Injective Operations of Homogeneous Spaces

EuN Sook KANG & KYuUNG BA1 LEE

1. Introduction

This paper is an extension of Conner and Raymond’s work [2]. A t@¥usan
be viewed as a homogeneous spREEZ. Let G be a simply connected divisible
Lie group, and lef” be a co-compact discrete subgroupgio$uch thatT, G) has
the unique automorphism extension property. Eve@/if” is not a group, there
is a natural concept of an “action” of the homogeneous spgdein place of a
torus, which gives rise to useful facts generalizing known results of torus actions.
There have been many efforts trying to split a manifold as a product of two man-
ifolds. LetM be a flat Riemannian manifold whose fundamental group contains a
nontrivial center. Calabi has shown that suchvaaimost splits. More precisely,
there exists a compact flat manifaldand a finite abelian group such thatM =
T* x4 N, the quotient space df* x N by a free diagonal action @b, where®
acts freely as translations on the first factor and as isometries on the second fac-
tor (see [17]). Lawson and Yau [9] and Eberlein [4] have shown the same fact for
closed manifoldsVf of nonpositive sectional curvature: #;,(M) has nontrivial
centerZ* thenM splits asM = T* x4 N, whereN is a closed manifold of non-
positive sectional curvature arilis a finite abelian group acting diagonally and
freely onT*-factors as translations.
Prior to the work described in the previous paragraph, Conner and Raymond [2]
generalized Calabi’s results to homologically injective torus actions(1T&tM )
be a torus action on a topological space. For a base pgiatM, consider the
evaluation map ev(T*, ) — (M, xo) sending — txo. The actionis callethjec-
tive if the evaluation map induces an injective homomorphisp ev(T*, ¢) —
m1(M, xp). It is homologically injectivef the evaluation map induces an injec-
tive homomorphism ev. Hi(T*,Z) — Hy(M; Z). For a Riemannian manifold
of nonpositive sectional curvature, the existence of a nontrivial c&ftef w1(M)
guarantees that the manifold has an action of tdtisand all such actions are
homologically injective.
Topological spaces are always assumed to be paracompact, path-connected,
locally path-connected, and either (i) locally compact and semi-1-connected or
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(ii) of the same homotopy type as the CW-complex. Therefore, our topological
spaces admit covering space theory.

THEOREM [2]. If a topological spaceX admits a homologically injectivéopo-
logical) torus action(T*, X), thenX splits asT* x4 N for someN, where® is
a finite abelian group acting diagonally and freely @h-factors as translations.

The “splitting” X = T* xo N implies, as before, that has a Seifert fiber space
structure with typical fibeiT'* and base spach/®. All the singular fibers are
again tori, which are finitely covered @g*. The splitting also gives rise to an-
other genuine fiber structure—nameXyfibers over the torug*/® with the fiber
N and a finite structure group. The theorem just stated does not require that the
spaceX be aspherical. On the other hand, the only compact connected Lie group
that can act on aspherical manifolds are tori. Therefore, splitting a manifold using
a group action for an aspherical manifold forces the group to be a torus. In other
words, for aspherical manifolds, there can be no generalization of splitting using
compact Lie group actions other than tori.

We define an “action” of a homogeneous space, and obtain the following results:

(1) Corollary 2.18—splitting on covering space level,

(2) Theorem 3.2—equivalence ¢ modT')-action and Seifert fiber structure;

(3) Theorem 3.4—existence and uniqueness of Seifert structure; and

(4) Theorem 4.3—the main splitting theorem for spaces with inje¢vmodT)-
actions.

The authors would like to express thanks to Frank Raymond for pointing out some
errors in an earlier version of this paper.

2. (GmodT)-Action

We fix some notation first. Ldt be a closed subgroup of a grolib We denote
the center ofl” by Z(I"), the centralizer of” in IT by C(I"), and the normal-
izer of " in TT by N (T"). Fora € IT, conjugation by is denoted by («); hence
(o) (z) = aza~tfor all z € 1. For a Lie groupG, Aut(G) denotes the group of
continuous automorphisms 6f, and Inn(G) is the group of inner automorphisms
of G. WhenG acts on a spack, thestabilizer (isotropy subgroupof this action
atu € X is denoted byG,. The orbit of G containingu € G is denoted byG (u).

Consider a torug’* = R¥/Z*. It acts on a spac¥ if and only if RF acts onX
in such a way that the stabiliz€R*), at everyx € X contains the lattic&*.

For a Lie groupG and its discrete subgroup which is not necessarily nor-
mal, there is a natural concept of an “action” of the homogeneous spdce-or
example, lel” and<2 be discrete subgroups of a connected Lie grGup

r<Qcag.

Let W be a nice space. Consider the actionGobn the productG/Q x W, on
the left co-set spac€/<2 as left multiplications. Denote the points 6§22 x W
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by (x, w),.... Then(x, w) — (x, w) by the projectionG x W — G/Q x W.
Clearly,
Giw = aQat>ala™?

for every(a, w); every isotropy grou ., .,y thus contains a conjugate Bf More-
over, the conjugatel’a~ of I varies in a continuous fashion as the pdintw)
varies.

Let I be a discrete subgroup of a Lie groGp Sinceal'a™! = bI'b~1 if and
only if a=1b € N ('), the set of all conjugates &fin G is in one—one correspon-
dence with the sef /N (T'). Therefore, we interpret an elemen¢ G/Ng (') as
the conjugacy classl'a~1. We use the symbab to denote the spad@/N¢ (I).
Then® has the natural topology as the quotient spac@:of

& = G/Ng(TI')
= the space of all conjugacy classesloin G.

Thus, an element a® can be thought as a subgroup®@fthat is conjugate t@'.
Here is a formal definition ofG modTI’)-action.

DEFINITION. LetG be a connected and simply connected Lie group, arid et
a co-compact discrete subgroup@fAn action ofG on X is called &G modTI’)-
actionif there exists a continuous map

r>\x—e

such thafl* (1) ¢ G, andI'(au) = al’(u)a~* for everyu € X anda € G.

With this notation, th& G modI")-action is:

(1) effective ifand only if \{G, :T(w) =T} =T;

(2) freeif and only ifG, = I" whenevef () = T'; and y

(3) proper if and only if the induce@-action on the universal covering spaxe
(recall thatG is simply connected) is proper.

REMaRrk 2.1. (1) Whenever we speak of(& modI')-action, it should be un-
derstood that is a connected and simply connected Lie group and hista
co-compact discrete subgroup@f

(2) The mag™: X — & assigns a conjugai®(u) of I to each point: of X in
a continuous fashion.

(3) SinceG is simply connected, th€é-action onX lifts to an action ofG on
the universal covering spacg see [1, Thm. 4.3]. (This fact is used in our Defi-
nition (3).) SinceG is connected, this implies that centralizesr1(X, u). Thus
the G action and the covering transformation By= 71(X) on X commute with
each other.

Itis clear from the definition that & modI')-action onX is free if and only if
the lifted action ofG on the universal covering is free in the ordinary sense.

(4) Notice that if" is normal then® is a singleton, so thdt is the constant
map; namelyl’(«) = T for everyu. An action of the grougz/T" on X induces a
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(G modI')-action onX and vice versa. Th&/I" action is effective (resp. free) if
and only if the(G modTI)-action is effective (resp. free).

ExampLE 2.2. LetI" be a co-compact discrete subgroup of a Lie gréufhe
natural action oG on the co-set spadg/I" as left multiplications is &G modI’)-
action. There is only one orbit; certainly,@at ¢I" we haveG; = T.

LemMA 2.3. SupposeX has a(G modI')-action. Then, for every € X, I'(u)
is a normal subgroup of;,,.

Proof. On every orbit, there is a € X such thafl’(«) = I, becausd™(au) =
al'(u)a™t. So assumg(u) = T. Then, for anyx € G,, u = xu so thatl' =
I'(u) = T'(xu) = xT'(w)x~t = xI'x~L. Thereforex € Ng(I') or, equivalently,
I' is normal inG,. Now, for arbitrarya € G, TI'(au) = al'(u)a* and G,, =
aG,a~t Itis easy to se€ (au) is normal inG,,. O

ExampLE 2.4. LetI’ andQ2 be co-compact discrete subgroups of a connected
Lie groupG (I" < 2 C G). Let W be a nice space. Then the action®bn the
productG/2 x W on the left co-set spacg/<2 as left multiplications gives rise to

a (G modrI')-action onG/2 x W. Denote the points off/Q2 x W by (x, w), . . ..
Simply definel’((a, w)) = aT'a= for every(a, w). Sincel is normal inQ, T is

well defined. Clearly, theR ((a, w)) C aQa™t = G 4.u)-

Supposd” is a co-compact discrete subgroup®fthat is normal inG, and let
X be a completely regular space. Then any action of the compact Lie gresp
G/T on X is proper in the ordinary sense: For any compact sukisetX,

{aeG:a-KNK #0)
is a closed subset of the compazt

QuEsTION 2.5. LetI" be a co-compact discrete subgroup of a Lie graups
every(G modTI’)-action on a completely regular space proper?

LeEmmA 2.6 [5, (3.1)]. Let G be a Lie group, and lef” be a co-compact dis-
crete subgroup of;. For any closed normal subgroufi of G, the following are
equivalent

(1) ' N H is uniform inH (i.e., H/(I' N H) is compac};

(2) /T N H is discrete inG/H,;

(3) I'/T' N H is uniform inG/H.

LemMma 2.7. LetT be a co-compact discrete subgroup of a connected, simply
connected Lie grou. Then the quotien¥;(I')/Z(G) is a discrete subgroup of
Inn(G).

Proof. Sincerl is a co-compact discrete subgroupfit is finitely generatedI’
is the fundamental group of a closed manifold). {&t as, . . ., a,} be asetofgen-
erators of". There is a continuous map: Inn(G) - G x G x---x G (n copies)
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defined by (x) — (u(x)(ar), u(x)(az), ..., u(x)(a,)) foreachy € G. Fixxg €
G. Sincerl is discrete, for eachthere exists a neighborhodd of xoaixal such
thatV; N T is either empty or a singleton. L&t = V; x Vo, x --- x V, C G".
Sincey is continuousyy (V) is open in ING). Moreover,y~1(V) N Aut(T")
is either empty or a singleton. Sind&; (I')/Z(G) = Inn(G) N Aut(T"), itis dis-
crete in InAG). O

We now define an “evaluation homomorphism” fag@modI")-action on a space
X. As mentioned at the end of Section 1, our spakewill be paracompact,
path-connected, locally path-connected, and either (i) locally compact and semi-
1-connected or (ii) of the same homotopy type as the CW-complex.

Choose a base pointe X. The (G modrI')-action onX induces a sequence of
continuous maps

(G/Tw), e) » (Gu), u) — (X, u),

where the first map is induced from the evaluation map ¢ - u. These maps
induce group homomaorphisms

evy: m11(G/T'(u), e) — m1(G(u), u) — m1(X, u).

For anyz € I'(u), pick a pathg: (1,0,1) — (G, e, z). Then the patly forms a
loop in G/T'(u) based at, and ev([g]) = [¢g(¢) - u]. Of course, this homotopy
class is independent of the choice of the patlinceG is simply connected.

LEmMA 2.8. SupposeX has a(G modI')-action. Leto be a path fromug to
uy, and letp, : m1(X, ug) — m1(X, u1) be an isomorphism defined py([«]) =
[6 * a x o]. Then there exists a € Inn(G) that makes the following diagram
commutative

71(G/T (o), &) —> my(X, uo)
(] [
m(G/T(wr), &) —> my(X, u1).
Proof. Define dlift of T oo : I — & too: I — Inn(G) as follows. By Lemma

2.7, the projectiolti /Z(G) — G/Ng(I') = & is a covering map. The path-lifting
property of a covering projection gives rise to afifof " o o,

I -5 G/Z(G) = Inn(G)
al lcovering projection
X - G/Ng(I)
as soon as we fi&(0). Thens satisfies

6(s)(I') =T(o(s) C Goy
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forall s € 1. In particular,6(0)(I") = I'(ug) andé(1)(T") = I'(uq). Pickz € T,
and choose any pag (1,0,1) — (G, e, z). Then

[6(0) o g] € m1(G/T (o), e), [6(1) o g] € m1(G/T (u1), e).

We want to study how the elemeist(D) o g] is mapped by different homomor-
phisms. Clearly,

eVo([5(0) o g]) = [6(0)(g(1)) - uol;
evi([6(1) o g]) = [6(1)(g(®)) - ua].
Define a homotopy/: I x I — X by
H(s, 1) = 6(s)(g®)) - o(s).

We now proceed to calculate four sides of the square.
Clearly,

H(s,0) =05(s5)(g(0) -o(s) =0d(s)e)-o(s) =e-a(s) =0a(s).

Sinces (s) mapsl ontoI' (o (s)) C Gy, it follows thata (s)(z) € Go(s). There-
fore,6(s)(z) - o(s) = o(s) for everyz e I'. Thus,

H(s,1) = 6(s)(g(1) - o(s) = 6(s)(2) - o(s) = o (s).
Also, it is easy to see
H(0,1) = 6(0)(g(1)) - 0(0) = 6(0)(g(?)) - uo;
H(1,1) =6(1)(g®) -0(1) = (1)(g(®)) - u1.
This shows thai (7) x {6 (0)(g(?)) - ug} * o(t) >~ 6(1)(g(t)) - uz. Since
ps(€W([6(0) o g])) = [5(r) * {5(0)(g(¥)) - uo} * o ()],
we havep,(evo([6(0)(g(?)) - ugl)) = eva([6(1)(g(2)) - u1]) forall z e I and so
Po © €V = eVy o(6(1) 0 5(0)7Y).
Observe that = 6(1) o 6(0) L e Inn(G). O
DEFINITION 2.9.  We say that & modI)-action onX is injectiveif
evy: m(G/T(w), &) — m(Gu), u) — m(X, u)

is injective. Denote the image of ghy Iy, and sefll = m1(X, u). Also let Z(I")
be the center df, and letC (I'g) be the centralizer dfy in IT. A (G modTI’)-action
is homologically injectivef it is injective and the induced homomorphism

ev,: Hy(Z(T"); Z) — Hy(Cn(To); Z)

is injective. We abbreviate gwr ey, simply by ev when no confusion is likely.

Clearly, by Lemma 2.8, the (homologically) injectiveness condition is independent
of our choice of the base pointe X.
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An extension - I' — I1 — Q — 1 is calledinner if the abstract kernel
Q — Out(I") istrivial. Supposé’ is a subgroup of;. The extensiorl is G-inner
if, for everyo € 7, u(o) € Aut(I') is equal to conjugation by an element@f If
[T is inner, then it isG-inner.

CoroLLARY 2.10. Suppose thaX has an injectivéG modTI')-action, and lei: €
X. Thenevi(I"(w)) is normal inz1(X, u). In fact, withQ = m1(X, u)/evu(T (v)),
the exact sequence

l-ewTu) > mX,u) > 0 —1
is G-inner.

Proof. Letug = u = u1, and lets be any loop based atso that p] € 71(X, u).
Apply Lemma 2.8 (with ey = evx = evy, which is denoted simply by 8vo get

Po ©EV=EVo .

Thus p]tev(z)[o] = ev(¢(2)) for everyz e ' (i), so that e¢I"(«)) is normal in
m1(X, u). If we identify euT (1)) with I'(«), then the equality just displayed be-
comes §]1z[o] = ¢ (). But¢ € Inn(G) is an inner automorphism @, so the
extension sequence &-inner. O

In the case wher& is normal inG (so thatG/T" is a group),I" is a constant
map and hencé(s) is the identity map, s@,(ev(z)) = ev(z) or (equivalently)
ol evz) - o0 = ewz) for everyo e m1(X, u). This shows that the image of ev
is a central subgroup ofi(X, u), as opposed to just beir@-inner in our general
case.

ProrosiTiON 2.11. Suppose a spack has an injectiveé G modI")-action. Pick
u € X sothatI'(u) = TI'". Let H be a normal subgroup ofl = m1(X, u) con-
taining I, and let X be a covering space of with 71(Xy) = H. Then the
(G modTI')-action onX naturally lifts to an injectivelG modTI™)-action onX .

Proof. SinceG acts onX andG is simply connected, there is a liftédaction on
Xy (see[l, Thm. 4.3]). It only remains to show how hanap is defined. Define
I'': Xy — & by the composite

x5 x5 e,

wherep is the covering projection arld is theI’-map of the(G modI’)-action
onX.

We claim thaf"'(2) ¢ G; andI''(aii) = al''(it)a~* for everyii € X anda
G.Letu = p(t) € X. ThenT''(t) = '(u) € & by the definition ofl"’. Since
p(au) = ap(ir), we have

I(ai) = T(p(ai)) = T(au) = aT' w)a™* = al''@)a™ L.

Supposd' (1) = T, so thall’'(7) = I'. Then the covering projectiop mapsG (it)
ontoG (u). The whole groupri(X, u) acts onX gz in such a way that the subgroup
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H acts trivially. Sincd™ C H, ' acts onXy trivially. Therefore,I" acts trivially
onG (i) = G/G; so thatl' C G;. At pointsau € Xy other thani, the equality
I(at) = al'’(@)a~* ensures thdl'(ail) C Gg;. O

ProposSITION 2.12. Suppose a space has an injectivd G modI')-action. Pick
u € X sothatl'(u) = I'. Let X1 be a regular covering ok with 71(Xr) =T =
ev(I’(n)). If G is torsion-free, then the liftedG modI')-action onX and theG-
action onX are free.

Proof. The image of the evaluation homomorphism &(u) — 71(X, u) liesin
I, so by Proposition 2.11 thgs modI')-action onX lifts to a (G modI’)-action
onXr.

Suppose théG modTI')-action onXr is not free. Then there exi8te X such
thatI'(z) = I" and is a proper subgroup 6f;. Recall thatey: I' = I'(u) —
m1(Xr, ) = I' came from the continuous maps

(G/T.&) —> (G(@), &) —> (Xr. ).
These continuous maps induce homomorphisms of fundamental groups,
' - G; > T,

where the composite is an isomorphism. IFebe the kernel of the second ho-
momorphism. Since thé-action on each orbit is proper adg T is compact F
must be a finite group. Buf; C G does not contain any element of finite order.
Consequently must be trivial, so tha;; = I'. Thus the(G modI')-action on
Xr and theG-action onX are free. 0O

COROLLARY 2.13[2, (3.1), p. 286]. Suppose a spacéhas aninjective*-action.
Let X,« be a regular covering ok with 71(X,«) = Z*F = ew(wr1(T*)). Then the
lifted T *-action onX . is free.

We need to understand the groupBfequivariant maps on a product spaee W.
Let W be a space. On the produ@tx W, there areG actions by “left translations”
and by “right translations”,

I(g)(x,w) = (gx, w) and r(g)(x,w) = (xg™ w),

for g € G and (x,w) € G x W. We denote the group of such left and right
translations by (G) andr(G), respectively. Amapf: G x W — G x W is
G-equivariantif

flax, w) =l(a) f(x, w)

forall a € G and (x,w) € G x W. (S0, G-equivariant means(G)-equivar-
iant.) The group of allG-equivariant homeomorphisms 6f x W is denoted
by TOP8(G x W). Note that the group(G) is G-equivariant, so that(G) C

TOPg(G x W), but/(G) is not, unless5 is commutative.
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We now examing5-equivariant maps on the spaGex W more closely. Let
M (W, G) be the group of all continuous maps frd#hinto G. A > € M(W, G) can
be interpretedasamap x W — G x W by

Ax, w) = (x - AMw) ™ w).

Thusi becomes5-equivariant, so that MW, G) C TOPg(G x W). More gener-
ally, let f € TOP2(G x W). Sincef(x, w) = f(x -1 w) = I(x) - f(L, w), itfol-
lows thatf is completely determined by the image of the secfiynx W. Also,
sincef is fiber-preserving, it induces a homeomorphision the base spad¥.

Then f is of the form f(1, w) = (A(h(w)) 7L, h(w)) for somer e M(W, G). It
is easy to see that

TOPY(G x W) = M(W, G) x TOP(W).
The group law is
(h) - (k) = (- (o h™), hok),
and the action oG x W is given by
(, h) - (x, w) = (x - A(h(w) ™ h(w))
forall (x,w)e G x W.

LemMma 2.14. The group of allG-equivariant maps on the spacex W is
TOPY(G x W) = M(W, G) x TOP(W).
It contains the right translations(G) ¢ M(W, G) as constant maps.

Now we specialize to particular types of Lie groups. They will be somewhat sim-
ilar to the abelian Lie groufR*. A Lie group G is said to have the unique lat-
tice isomorphism extension property (ULIEP) if every isomorphism between lat-
tices of G extends uniquely to a continuous automorphisrgroFor example, the
following classes of groups have the ULIER*, nilpotent Lie groups, solvable
Lie groups of type (R) (i.e., the adjoint representatipria) : g — g has all real
eigenvalues), and noncompact semisimple Lie groups having n€isigR, R)
factors nor normal compact factors.

A Lie groupG isdivisibleif the equationx” = a has a unique solution for every
a € G andn € Z. If the exponential map expg — G is a diffeomorphism, then
G is contractible and divisible, anfl(G) is isomorphic tdR* for somek > 0.

Our model space to replace the group torus§, which satisfies the following.

STANDING HyPoTHESIS ON (G, I').  Throughout the rest of this paper, we assume
thatG is a connected Lie group with the ULIEP whose exponential map gxp-:

G is a diffeomorphism; we also assume tRat a co-compact discrete subgroup
of G.

LemMma 2.15. If an extensiorl — I' — I1 — Q — 1is G-inner, then the
abstract kernelp — Out(T") has finite image.
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Proof. Consider the commutative diagram
1— Inn(I') — Aut(l') — Oul') — 1

| l b

1 — Inn(G) — Aut(G) — Out(G) — 1,
where AulI") — Aut(G) is induced from the ULIEP of;. We need to prove that
ker(p) is finite. Suppose € Aut(I') is u(a), conjugation by an elemente G.
Thena € Ng(T"). By Lemma 2.7 N (I')/Z(G) is a discrete subgroup of 10&).
Since In(T") = I['/Z(T) is discrete and co-compact in I¢@), Inn(T") must have
finite index inNg (T")/Z(G). Therefore, some power of is in Inn(T"). Thus the
image ofp is finitely generated, and every element has finite order. Therefore, it
is a finite group. O

The following cohomology vanishing fact will be crucial for Theorems 2.17 and
3.4.

LemMma 2.16 [1, (8.4)]. Letp: QO — TOP(W) be a properly discontinuous ac-
tion on a connected spadk. With the action ofTOP(W) onM (W, R¥) byh - A =
Aoh™t HI(Q: M(W,R¥)) =0 fori > 0.

SupposeX and X’ have(G modT')-action withl"': X — & andI'': X' — &,
respectively. A mapf: X — X’ is said to be(G modI')-equivariantif it is
G-equivariant and™’(f(«)) = I'(u) for all u € X. The productG/T" x W has a
(G modT)-action—namely, the left translation &y on the first factor together
with the obvioud™: G/T x W — G/T — G/Ng(T") =

THEOREM 2.17. SupposeX has a proper, injectivéG modTI')-action. Picku
X so thatI'(«) = I'. Denote the imagev(I" (1)) by Ty. If 71(X, u) is a product
I'o x K, thenX splits (G modTI')-equivariantly asG/T" x N, whereri(N) = K

Proof. Let X be a regular covering space ¥fwith 71(X) = I'o. Recall that, by
Proposition 2.11, théG modTI")-action onX lifts to an injective(G modTI)-action
onX. By Proposition 2.12, théG modI™)-action onX and theG-action onX are
free. SinceG acts onX properly, we obtain a princip@-bundleG — X — W,
whereW = G\ X. SinceG is contractible, this bundle is trivial and so

X=GxW.
We now study how the grou, acts onG x W. Denote the points of
X =To\(G x W)
by (x, w), . ... Hence, by the projection,
X=GxW>(x,w) (x,w)eTo\(G x W) =
Recall how the evaluation homomorphism
evy: m(G/T(u), &) > m(Gw), u) —> my(X, u)
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was defined: ForanyeI'(u), pickapathg: (1,0,1) — (G, e, z). Then the path
g forms a loop inG/I" (1) based ag, and ev([g]) = [g(?) - u]. This shows that
theI'p-action moves only along the fibers of the princigafibrationG x W —
W, thatis,G x w maps to itself for every € W.
Furthermore, this action is properly discontinuous. ét= o\ ({e} x W).
Then, the assignment
w > (e, w)

is a continuous cross-sectionlg\(G x W) — W. By Lemma 2.7G/Z(G) —
G/Ng(T') is a covering map. Sinc® is simply connected, the may —
G/Ng(IN) lifts to a continuous mapy — G/Z(G). Furthermore, the projec-
tion G — G/Z(G) has a smooth cross-section beca#&&) is contractible.
Consequently, there is a continuous ngapV — G, making the diagram

w5 G

- l

W -5 G/Ne(I)
commutative. Then,
Gieouy = I w) ™

for all w € W. Therefore,

Geantuw = Geawyte.wy = EW) G emé(w) =T
This shows that, if we use the new cross-section

W ={Ew ™ w:weW)
for G x W — W, then, with respect to this new cross-section,
Gexy=T

for all w € W. From now on, we assume this equality holds.

We claim that the action dfp on G x W is via right translations on th&-factor.
We denote the action @fy C T by ©.

SinceG,,) = T, the G-action (left translations) o x {w} = G - (e, w)
moves this fiber onto itself, sending the poiat w) to a point inT" - (e, w). On
the other hand, the action 6f commutes with thé(G)-action (see Remark 2.1).
Moreover, as we have noteBy mapsG - (e, w) onto itself. SinceG - (e, w) ~
G/Go.wy = G/T C To\(G x W), we have

G/T = G/Ge,wy =T0o\G.
In fact, fory e I' C G, there exists a unigugy € I’y such that
y (e, w) =yo O (e, w)

for all w € W. Now,
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Yo O (x,w) =y0 0 (x - (e, w))
=x-(Yo® (e, w)) (sincel(G) andI'y commute)
=x-(y-(e,w)) (bythe previous equality)
= (xy, w).

Thus,yo: (x, w) — (xy, w). In other wordsy acts on the fibeG - (e, w) =
G x {w} as right multiplication by" C G.
We conclude that
To\(G x W) = (G/T) x W.

Remember that we are using a specific splitthig= G x W, so thatG, ,) =T
forallw e w.

Now we study howK acts onX. SinceK is G-equivariant, thek-action is
given by an injective homomorphism

(£, p): K —> M(W, G) x TOP(W) = TOP3(G x W).
It is easy to see that: K — M(W, G) satisfies the co-cycle condition
(kk'y = £ (k) - (€ (k') o p(k)™H).

Becausd'y x K is a direct productk commutes witly C r(G). This implies
that K commutes with the whole(G), by the ULIEP. The centralizer of(G)
in M(W, G) x TOP(W) is M(W, Z(G)) x TOP(W). This meang has values in
M (W, Z(G)). Consequently, we obtained a co-cycle

i K - MW, 2(G)).

Since the induced actiop of K on W is properly discontinuous, one can ap-
ply Lemma 2.16 and concludg(K; M(W, Z(G))) = 0. This implies that there
exists ax € M(W, Z(G)) such that

=2t =2t o pt™

forall k € K. Let (A, 1) denote the conjugation ki, 1) in TOPg(G x W). We
claim that: The new embedding

I'x K 225 MW, G) x TOPW) X2 MW, G) x TOP(W)

mapsK into {e} x TOP(W).
Forke K,

(. p)(k) = (£ (k), p(k))
=W Qoo pt)™), pk))
=L De pk) (A, D).
Thereforew (A, 1) o (¢, p)(k) = (e, p(k)). We have shown that
1w(x, 1) o (g, p)(K) C {e} x TOP(W).

Note thatu (A, 1) does not change tH&-factor of IT = 'y x K. More precisely,
yo € I'p € TT acts onG x W as aright translation on th@-factor and, since (w) €
Z(G) forallwe W, n(r, 1)(yo) = yo.
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Clearly, IT\(G x W) is homeomorphic ta (A, 1)(IT)\ (G x W) by the homeo-
morphism(2, 1) induced from the homeomaorphisgh, 1) onG x W. That s,

Gxw b G x W

l l

M\(G x W) > u(., HID\G x W)
is commutative.
Thus, if we alter the cross-sectionGfx W by

(e, w) = (M(w), w)

and usew (A, 1)(IT) instead off 1, thenz becomes the constant map with respect to
this new coordinate system. In other worfsis mapped into MW, G) x TOP(W)
in such a way that¢ (k), p(k)) = (e, p(k)), only into the TORW )-factor.

Recall that, forr‘o\f( = G/T" x W, we needed5 ,, =T forallwe W. The
change of cross-section Iy, w) — (A(w)~%, w) does not change the foregoing
necessary condition, because

G(k(w)*l.w) = G)»(w)*l(e,w) = )»(w)*lG@.w))»(w) = G(e,w)

sincer(w) € Z(G). Consequently, ourl = I'y x K maps into-(G) x TOP(W) C
M(W, G) x TOP(W) in such a way thaFg < r(G) andK — TOP(W). Note
thatr (G) x TOP(W) is a direct product, not a semidirect product, since TWPR
acts trivially onr(G). Thus,X = I\ X = (G/T") x (K\W) = (G/T) x N. O

CoroLLARY 2.18 (cf. [2, (3.1), p. 286]). SupposeX has a proper, injective
(G modI')-action. LetI" be the image of the evaluation map of tttemodTI’)-
action, and letK be a normal subgroup of1 such thatd =T x K C I1. Then
My, the covering space of with 71.(My) = H, (G modTI')-equivariantly splits
asMy = (G/T) x N, whereN = G\Myg hasmi(N) = K so that the lifted
G-action onMy is via left multiplication on the /TI"-factor.

3. Seifert Fiber Structures

In this section we show that the concepi{6fmodrI’)-action is the same as a cer-
tain Seifert fiber structure. Also, given a set of data, we shall construct a model
space with such a structure that turns out to be unique. This uniqueness is used in
the proof of the main splitting theorem (Theorem 4.3).

Recall from Lemma 2.14 that the group of &lfequivariant maps on the space
G x Wis TOPg(G x W) = M(W, G) x TOP(W). Consider a homomorphism
0: 11 — TOPg(G x W) that fits the following commutative diagram with exact
rows:

11— r — IT — (0] —> 1

L I L

1 — M(W,G) — TOPY(G x W) —> TOP(W) — 1,
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wherel’ — M(W, G) is throughr(G) and wherep: Q — TOP(W) is a properly
discontinuous action with/Q compact.

We call suchx = 6(IT)\(G x W) aG-equivariant injective Seifert fiber space
with G/I'-fiber. The spaceX has a “fibering structure” with singularities

G/T - X - Q\W.

The typical fiber is the homogeneous spéd’, and singular fibers are again ho-
mogeneous spaces that are finite quotients of the typical fiber. In general, there
may not be any typical fibers. In other words, all the fibers may be singular. If the
Q action onW is effective (i.e., ifp is injective) then we say that the Seifert fiber
space igffective.In this case, there are typical fibers.

In general, the action dfl may or may not be free. As an example, consider
the group

0 =7%x7yC R?x SO2)

generated by

(o )ls 2])- (51 <)) (GIs 2)

Let IT; andIl, be extensions df by Q, both embedded in the isometry group
E(3) of R as

=((lallg & o) (el 2 <))
(lls 3 < (ells =+ 2D
=((lalls 5 ) I 2 <)

(lls 3 < (sl = D)

=

= O

o

and sit inside
R! % Isom(R?) ¢ M(R?, R) x TOP(R?).

The groupll; is torsion free and acts dg&® freely, giving rise to a flat Riemannian
manifold. The second groupl,, has a torsion of order 2. Therefore, it does not
act freely. The orbit spad®®/I1, is topologicallyS? x $2, whereS? = R?/Q =
(R?/7?)/Z, is an orbifold obtained from the 2-torus by an involution.

Whené: my(X) — TOPg(G x W) gives a free action, the action is a covering
transformation since it is properly discontinuous. In this cake; m1(X).
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Even if W is a manifold, the spac@\W is an orbifold in general and is called
thebase spaceThe exact sequence2 I' — IT — Q — 1is called thehomo-
topy exact sequena@ssociated to th&-equivariant injective Seifert fiber space
with G/T'-fiber.

ReEMARK 3.1. Suppose such a homomorphignexists. Then the image(IT)
necessarily lies in the subgroup(M, Ns(I')) x TOP(W). This can be seen as
follows. Let (1, h) € M(W, G) x TOP(W) be an element of (IT). SinceTl is
normal inIT,

Az LD = (@ DL k) el

for all w € W andz € I'. This shows that (w) € Ng(T") for all w € W. In general,
a Seifert fiber space with fiber a double co-set spg@&/K is obtained by an ac-
tion of a group TOR x (G x W), the group of weakly(G)-equivariant homeo-
morphisms ofG x W that mapK-co-sets toK-co-sets. Withk = T" andA =
1 our group MW, Ng(I")) x TOP(W) certainly lies in TOR: k(G x W). Thus
a G-equivariant injective Seifert fiber space wittyI'-fiber is a special kind of
Seifert fiber space. See [14] for details.

THEOREM 3.2. A spaceX has a proper(resp. effectiveinjective (G modI')-
action if and only if it has aG-equivariant(resp. effectiveinjective Seifert fiber
structure withG/T"-fiber given by a free actioft: 71(X) — TOPg(G x W).

Proof. SupposeX has a proper injectivéG modI')-action. Therl" is normal in

I = m1(X), by Corollary 2.10. Form a regular covering spade of X with
m1(Mr) = I'. By Corollary 2.18, M (G modI')-equivariantly splits as/r =
(G/T) x W, whereW = G\ Mr is a simply connected space so that the lifted
G-action onMr is via left multiplication on theG/I'-factor. Thus the covering
action of [T commutes with (G) so that

1 c TOP2(G x W)

with T c r(G).

Now let 9 = I1/T. SinceQ acts on(G/T") x W as a covering transformation
and sinceG/T is compact, the induced action ¢f on W is properly discontin-
uous. Consequently¥ has an injectives-equivariant Seifert fiber structure with
G/I'-fiber. Sincell = m1(X) is a covering action, it is free.

Suppose théG modrI')-action is effective. Lel”” C IT be the kernel of the
compositell < TOP2(G x W) — TOP(W); that s,

I’ =T NMW,G).

We claim thatl'” = I'. Becausdl acts onX properly discontinuously” has fi-
nite index inT"’. Suppose. € '’ lies in M(W, G). ThenA? € T for somep € Z,
sayA? = z € I'. This meangi(w))? = z for everyw € W. SincegG is divisible,
there exists a uniquee G with a” = z. Thus,

AMw) =a



434 EuN Sook KaNG & KYUNG Bal LEE

for all w € W. This shows that. is a constant map and thBt = IT N r(G) and
hencel is a lattice ofG containingl. If I # I'’ then theG-action onX would
have stabilizers larger thdn Thereforel” = I'" = I1 N M(W, G). This implies
that theQ-action onW is effective.

Conversely, suppos# has an injectivaG-equivariant Seifert fiber structure
with G/T-fiber. This mean& = (G x W)/TI with [T € TOP2(G x W) andl’ C
r(G). Further assume théat acts freely so thalll = 71(X).

Denote the point corresponding @, w) € G x W by (a, w) € X. Suppose
{a, w) = {a’, w’). Then there existér, i) € IT such that

@, w) =, h)-(a w)
= (a - Mhw)™L, hw).

By Remark 3.11(hw) € Ng(TI') so thata = a'modNg(T"). Thusala™t =
a'T'a’ L. DefiningT" by
I'((a, w)) =ala™,

we obtain an injectivéG modI")-action onX.
Suppose the Seifert fiber space is effectlen M(W, G) = I Nr(G) =T.
Thus,
Gaw =ala™

In particular,G 1.,y = I'. Hence the inducedG modT)-action is effective. [

Lemma 3.3. Let X be aG-equivariant injective Seifert fiber space witlyT'-
fiber. Letl - I' - I = m1(X) — Q — 1be the associated homotopy exact
sequence. Then the extenslidns G-inner.

Proof. If the Seifert fiber space is effective then the result follows from Corollary
2.10 and Theorem 3.2.

Leto: IT — TOPg(G x W) be ahomomorphism yielding the Seifert fiber space
structure. By Remark 3.8,(IT) must have values in i#W, Ng(T")) x TOP(W).
Since W is connected)A (W) lies in one connected component. let IT and
() = (A, h) e M(W, Ng(I")) x TOP(W). Theni e M(W, a - Z(G)) for some
a € Ng(T), since(Ng(I')))o = Z(G). Therefore, forz € T,

(@D D= z- 2D = (aza™h D).

Thus, conjugation aofe I" by an elemem («) = (A, h) e M(W, Ng(T")) xTOP(W)
is the same as conjugationby Ng(T"). Consequentlyil — Aut(I") — Aut(G)
has image in In(G). O

THEOREM 3.4 (Existence and Uniqueness f@with ULIEP). LetW be a con-
nected space, and lgt Q — TOP(W) be a properly discontinuous effective ac-
tion. For everyG-inner extensiol — I' — II — Q — 1, there exists an
effectiveG-equivariant injective Seifert fiber space wity/ I'-fiber, 0: IT —
TOPg(G x W)—namely,[T\(G x W), a space with a proper and injective
(G modT)-action. Furthermore, with fixed: I" < r(G) andp, suchd is unique
up to conjugation by elements M (W, G).
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Proof. SinceG has the ULIEP, one can form an extensi@rso that

1— I' —II — Q0 — 1

Lk

1— r(G) P 0 1
is commutative. Sinc® — Out(G) is trivial, we have the trivial extensiai x Q.
Furthermore, the inclusio®(G) — M(W, Z(G)) induces a homomorphism
H2(Q: 2(G)) — H2(Q: M(W, Z(G))) sending F(G) x Q]to [M(W, G) x Q].
However, sinceHj(Q; M(W, Z(G))) is trivial by Lemma 2.16, every other exten-
sion (element of72(Q; Z(G))) must be mapped into W, G) x Q. In particular,
there is a homomorphis® — M(W, G) x Q, making the diagram

1— rG) — P — 0 — 1

L | l

1 — M(W,G) — TOPY(G x W) —s TOP(W) — 1
commutative. Combining these two diagrams, we obtian the desired homomor-
phismIT — TOP3(G x W).

We now prove the uniqueness statement. d,&t': T — TOPg(G x W) be
two suchG-equivariant Seifert fiber spaces witlyI'-fiber. They are related by

0'(a) = M) - O(a)
for somer: IT — M(W, G). It is easy to see that satisfies
AMapB) = A@) - 0(@)A(B)O()

for all o, B € 1. But, sinced = 6’ onT, A(z) = 1 for all z € I'. This implies
AMza) = A(az) = A(a). Consequently) factors throughQ. Furthermoref («)
andé’(«) induce the same automorphismsionTherefore, the differenck lies
in the centralizer of” in M(W, G), which is M(W, Z(G)). Thus,

A1 Q0 — M(W, Z2(G)) satisfyingr () = A(a) - 0(a@)A(B)0(a) 7L,
sothat. € Z;(Q; M (W, Z(G))). Notice thatQ actson MW, Z(G)) viap: Q —
TOP(W), namely,a - & = A o p(a)~". Now H}(Q: M(W, £(G))) = 0 (Lem-
ma 2.16) ensures that there existsmap € M(W, Z(G)) such thati(ax) =
mob (o) mob (o) ~L. This implies that’ = (mg, 1) - 0 - (mo, )~ O

CoroLLARY 3.5. Let G be a connected, simply connected, and commutative,
nilpotent, or(more generallysolvable Lie group of typ@R);letp: O — TOP(W)

be a properly discontinuous action. Then for a@yinner extensiod — I' —

I1 - Q — 1 there exists &'-equivariant injective Seifert fiber space with I"-
fibero: I — TOPg(G x W) that is unique up to conjugation by elements of
MW, G).

Proof. Itis known (see [6]) that such a Lie grodphas the ULIEP. Since the ex-
ponential map is a diffeomorphism, we can apply Theorem 3.4. O
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4. Splitting via (GmodTI')-Actions

Let X = ITI\(G x W) be G-equivariant injective Seifert fiber space wittyT-
fiber. The homotopy exact sequenceslI" — IT — Q — 1 associated with
the G-equivariant injective Seifert fiber space witlyI"-fiber is G-inner. For an
injective torus actiofT*, X), the exact sequence

1— m(T* = m(X) = 7(X) /7 (T — 1,

induced from the evaluation map, is automatically central and so is inner.

The condition for a torus actiofT*, X) to be homologically injective is equiv-
alent to the elementdy(X)] in H?(Q; Z*) having finite order [1]. Keep in mind
that the cohomology clasg{(X)] is represented by the extension sequenee 1
7Z¥ — m(X) - Q — 1 A normal subgroupd of C is said to behomolog-
ically injectivein C if the inclusion induces an injective homomorphism on the
first homology,H1(A; Z) — Hi(C; Z) or (equivalently) ifA N [C, C] = {1}.

A (G modI')-action onX is homologically injectivef the (G modI")-action
is injective and the exact sequence associated with the action is homologically
injective. See Definition 2.9.

Some part of the following is essentially proved in [2]; see also [13].

LemMmA 4.1[13]. Letl— Z — C — Q — 1be acentral extension, whegeis
a free abelian group of finite rank. Then the following are equivalent:

(i) [C] has finite order iInH?%(Q; Z);
(if) C contains a normal subgrou@’ suchthaZzNQ’'=1and® =C/(Zx Q')
is a finite abelian group
(ii) Z homologically injects inta.

LeEMMA 4.2. LetT be a group whose centeZ(TI) is a free abelian group of fi-
niterank. Letl — I — IT — Q — 1be an extension whose abstract kernel has
finite image. Then the following are equivalent

(1) [11] has finite order inH?(Q; Z(I"));

(2) TI contains a normal subgroup x Q' such thatd = IT1/(I" x Q') is afinite
group (if the extension is inner thed is abelian;

(3) Z(I") homologically injects int@ (T").

Proof. (1) & (3). Let P C Q be the kernel oD — Out(I"), and letlT’ C IT be
the preimage oP. SinceQ/P is finite, the homomorphisit: H?(Q, Z(I')) —
H?(P, Z(I")), induced by the inclusion: P — Q, has finite kernel. Therefore,
[IT] € H?(Q, Z(I")) has finite order if and only if[l'] € H?(P, Z(I")) has finite
order. Also, for statement (3), note th@g (I") = Cn/(I"). Therefore, in proving
(D © (3), itis enough to work witH1" instead ofl1. Hence, we assume that the
extensiont> I' — I[1 — Q — 1lisinner. Then

1-ZI) - Ch(l'N > Q0 —1
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is a central extension. The extensioff pnd [C (T")] are both classified by the
same cohomology grouff2(Q, Z(I")). Furthermore, since the abstract kernels
are trivial, there exist direct products that correspond to each other naturally. This
proves the equivalence of (1) and (3), using Lemma 4.1.

(1) = (2). The condition (1) implies that]y (I")] has finite order. By Lemma
4.1,C(T) contains a normal subgroXT") x Q' suchthatCy(I')/(Z(T") x Q7)
is a finite group. HowevelZ (T") x Q' may not be normal ifil. Let C’ be the in-
tersection of all conjugates &f(I") x Q' by elements of1. SinceC(I") is nor-
mal inIT and sinceZ(I") x Q' has finite index inCy (T"), there are only finitely
many conjugacy (by elements Bff) classes of2(I") x Q’. ThereforeC’ is nor-
mal inTT and has finite index i@’y (I'"). MoreoverC’ splits also, which we denote
by Z(I') x Q' again. Letll’ =T - Q’'sothatl- I' - IT" - Q' — lis ex-
act. Clearly, this splitsaB’ = I" x Q' and is normal i1, and we have thaf] :
M =[I:T-Cp(D)][T - Cu(T) : '] is finite. If the extension is inner, then
M=T.Cn()andl’ - Cy(I)/ITI'GCH(T)/Z(T) x Q' is abelian.

(2) = (3). Sincell/(T" x Q") is finite, Cn(I")/(Z(T") x Q') is finite. Now ap-
ply Lemma 4.1. O

THEOREM 4.3. The following are equivalent

(1) X admits a proper and homologically injectivé modI™)-action;

(2) X isaG-equivariantinjective Seifert fiber space withi ' -fiber such that the
center Z(I') homologically injects into the centralizer af in 71(X);

(3) X = (G/T") x¢ N, whered is a finite group that acts diagonally and freely
on the first factor as right translations ©f.

If one of these conditions holds, then fibers over the homogeneous space
(G/T")/® with fiberN.

Proof. For (1) < (2), we apply Theorem 3.2 and Lemma 4.2. In order to apply
Lemma 4.2, we need only verify that the extensieplI' — IT — Q — 1, com-

ing from the(G modTI’)-action on the injective Seifert fiber space, satisfies the con-
dition that the abstract kern€él — Out(I") have finite image. However, Corol-
lary 2.10 and Lemma 3.3 ensure that the extensiai-ianer. By Lemma 2.15,
the abstract kernel has finite image in both cases.

We now prove the equivalence of (2) and (3). Supp&sgatisfies the state-
ment (3). For brevity, lefll = 71(X), Q0 = II/T, and Q' = 71(N). Then
71((G/T) x N) =T x Q" andIT/(I" x Q') = &, afinite group. LetW be the
universal covering oV. ThenIT acts onG x W in such a way thaf acts only on
the G-factor as right translations ar@’ acts only on thév-factor. Furthermore,
since the quotient group acts on(G/I") x N diagonally, its lift toG x W will act
diagonally as well. This means th@tlies inr (G) x TOP(W) C TOPg(G x W),
yielding a structure o&-equivariant injective Seifert fiber space withy I"-fiber
on X. Now consider the associated homotopy exact sequeneell — 1 —

0 — 1 SinceQ’ commutes witl, 0 — Out(I") factors throughd and hence
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has finite image in OWr"). By the proof of(2) = (3) in Lemma 4.2, the center
Z(I') homologically injects intaC (I").

Conversely, supposéis aG-equivariant injective Seifert fiber space withiI"-
fiber satisfying (2). TherX = IM\(G x W), wherell ¢ TOP3(G x W), T C
IT N r(G), andI" is normal inI1. Furthermore the abstract kernel for the associ-
ated short exact sequencesl” — I1 — Q — 1 has finite image, as mentioned
before.

We can now apply the proof aBB) = (2) from Lemma 4.2. There is a nor-
mal subgroup?’ of IT such thatd = I1/(I" x Q') is a finite group. Thel’ =
[1/Q’ is a finite extension of the lattice. Sincew: I'' — Out(G) is trivial, the
extensiont> I' - I’ — ® — lisG-inner.

The embeddindgl C TOPg(G x W) from the Seifert fiber structure ¢f may
not have image im(G) x TOP(W). We construct a new homomorphisih —
r(G) x TOP(W) C TOP2(G x W) as follows. By the ULIEP, there existsfa
fitting the commutative diagram

1 r r’ P — 1

I

1—G — P — & — 1
Becauseb — Out(G) is trivial, there exists¢ x ®] € H?(®; Z(G)). However,
H?(®; Z(G)) = 0, sinced is a finite group. Henc® = G x ®. The composite
I' - G x ® — G is a homomorphisnil/Q’ — r(G) extendingl’ — r(G).
Thus, we have a homomorphisgh— r(G) x TOP(W) such thaf" c r(G) and
Q' Cc TOP(W).

We compare the original homomorphidm c TOPg(G x W) to the newly
constructed onél — r(G) x TOP(W) C TOPg(G x W). Both homomorphisms
induce the same homomorphismsI” < r(G) andp: Q — TOP(W). Sincel'
is normal inI1, the difference of these two homomorphisms lies in the centralizer
of r(I") inside M(W, G); that is, in MW, Z(G)). On the other hand, sincg&(G)
is connected HY(Q; M(W, Z(G))) is trivial by Lemma 2.16. By Theorem 3.4,
these two homomorphisms are conjugate to each other by an eleme@toidV.
Note that this conjugation is nothing but picking a new trivializatiorGok W.
Thus, we may assume our original homomorphi@m-> M(W, G) x TOP(W)
satisfies
(@) IT C r(G) x TOP(W),

(b) T Cc r(G), and

(c) Q' c TOP(W).

ThereforeI" acts only on the first facta, Q' acts only on the second fact@f,
and the finite grougb acts on the quotieniG/I") x (W/Q’) diagonally, as right
translations on the first factor. This prou& = (3) for Theorem 4.3.

Since theb-action on the first factor fG/I") x W is via right translations, itis
free. Consequentl¥ = (G/T") x¢ N fibers (without singularities) over the ho-
mogeneous spacé/I')/d with fiber N. This completes the proof. O
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In case the natural homomorphidm — Out(T") is trivial, ' ¢ Z(G) - T’ and

so the right translations of the action occur only through the center. Therefore,
the action of® on the first factor lies in the torus actic®(G)/Z (") of the homo-
geneous spac@/I". Notice that we generalized the theorem in [13, p. 411] from
nilpotent Lie groups to Lie groups with ULIEP and bijective exponential miip-

out the (redundant) condition th@@ — Out(T") have finite image. However, the
reader should realize the different settings: Barcts on the right, whereas in [13]

it acts on the left.

ExampLE 4.4. LetG be a 3-dimensional Heisenberg group—that is, the group
of all upper triangular matrices with diagonal entries 1. Consider

x=I1+E1 y=I1+E;3 z=1+E13€QaG,

where/ is the identity matrix andE; ; is a 3x 3 matrix whose(i, j)-entry is 1,
with O elsewhere. LeF be the lattice generated by, y, andz. Let N = Q'\H
be a hyperbolic surface of genus 2,86 Cc PSL(2, R) is a Fuchsian group. Let
® = Z, actonG/I" and onN as follows. Let the nontrivial generatore ® act
on the universal covering group level as (right) translationcbit also acts on
the surfaceV by a rotation by 180with two fixed points. The quotienb\N is a
torus with two singular points. Now the manifad = (G/T") xz, N has associ-
ated homotopy exact sequencesll’ — IT — Q — 1, whereQ = Q' x Z,.
Clearly,I’ x Q" is normal inIT and has index 2. The only torus action &his the
circle action ofZ(G)/Z(T). Itis also clear that

Z(T) = Z.

Eventhough,(Z(I"); Z) — Hi(Cr(I'); Z) is injective (and hence condition (2)
of Theorem 4.3 is satisfied{1(Z(I"); Z) — Hy(I1; Z) is not injective. There-
fore, the circle action o/ is not homologically injective. This is obvious be-
cause the centef cannot be separated evenlinin other words, - Z(T") —
I' - 7Z? — 1represents an element of infinite ordetH’(Z?; 7).
Consequently,Il] € H?(Q; Z(I")) has infinite order. This shows that there
is no way of splitting off this circle using the action &(G)/Z(I"). From the
construction of the manifold/, there is a splitting o as(G/I") xz, N. The
G-equivariant injective Seifert fiber space with/ I"-fiber

G/T > M — ®\N

has two singular points, which are the fixed points of the actichofi N. The sin-
gular fibers are nilmanifoldéG/I")/®. Note that the extensiondt I' — IT —
0 — 1lis notinner, but just-inner, and hence th#, action onG/T" is not in the
torus action. Also, the action @&, on G/T lifts to a new latticel"’ = (x, y, z),
andM has a genuine fibration structure

N— M — G/T,
whereG/T" is a nilmanifold doubly covered b§ /T.
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