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1. Introduction

1.1. The Classical Green Function

We define the fundamental solution for the Laplacian inRN as

p(x) =
{

log|x| if N = 2,

−|x|2−N if N ≥ 3.

Let� be a bounded domain inRN with Lipschitz boundary, and fixy ∈�. Then
� is regular for the Dirichlet problem{ 4u(x) = 0 in �,

u(x) = −p(x − y) on ∂�;
that is, there is a functionhy(x), continuous on̄�, that solves this problem. Define

G(x, y) = p(x − y)+ hy(x).
This is theclassical Green functionfor the Laplacian, with pole aty. It is negative
and subharmonic in�, harmonic in� \ {y}, and tends to zero on∂�. Neary, it
behaves likep(x − y). Furthermore, it is symmetric, that is,G(y, x) = G(x, y).

Let U(�, y) be the class of subharmonic functionsu in � such thatu(ζ) ≤
p(ζ − y)+O(1) whenζ → y. Then, using the classical Perron method, one can
easily see that

G(x, y) = sup{u(x); u∈U(�, y), u ≤ 0}.
Remark. In most texts, the Green function is defined to be thenegativeof our
Green function.

1.2. The Pluricomplex Green Function

Let� be a bounded domain inCn. Let V(�, y) be the class of plurisubharmonic
functionsu in� such thatu(ζ) ≤ log|ζ − y| +O(1) whenζ → y.We define the
pluricomplex Green functionfor � with pole iny ∈�:

g(x, y) = sup{v(x); v ∈V(�, y), v ≤ 0}.
The definition is due to Klimek [K2].
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The functionx 7→ g(x, y) is continuous in� \ {y} if � is hyperconvex,which
means that there exists a continuous, negative plurisubharmonic functionρ such
that {z ∈ �; ρ(z) < c} is relatively compact in� for all c < 0. For example,
a strictly convex set—or, more generally, a strictly pseudoconvex set (withC2

boundary)—is always hyperconvex.
The functionx 7→ g(x, y) is a negative plurisubharmonic function that is max-

imal (see [K1]) in� \ {y}. It tends to zero on the boundary if and only if� is
hyperconvex. Neary, it behaves like log|x − y|.

It is not true in general thatg(x, y) = g(y, x) [BD]. However, the pluricomplex
Green function is symmetric if� is strictly convex [L].

1.3. The Quotient

In this paper, we study the quotienth(x, y) = g(x, y)/G(x, y) of the two Green
functions. We letN = 2n, and will always assume thatn ≥ 2 (n = 1 is trivial).
The functionh can be extended to a nonnegative continuous function in� × �,
sinceh(x, y)→ 0 whenx, y → ζ ∈�. The question is: When ish bounded in
�×�?

The case of the unit ball was treated in [C2], where it was shown thath is
bounded by the constant 22n−3/(n− 1) and that this constant is the best possible.
In this paper we prove boundedness in strictly pseudoconvex domains (Sections
2–4). In fact, we have the following theorem.

Theorem 1. Let � be a bounded, strictly pseudoconvex domain inCn. Then
there is a constantC = C(�) > 0 such that

0 ≤ h(x, y) = g(x, y)

G(x, y)
≤ C|x − y|2n−4

for all x, y ∈�. In particular, the quotient is bounded.

It is obvious that hyperconvexity is a necessary condition for boundedness. How-
ever, it is not sufficient. In Section 5 we give a counterexample—namely, the
bidisc inC2, which has only Lipschitz boundary.

For the purpose of proving Theorem 1, we show an estimate for the pluricom-
plex Green function (Theorem 3). Some results of this paper can also be found
in [C1].

Remark. It is also natural to considerx 7→1/h(x, y), for a fixedpoley.Let�be
bounded, withC2 boundary. Then a classical lemma, due to Keldysh, Lavrent’ev,
and Hopf (see [P]), states that−g(x, y) > Cδ(x) for some constantC = C(y),
whereδ(x) is the distance fromx to the boundary of�. Combining this with
well-known estimates forG(x, y) (e.g., (3) in Section 3), we conclude thatx 7→
1/h(x, y) is bounded near∂�.

Acknowledgment. The author would like to thank Prof. Urban Cegrell for his
continuous encouragement and Peter Carlsson for making the figure.
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2. Some Estimates for the Classical Green Function

Let� be a bounded domain inRN, N ≥ 3, with C2 boundary. Letδ(ξ) = δ�(ξ)
denote the distance fromξ to the boundary of�. We adopt the convention that
C is a uniform positive constant that may change in value from line to line. To
prove boundedness forh, we need an estimate ofG(x, y) away from zero. Such
an estimate was proved (forC1,1 domains) by Zhao in 1986 [Z].

Theorem 2 [Z]. The following inequalities hold forx, y ∈�:

−G(x, y) ≥ C

|x − y|N−2
if |x − y| ≤ max

(
δ(x)

2
,
δ(y)

2

)
; (1)

−G(x, y) ≥ Cδ(x)δ(y)|x − y|N if |x − y| > max

(
δ(x)

2
,
δ(y)

2

)
. (2)

Inequality (2) is also proved in [C3], using a different method. In addition, that
paper contains sharper estimates in two special cases.

3. An Estimate for the Pluricomplex Green Function
in Strictly Pseudoconvex Domains

We define strictly convex and strictly pseudoconvex domains in the standard way
(see [Kr]). In particular, these domains haveC2 boundary. The main result of this
section is the following estimate.

Theorem 3. Let � ⊂ Cn be a bounded, strictly pseudoconvex domain. Then
there exists a constantC = C(�) > 0 such that

−g(x, y) ≤ C δ(x)δ(y)|x − y|4
for all x, y ∈�.
The following similar estimate for the classical Green function,

−G(x, y) ≤ C δ(x)δ(y)|x − y|N , (3)

was proved in [Ke] and can also be found in [Kr, pp. 324–331]. We will use some
ideas and notation from these sources in this section.

Lemma 4. Let� be a bounded domain inRN, N ≥ 2, withC2 boundary. Then
there exists anη, 0< η < diam(�)/2, such that:

(1) for eachy ∈ ∂� there exist ballsB(zy, η) ⊂ � andB̃(z̃y, η) ⊂ �c that satisfy

B̄(zy, η) ∩�c = {y} and ¯̃B(z̃y, η) ∩ �̄ = {y}.
(2) for each pointξ in U = {ξ ∈�; δ(ξ) < η} there is a unique nearest pointπξ

in ∂�, and ξ − πξ is an inner normal to the boundary atπξ.
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Proof. The idea is to apply the inverse function theorem to the mapping

∂�× (−1,1)→ RN,

(ζ, t) 7→ ζ + tνζ ,
whereνζ is the outer unit normal atζ. See [Kr, p. 325].

Remark. It follows from the proof of Lemma 4 that the mappingx 7→ πx isC1

in Ū .

Lemma 5. For � = B(0, R) there is a constantC > 0 (depending on the di-
mension only), such that

−gB(0,R)(x, y) ≤ C Rδ(y)

|x − y|2 .

Proof. The pluricomplex Green function for the ballB(0, R) is

g(x, y) = log|Ty/R(x/R)|,
whereTa denotes the Möbius transformation mappinga onto the origin. Explicitly,

Ta(x) = a − Pa(x)−
√

1− |a|2Qa(x)

1− 〈x, a〉 ,

where

〈x, y〉 =
n∑
i=1

xi ȳi

and

Pa(x) = 〈x, a〉〈a, a〉 a,Qa(x) = x − Pa(x).

(See [K1, p. 148, p. 224].) Because both sides of the inequality are invariant under
the dilationx 7→ x/R, we can takeR = 1. Furthermore, since they are invariant
under rotations, we may assume thaty = (t,0, . . . ,0) wheret ∈R+. Then

−g(x, y) = 1

2
log

|1− tx1|2
|t − x1|2 + q(1− t2)

= 1

2
log

(
1+ (1− |x1|2 − q)(1− t 2)

|t − x1|2 + q(1− t2)
)

≤ 1

2

(1− |x1|2 − q)(1− t 2)
|t − x1|2 + q(1− t2) ,

whereq = |x2|2 + · · · + |xn|2. Hence

−g(x, y)|x − y|2
δ(y)

≤ (1− |x1|2)(|t − x1|2 + q)
|t − x1|2 + q(1− t2) .



Comparison of the Pluricomplex and the Classical Green Functions 403

For fixed t andx1 this is an increasing function ofq, as can easily be seen by
differentiation. Becauseq < 1− |x1|2, we obtain

−g(x, y)|x − y|2
δ(y)

≤ (1− |x1|2)(|t − x1|2 + 1− |x1|2)
|t − x1|2 + (1− |x1|2)(1− t 2)

= (1− |x1|2)
(

1+ t
2(1− |x1|2)
|1− tx1|2

)
≤ 1+ 4

(
1− |x1|
|1− tx1|

)2

.

Since|1− tx1| ≥ 1− t |x1| ≥ 1− |x1|, the lemma is proved.

Lemma 6. Let� be a bounded, strictly convex domain inCn. Then there exists
a constantC > 0 such that

−g�(x, y) ≤ C δ(y)

|x − y|2 .

Proof. There is a positive numberR with the following property: For each point
ξ ∈ ∂� we can find a ballBξ, with radiusR, that is tangent to� atξ and such that
� ⊂ Bξ . Use Lemma 4 to produce a neigborhoodU. Then, for eachy ∈U ∩ �,
we use the ballBπy. From the definition of the pluricomplex Green function, note
that if�1⊂ �2 theng�1(x, y) ≥ g2(x, y). According to Lemma 5, we then have

−g�(x, y) ≤ −gBR(x, y) ≤ C
δBR(y)

|x − y|2 .

But, asδBR(y) = δ�(y), the lemma follows wheny ∈U ∩�. Fory ∈� \U, the
lemma is obvious.

Lemma 7. Theorem 3 is true if� is strictly convex.

Proof. Let α > 0 and letTα be the half-ballB(0, α) ∩ {Im zn < 0}. LetHα(z) =
Im zn/α

2. Hα is a pluriharmonic function, negative inTα. If x̃ ∈ ∂�, rotate and
translateTα such that 0 is sent tõx, the flat part of the boundary is tangent to� at
ỹ, and the rest of the boundary is partly inside�. We call the resulting half-ball
T ∗α and the corresponding functionH ∗α . Let τ = {z ∈ T ∗α ; |z − x̃| = α} ∩�; see
Figure 1.

Figure 1
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Let R be the greatest radius of curvature of∂�. ThenH ∗α (z) ≤ −1/(2R) if
z ∈ τ, since in the worst case the portion of∂� insideT ∗α is a portion of a sphere
with radiusR. The estimate follows by an elementary calculation. Note that the
estimate is independent ofx̃.

Letη be the constant given by Lemma 4, and setD = diam(�).Recall that 0<
η < D/2. If δ(x) ≥ η|x − y|/(2D) then, according to Lemma 6,

−g(x, y)|x − y|4
δ(x)δ(y)

≤ C |x − y|2
η|x − y|/(2D) ≤ C

and we are done. Ifδ(x) < η|x− y|/(2D) then there is a unique nearest pointπx

at ∂�, according to Lemma 4. Letα = η|x − y|/D < |x − y|/2, and construct
T ∗α and the corresponding functionH ∗α at x̃ = πx. Note that:

(1) x ∈ T ∗α ∩�, sinceδ(x) < α/2; and
(2) y /∈ T ∗α ∩�, since

|πx − y| ≥ |y − x| − |x − πx| = |y − x| − δ(x)
> |y − x|(1− η/(2D)) > 3

4|y − x| > α.

Assumet ∈ τ. Then

|y − t | ≥ |x − y| − |x − t | ≥ |x − y| − (|x − πx| + |πx − t |)
= |x − y| − (δ(x)+ α) > |x − y| − 3α/2

= |x − y|(1− 3η/(2D)) > 1
4|x − y|.

Hence, using Lemma 6,

−g(t, y) ≤ C|t − y|−2δ(y) ≤ C|x − y|−2δ(y).

Since−2RH ∗α (t) ≥ 1, we have

g(t, y) ≥ 2CR|x − y|−2δ(y)H ∗α (t) ≥ C|x − y|−2δ(y)H ∗α (t) (4)

for all t ∈τ. The same inequality holds trivially fort ∈∂� ∩ T ∗α , sinceg(t, y) = 0
there. Hence it holds for allt ∈ ∂(�∩T ∗α ). Becauseg(t, y) is a maximal plurisub-
harmonic function oft in �∩ T ∗α andC|x − y|−2δ(y)H ∗α (t) is plurisubharmonic
as a function oft (in fact, it is pluriharmonic), the inequality (4) holds true in
� ∩ T ∗α . In particular, it holds fort = x:

g(x, y) ≥ C|x − y|−2δ(y)H ∗α (x)

≥ C|x − y|−2δ(y)
−δ(x)
α2
≥ −C|x − y|−4δ(x)δ(y)

and the lemma is proved.

Remark. The estimate in the lemma is sharp in the sense that no similar inequal-
ity can hold with a smaller exponent than 4 in the denominator. This can be seen
from the example� = B(0,1) ⊂ C2, y = (t,0), x = (t,√1− t ), t ∈R+.
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In proving the general case, we will use the following embedding theorem. It is a
special case of a theorem due to Fornaess.

Theorem 8 [F]. Let� be a bounded, strictly pseudoconvex domain inCn. Then
there exist a holomorphic mapψ : Cn → Cm for somem ∈ Z+ and a strictly
convex, bounded domain̂� in Cm such that

(1) ψ is biholomorphic onto a closed subvariety ofCm,

(2) ψ(�) ⊂ �̂ andψ(∂�) ⊂ ∂�̂, and
(3) ψ(Cn) intersects∂�̂ transversally.

We remark that, in general,m is much larger thann.

Proof of Theorem 3.It follows from the definition of the pluricomplex Green
function that iff : �1→ �2 is a holomorphic mapping then

g�1(x, y) ≥ g�2(f(x), f(y)).

We apply this toψ from the preceding theorem, and use Lemma 7. We obtain

−g�(x, y) ≤ −g�̂(ψ(x), ψ(y)) ≤ C
δ�̂(ψ(x))δ�̂(ψ(y))

|ψ(x)− ψ(y)|4 .

Sinceψ is biholomorphic onto its image in a neigborhood of�, there is a constant
A > 1 such that

1

A
<
|ψ(x)− ψ(y)|
|x − y| < A

for all x, y ∈ �̄. Furthermore, for allx ∈ U ∩ � (for the notation, cf. Lemma 4),
we have

δ�̂(ψ(x)) ≤ |ψ(x)− ψ(πx)| < C|x − πx| = Cδ(x).
For x ∈ � \ U we haveδ(x) ≥ η, and hence (by increasingC if necessary) the
same estimate holds. Putting everything together, we obtain

−g�(x, y) ≤ C
δ(x)δ(y)

|x − y|4 ,
as desired.

4. Proof of the Main Theorem

Proof of Theorem 1.There are two cases. (i) When

|x − y| ≤ max

(
δ(x)

2
,
δ(y)

2

)
,

we use inequality (1) of Theorem 2 together with the trivial estimate

−g(x, y) ≤ C

|x − y| .
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(ii) When

|x − y| > max

(
δ(x)

2
,
δ(y)

2

)
,

we use Theorem 2, (2), and Theorem 3.

5. The Quotient in the Bidisc

In the bidisc inC2, the pluricomplex and the classical Green functions cannot be
compared, even when the pole is fixed. The quotienth will tend to infinity when
z approaches a point at the distinguished boundary. To show this, we need the
following “boundary Harnack inequality”.

Theorem 9 [W]. SupposeD is a Lipschitz domain,P0 is a point inD,E is a rel-
atively open set on∂D, andS is a subdomain ofD satisfying∂S ∩ ∂D ⊆ E. Then
there is a constantC such that, wheneveru1 andu2 are two positive harmonic
functions inD vanishing onE and u1(P0) = u2(P0), it follows thatu1(P ) ≤
Cu2(P ) for all P ∈ S.
Theorem 10. In the bidisc inC2, h(z,0) is unbounded.

Proof. Let

D = {z = (z1, z2)∈C2; 1/3< |z1| < 1, 1/3< |z2| < 1},
E = {z = (z1, z2)∈ ∂D; |z1| = 1 or |z2| = 1},

S = {z = (z1, z2)∈C2; 2/3< |z1| < 1, 2/3< |z2| < 1}.
ThenD, E, andS fulfill the conditions of Theorem 9.

LetG(z,0) be the classical Green function for the bidisc with pole in the origin,
and let−u1(z) be its restriction toD. Define

u2(z) = k(log|z1|)(log|z2|),
wherek is chosen so thatu1(1/2,1/2) = u2(1/2,1/2). Thenu1 andu2 are as in
Theorem 9, and henceu1(z)/u2(z) ≤ C for all z∈ S.

The pluricomplex Green function for the bidisc with pole in the origin is

g(z,0) = max{log|z1|, log|z2|}.
Thus

g(z,0)

G(z,0)
= −g(z,0)

u1(z)
= −g(z,0)

u2(z)

u2(z)

u1(z)
≥ −max{log|z1|, log|z2|}

Ck(log|z1|)(log|z2|)
for all z∈ S. Let z1= z2 = t ∈R+. Then

g((t, t),0)

G((t, t),0)
≥ − log t

Ck(log t)2
→+∞

whent tends to 1.
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