β(M 2),

∫
M2
R dV = 2πχ(M 2). (3.4)

If R is not identically equal to zero, thenM 2 is homeomorphic to a real projec-
tive planeRP 2 or a unit sphereS2. If M 2 is homeomorphic toRP 2, thenχ(M 2) =
1 andµ(M 2) ≥ 3. From (3.3) and (3.4), we have∫

M2
H 2 dV > (π + 2)π. (3.5)

If R = 0 onM 2, thenM 2 is homeomorphic to a torusT 2 or a Klein bottleK2. In
this case,χ(M 2) = 0 andµ(M 2) ≥ 4. From (3.3) and (3.4), we have∫

M2
H 2 dV ≥ 2π2. (3.6)

Therefore, Corollary 3.1 follows from (3.5) and (3.6).
Let us prove Corollary 3.2. The first part of Corollary 3.2 follows from (3.6).

Suppose that the equality in (3.6) holds. It follows from Lemma 3.1 thatM 2 is
pseudo-umbilical. Using a result of Chen [C7], we get the second part of Corol-
lary 3.2. The converse is trivial. This completes the proof.

Remark 3.2. Chen has proved Corollary 3.1 forp = 2 in [C5] and forM 2 being
pseudo-umbilical in [C7].
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