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1. Introduction

LetK be a compact connected semisimple Lie group, letG be its complexifica-
tion, and letG = KAN be an Iwasawa decomposition. LetT be the centralizer
of A in K, so thatH = TA is a Cartan subgroup ofG. SinceG andN are com-
plex,G/N is a complex manifold. Besides the leftG-action onG/N, there is also
a rightH-action becauseH normalizesN.

In [10], Schwarz suggests the following scheme of geometric quantization on
the spaceG/N : EquipG/N with aK-invariant Kähler structureω, and consider
the corresponding prequantum line bundleL [6; 9]. Namely, the Chern class of
L is the cohomology class [ω], andL has a connection∇ whose curvature isω.
In fact, we shall see that ifω is Kähler then it is exact, soL is just a trivial bun-
dle. However, the geometry arising from the connection is interesting. Given a
sections of L , we say thats is holomorphic if∇ξ s = 0 for every antiholomorphic
vector fieldξ. LetH(L) denote the holomorphic sections ofL . TheK-action on
G/N lifts to aK-representation onH(L). Let k be the Lie algebra ofK. Then the
infinitesimal representation onH(L) is given by

ξ · s = ∇ξ] s +
√−1φξs, ξ ∈ k, s ∈H(L) (1.1)

[6, (3.1)], whereξ] is the infinitesimal vector field onG/N induced by the left
K-action andξ 7→ φξ is the moment mapk −→ C∞(G/N ) corresponding to the
K-action preservingω. Note that the moment map exists, sinceK is semisimple
[7]. A K-invariant Kähler structure onG/N has potential function if and only if it
is invariant under the rightT-action [3]. In joint work with Guillemin [4], we carry
out the foregoing construction for such Kähler structures and prove the following
theorem.

Theorem. Let ω be aK-invariant Kähler structure onG/N. If it is right T-
invariant, thenH(L) contains every finite-dimensional irreducibleK-representa-
tion with multiplicity1.

Such a representation is called amodelif it is equipped with a unitary structure—a
term due to Gelfand and Zelevinski [5]. The preceding theorem is an analog of
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the Borel–Weil theorem [1], and holds even whenω is not positive definite. The
main result of this paper is a converse to the previous theorem.

Theorem 1. Let ω be aK-invariant Kähler structure onG/N. If it is not right
T-invariant, thenH(L) = 0.

Hence, for aK-invariant Kähler structureω, the multiplicity-freeK-spaceH(L)
occurs on two extremes. Namely,H(L) is either zero or contains every finite-
dimensional irreducibleK-representation, depending on whetherω is invariant
under the rightT-action (or equivalently whetherω has potential function).

A partial result of Theorem 1 is obtained in [3]. There, we show that ifω has
no potential function then the trivialK-representation is missing inH(L).

In Section 2, we review some results from [3] and [4] that will be needed in
later sections. In Section 3, we construct an example whereK = SU(2) and a
Kähler structure onG/N whose prequantum line bundle has no holomorphic sec-
tion other than the zero section. In Section 4, we use this example to prove The-
orem 1 for the case whereK has rank 1; in Section 5 we prove Theorem 1 forK

of higher rank.

Acknowledgment. The author would like to thank So-Chin Chen, Victor Guil-
lemin, and David Vogan for many helpful suggestions.

2. Preliminaries

In this section, we recall some results in [3] and [4] that will be needed later. Recall
thatG = KAN is the Iwasawa decomposition and thatH = TA a Cartan subgroup
of G. Let g, k, a, n, t, h be the Lie algebras ofG,K,A,N, T,H respectively.

Letn be the rank ofK, and letλ1, . . . , λn ∈ h∗ be the positive simple roots. Let
C× be the multiplicative group of nonzero complex numbers, so thatχi : H →
C× is the character corresponding toλi. Thus exp(λi, v) = χi(expv) for all v ∈
h. Given aK-invariant Kähler structureω onG/N, it can be written as

ω = √−1∂∂̄F +
n∑
1

ωi

= √−1∂∂̄F +
n∑
1

(∂αi + ∂̄ ᾱi ). (2.1)

This structure satisfies the following:
√−1∂∂̄F is K × T-invariant and Kähler;

and, fori = 1, . . . , n, eachωi = ∂αi + ∂̄ ᾱi is aK-invariant(1,1)-form. Also,
ωi is not rightT-invariant and has no potential function unless it vanishes. In par-
ticular, forω to be rightT-invariant or to have potential function, a necessary and
sufficient condition is that all theωi vanish. Eachαi is a(0,1)-form with ∂̄αi =
0. In [3] we show thatαi transforms by the characterχi under the rightT-action.
This means that, for allt ∈ T and its right actionRt,

R∗t αi = χi(t)αi.
We shall see thatαi also transforms byχi under the rightA-action.
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The possible values of eachαi is 1-dimensional in the sense that, if

ω ′ = √−1∂∂̄F ′ +
n∑
1

(∂α ′i + ∂̄ ᾱ ′i )

is another Kähler form, thenaiαi+biα ′i = 0 for someai, bi ∈C. This result holds
even whenω is merely a closedK-invariant real(1,1)-form, which may not be
positive-definite.

Since the possible values ofαi in (2.1) are 1-dimensional based onω, we can
find out more aboutαi. BecauseK is compact semisimple, the Killing form onk
is negative-definite. LetV ⊂ k be the orthocomplement oft ⊂ k with respect to
the Killing form. Thus we have a vector space direct sum

k = t+V. (2.2)

The real vector spaceV has dimension 2m, wherem is the number of positive
roots ofG. SinceG is semisimple,n ≤ m. We may arrange the positive roots
λ1, . . . , λm so that the firstn of them are simple. There exists a basis ofV [8,
p. 421],

ζ1, γ1, . . . , ζm, γm ∈V, (2.3)

such that, for allξ ∈ t,

[ξ, ζi ] = −
√−1(λi, ξ)γi, [ξ, γi ] =

√−1(λi, ξ)ζi . (2.4)

Further, up to a constant scalar, [ζi, γi ] ∈ t is dual to the restricted rootλi ∈ t∗ via
the Killing form. Let{ζ ∗i , γ ∗i } ⊂ V ∗ be the dual basis of (2.3), which we extend to
{ζ ∗i , γ ∗i } ⊂ k∗ by annihilatingt. The Iwasawa decomposition allows us to imbed
V into g/n as a complex subspace via

V ↪→ k ↪→ k+ a = g/n.

In fact, the almost-complex structure ofg/n sendsζi to γi and sendsγi to−ζi . It
follows thatζ ∗i −

√−1γ ∗i ∈∧0,1(g/n)∗. By Iwasawa,G/N = KA, soK ×A acts
transitively onG/N. Therefore, we may identifyζ ∗i , γ

∗
i with theK ×A-invariant

1-forms whose values ate ∈G/N are exactlyζ ∗i , γ
∗
i .Heree ∈G/N = KA denotes

the Cartesian product of identity elements ofK,A.

Consider theK × A-invariant(0,1)-form

vi = ζ ∗i −
√−1γ ∗i (2.5)

onG/N. From (2.4) we have that, for allξ ∈ t,

ad ∗ξ ζ
∗
i = −

√−1(λi, ξ)γ
∗
i , ad ∗ξ γ

∗
i =
√−1(λi, ξ)ζ

∗
i .

This means thatvi of (2.5) satisfies

ad ∗ξ vi = (λi, ξ)vi (2.6)

for all ξ ∈ t. Let t ∈ T, and letLt, Rt denote (respectively) its left and right actions.
In particular, the(0,1)-form vi is left T-invariant, so (2.6) means that

R∗t vi = L∗t R∗t vi = Ad ∗t vi = χi(t)vi .
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There exists a uniquefi ∈ C∞(A), which can be identified with aK-invariant
function onG/N, so that

fivi = αi.
SinceG/N = KA, such anfi is automatically rightT-invariant. On the other
hand, in the construction offivi = αi [3, Prop. 2.2] we see that, up to a nonzero
scalar,fi is given byfi(ka) = χi(a)−1 for all ka ∈ KA = G/N. Thusfi trans-
forms byχi under the rightA-action. From the behaviors offi andvi under the
right actions ofT andA, we obtain the following result forαi = fivi .
Proposition 2.1. For i = 1, . . . , n, αi of (2.1) is aK-invariant (0,1)-form that
transforms byχi : H → C× under the rightH-action. Namely,R∗hαi = χi(h)αi
for all right H-actions ofh∈H. Its value ate ∈G/N is c(ζ ∗i −

√−1γ ∗i ) for some
c ∈C.

It can be checked from (2.1) thatω is exact, though this also follows from the
Whitehead lemma [7, p. 417]:

H 2(G/N,R) = H 2(KA,R) = H 2(K,R) = H 2(k) = 0.

Therefore, sinceω is closed, it must be exact.

3. Example

In this section we construct an example of a Kähler structureω onG/N, where
G = SL(2,C), such that its prequantum line bundleL has no global holomorphic
section other than the zero section. In later sections, our proof of Theorem 1 for
arbitraryω onG/N is based on this example.

Throughout this section, letC2
0 denoteC2 with origin removed. For our exam-

ple, letK = SU(2) andG = SL(2,C). Recall thatG = KAN is the Iwasawa
decomposition,T is the centralizer ofA in K, andH = TA is a Cartan subgroup
of G. In this case, we can haveT,A,H to be diagonal matrices given by

T = {diag(e
√−1θ , e−

√−1θ )}, A = {diag(r, r−1); 0< r ∈R},
H = {diag(z, z−1); 0 6= z∈C}.

(3.1)

Also, N is the complex upper triangular 2× 2 matrix with 1 along the diago-
nal. ConsiderG acting onC2 in the standard manner. TheG-orbit of the vector
(1,0) ∈ C2 is C2

0. The isotropy subgroup of(1,0) is N, soG/N = C2
0. In fact,

sinceK = SU(2) = S3 andA = R+ as manifolds, the polar coordinatesC2
0 =

S3× R+ is just the Iwasawa decompositionG/N = KA.
Let (z, u) be the standard coordinates onC2

0, and letr denote the length function

r = (zz̄+ uū)1/2.

Fix a nonzero constantc ∈C, and consider the(1,1)-formω onC2
0 defined by

α = c

r 4
(z̄ dū− ū dz̄), ω = ∂α + ∂̄ ᾱ. (3.2)

Note thatc/r4 is well-defined, for we ignore the origin here.
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Proposition 3.1. The(1,1)-formω in (3.2) is SU(2)-invariant and closed.

Proof. We first check thatα in (3.2) is SU(2)-invariant, and this will imply that
ω is also SU(2)-invariant. Because the functionc/r4 is clearly SU(2)-invariant,
it suffices to check̄z dū− ū dz̄. Pick

k =
(
a b

−b̄ ā

)
∈SU(2)

satisfyingaā + bb̄ = 1, and letLk denote the left action byk. Then

L∗k(z̄ dū− ū dz̄) = (L∗k z̄)(L∗k dū)− (L∗kū)(L∗k dz̄)
= (āz̄+ b̄ū)(−b dz̄+ a dū)− (−bz̄+ aū)(ā dz̄+ b̄ dū)
= −ū dz̄+ z̄ dū.

It follows thatα is SU(2)-invariant, and so isω.
To check thatω is closed, we note that

1

c
∂̄α = ∂̄(zz̄+ uū)−2 ∧ (z̄ dū− ū dz̄)+ (zz̄+ uū)−2 ∂̄(z̄ dū− ū dz̄)
= −2(zz̄+ uū)−3(z dz̄+ u dū) ∧ (z̄ dū− ū dz̄)+ 2(zz̄+ uū)−2dz̄ ∧ dū
= 0.

Hence∂̄α = ∂ᾱ = 0 and so

dω = d(∂α + ∂̄ ᾱ) = (∂ + ∂̄)(∂α + ∂̄ ᾱ) = 0.

This proves the proposition.

Let L be the prequantum line bundle associated toω of (3.2). Namely, the Chern
class ofL is the cohomology class [ω], andL is equipped with a connection∇
whose curvature isω. Sinceω is exact,L is a trivial bundle. Given a sections,
we say thats is holomorphicif ∇ξ s = 0 for every antiholomorphic vector fieldξ.
We claim that, forω of (3.2),L has no global holomorphic section other than the
zero section. Suppose otherwise; letH(L) 6= 0 be the space of its holomorphic
sections. TheK-action onG/N lifts to aK-representation onH(L). Let C× be
the multiplicative group of nonzero complex numbers. Recall that the Cartan sub-
group ofG isH = TA, whereH ∼= C× by (3.1). Leth be its Lie algebra. Pick a
nonzero elements of the weight space

H(L)λ = {s ∈H(L); ξ · s = λ(ξ)s for all ξ ∈ h}, (3.3)

whereλ ∈ h∗. For ξ ∈ t, ξ · s in (3.3) is the infinitesimal representation arising
from the group action and is given in (1.1). Sincea = √−1t, if ξ ∈ t then [6,
(5.2)] η = √−1ξ ∈ a acts ons in (3.3) byη · s = √−1(ξ · s).

From the section 06= s ∈H(L)λ, we define the domainD = Ds by

D = {p ∈C2
0; sp 6= 0}. (3.4)

LetZ andU be thez- andu-axes onC2
0, respectively:
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Z = {(z,0)∈C2
0}, U = {(0, u)∈C2

0}. (3.5)

Becauses is nonzero and holomorphic,D is a dense open set inC2
0. Choosing an-

other weight space or holomorphic section if necessary, we may assume thatD

intersectsZ andU. Let χ : H → C× be the character corresponding toλ ∈ h∗,
and letL∗h be the representation arising from the left action ofh∈H. SinceL∗hs =
χ(h)s, if O ⊂ C2 is anH-orbit then

O ∩D = ∅ or O ⊂ D. (3.6)

SinceZ andU areH-orbits that intersectD, it follows thatZ,U ⊂ D.
Proposition 3.2. Suppose that0 6= s ∈H(L)λ, and that the domainD defined
in (3.4) intersectsZ andU. Then there exists a neighborhoodB of the origin such
that (B\{0}) ⊂ D.
Proof. Suppose otherwise, so that the origin is a limit point ofC2

0\D. There exists
a sequence{(zi, ui)} ⊂ C2

0\D that converges to the origin. SinceZ,U ⊂ D, we
have(zi, ui) /∈ (Z ∪ U) and thereforezi, ui 6= 0. By (3.1), we obtainhi ∈H by
hi = diag(ui, u

−1
i ). Because(zi, ui) /∈D, (3.6) implies thathi(zi, ui) /∈D.

On the other hand, since(zi, ui) converges to the origin, the sequence{ziui} ⊂
C converges to 0. It follows that the sequence{hi(zi, ui) = (ziui,1)}, not con-
tained inD, converges to(0,1) ∈U ⊂ D. ButD is open, so we get a contradic-
tion here. This proves the proposition.

Recall that 06= s ∈H(L)λ and the domainD defined in (3.4) contains the standard
axesZ andU in (3.5). Sinces is holomorphic,∇s annihilates all antiholomor-
phic vector fields. Therefore, there exist complex-valued functionsf, g ∈C∞(D)
such that √−1∇s = γs = (f dz+ g du)s
for some(1,0)-form γ = f dz + g du onD. Herez andu are the standard co-
ordinate functions onC2

0. By the definition of curvature,dγ = ω onD. We now
derive a contradiction, which arises from the above assumption that 06= s ∈H(L)
exists. In what follows, we compute the functionf. From (3.2),

ω = ∂
(
c

r 4
(z̄ dū− ū dz̄)

)
+ ∂̄

(
c̄

r 4
(z du− u dz)

)
= −2

r6
{(cz̄2 + c̄u2) dz ∧ dū+ (−cz̄ū+ c̄zu) dz ∧ dz̄
+ (cz̄ū− c̄zu) du ∧ dū+ (−cū2 − c̄z2) du ∧ dz̄}. (3.7)

Becauseω = dγ is a(1,1)-form andγ = f dz+ g du is a(1,0)-form,

ω = dγ = ∂̄γ
= ∂f

∂z̄
dz̄ ∧ dz+ ∂f

∂ū
dū ∧ dz+ ∂g

∂z̄
dz̄ ∧ du+ ∂g

∂ū
dū ∧ du. (3.8)

From (3.7) and (3.8), we obtain
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∂f

∂z̄
= 2(c̄zu− cz̄ū)(zz̄+ uū)−3,

∂f

∂ū
= 2(cz̄2 + c̄u2)(zz̄+ uū)−3. (3.9)

Taking antiderivatives with respect toz̄, ū in (3.9) yields

f = (zz̄+ uū)−2(2cz−1z̄ū+ cz−2uū2 − c̄u)+ j(z, u, ū) (3.10)

and
f = −(zz̄+ uū)−2(cz̄2u−1+ c̄u)+ h(z, z̄, u), (3.11)

wherej, h are independent of̄z, ū respectively. LetB be the neighborhood of the
origin given by Proposition 3.2, and letB0 = B\{0}. SinceB0 ⊂ D, f is smooth
onB0. By (3.11), we know thatuh is smooth onB0. Further, by (3.10) and (3.11),

h = (zz̄+ uū)−2(cz̄2u−1+ c̄u)+ f
= (zz̄+ uū)−2(cz̄2u−1+ c̄u+ 2cz−1z̄ū+ cz−2uū2 − c̄u)+ j
= (zz̄+ uū)−2(cz−2u−1(z2z̄2 + 2zz̄uū+ u2ū2))+ j
= cz−2u−1+ j.

Thereforeh, and henceuh, are independent of̄z. We conclude thatuh is a holo-
morphic function onB0. By Hartog’s theorem,uh is holomorphic onB.

Consider the functionz2uh, which is holomorphic onB. DefineB1 ⊂ B by

B1 = {(z, u)∈B; u = 0}.
We claim that the restriction ofz2uh toB1 is not constant.

Suppose thatz2uh ≡ b ∈ C on B1; thenuh = bz−2 on B1. But uh, being
holomorphic onB, restricts toB1 as a holomorphic function there. This gives a
contradiction, sincebz−2 blows up on(0,0) ∈ B1. Hence the restriction of the
holomorphic functionz2uh toB1 is not constant, as claimed.

Let c be the nonzero constant in (3.11). Since(z2uh)|B1 is not a constant func-
tion, there existsz0 6= 0 such that(z0,0)∈B1 ⊂ B and

(z2uh)|(z0,0) 6= c. (3.12)

Then (3.11) says that, onB0\Z,
(zz̄+ uū)2f = −cz̄2u−1− c̄u+ (zz̄+ uū)2h

= −cz̄2u−1− c̄u+ (zz̄+ uū)
2

u
(uh)

= z̄2u−1(−c + z2uh)− c̄u+ (2zz̄ū+ uū2)uh. (3.13)

Fix z0 6= 0 given by (3.12), and consider(z0, u) ∈ B0\Z. We evaluate (3.13)
at (z0, u) and take its limit asu → 0. Then the limit of the LHS converges be-
causef is smooth at(z0,0)∈B0 ⊂ D. In the RHS of (3.13), we recall thatuh is
holomorphic near(z0,0). Therefore,

lim
u→0

(−c + z2
0uh)

converges and equals a nonzero constant, owing to (3.12). Also,
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lim
u→0

(−c̄u+ (2z0 z̄0ū+ uū2)uh) = 0.

Therefore, in (3.13),
lim

(z0,u)→(z0,0)
RHS

blows up due to the term̄z2
0u
−1.

This contradiction arises from our assumption thatL has global holomorphic
sections other than the zero section. We therefore conclude that for the example in
this section whereK = SU(2) andω is the(1,1)-form in (3.2), the only holomor-
phic section ofL is the zero section. We shall use this example to prove Theorem 1
in the following two sections.

4. Groups of Rank 1

Recall thatK is a compact connected semisimple Lie group. In this section, we
prove Theorem 1 for the case whereK has rank 1. In this case there are two
possibilities forK, namely SU(2) or SO(3) [2, p. 185].

We first considerK = SU(2). From Secion 3 we know thatG = SL(2,C) and
G/N = C2

0,whereC2
0 is C2 with origin removed. Given a closed SU(2)-invariant

(1,1)-form ω on C2
0, let L ω be its corresponding prequantum line bundle. The

Chern class ofL ω is the cohomology class [ω], and the curvature of the connec-
tion on L ω is ω. As observed in Section 2,ω is exact, soL ω is a trivial bun-
dle. Hence, given any two suchω,ω ′, their prequantum line bundlesL ω,L ω ′ are
topologically equivalent; however, the connections∇,∇′ can give rise to distinct
geometric properties.

Given an arbitrary closed SU(2)-invariant(1,1)-formω onC2
0, we apply (2.1)

and express it canonically as

ω = ω0 + ω1 = ω0 + (∂α1+ ∂̄ ᾱ1),

whereω0 is rightT-invariant. Suppose thatω is not rightT-invariant, so thatω1 =
∂α1+ ∂̄ ᾱ1 does not vanish. LetL ω,L ω0,L ω1 be their corresponding prequan-
tum line bundles. Becauseω0 is rightT-invariant, there exist plenty of holomor-
phic sections onL ω0. In particular,L ω0 contains nonvanishing global holomor-
phic sections [4, Prop. 3.1]. SinceL ω = L ω0 ⊗ L ω1, such a nonvanishing section
of L ω0 defines an isomorphism

H(L ω) ∼= H(L ω1). (4.1)

Now let ω be the specific SU(2)-invariant (1,1)-form given in (3.2), and let
L ω be its prequantum line bundle. We writeω = ω0 + ω1 as described in (2.1),
whereω1 = ∂α1+ ∂̄ ᾱ1. In Section 3 we saw thatH(L ω) = 0. It follows from
(4.1) thatH(L ω1) = 0. This means thatω1 6= 0, for otherwise the prequantum
line bundle corresponding toω = ω0 has plenty of holomorphic sections. Hence,
in particular,α1 6= 0.

Let ω ′ be another closedK-invariant(1,1)-form onC2
0. We again apply (2.1)

and writeω ′ = ω ′0 + ω ′1, whereω ′1 = ∂α ′1 + ∂̄ ᾱ ′1. Suppose thatω is not right
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T-invariant, so thatα ′1 6= 0. From Section 2, we know that the possible values of
α1 andα ′1 are 1-dimensional. Therefore, choosing the correct constantc ∈ C in
(3.2), we getα1 = α ′1. It follows thatω1 = ω ′1, soH(L ω ′1) = 0. Applying (4.1) to
ω ′ = ω ′0 + ω ′1, this implies thatH(L ω ′) = 0. Thus Theorem 1 is proved for the
case ofK = SU(2).

We now consider the caseK =SO(3),whose complexification isG=SO(3,C).
The Iwasawa decomposition of SO(3,C) gives unipotent subgroupN1, as well as
a maximal torusT1 of SO(3). The double covering SU(2) −→ SO(3) extends to
the covering

π : SL(2,C)/N → SO(3,C)/N1.

Hereπ(T ) = T1 is a double covering of the circle onto itself.
BecauseT1 normalizesN1, it acts on SO(3,C)/N1 on the right. Letω be an

SO(3)-invariant Kähler structure on SO(3,C)/N1, and suppose that it is not right
T1-invariant. Thenπ∗ω is an SU(2)-invariant Kähler structure on SL(2,C)/N
and is not rightT-invariant. If L ω has any nonzero holomorphic section then it
induces a nonzero holomorphic section onπ∗L ω, which is the prequantum line
bundle corresponding toπ∗ω. This is impossible, soH(L ω) = 0.

This proves Theorem 1 forK of rank 1.

5. Groups of Higher Rank

In this section, we consider the case where the rank of the Lie groupK may be
greater than 1. Recall thatG = KAN is the Iwasawa decomposition and thatH =
TA is a Cartan subgroup ofG. Let

n = rankK = dimCH.

Letω be aK-invariant Kähler structure onG/N. It has the form

ω =
n∑
0

ωi =
√−1∂∂̄F +

n∑
1

(∂αi + ∂̄ ᾱi ), (5.1)

as described in (2.1), whereω0 =
√−1∂∂̄F is itself Kähler and has potential func-

tion. Suppose thatω is not rightT-invariant, so thatωi = ∂αi + ∂̄ ᾱi 6= 0 for
somei = 1, . . . , n. Without loss of generality, we may assume thatα1 6= 0. Re-
call from Section 2 thatα1 is indexed by the simple rootλ1 ∈ h∗. Namely, under
the rightH-action, it transforms by the characterχ1 : H → C× associated to the
rootλ1 ∈ h∗. This means thatχ1 satisfiesχ1(expv) = exp(λ1, v) for all v ∈ h, and
thatR∗hα1 = χ1(h)α1 under the right actionRh of h∈H.

Let σ ⊂ t be the hyperplane annihilated byλ1;
σ = {v ∈ t; (λ1, v) = 0}.

Let kσ be the centralizer ofσ in k, consisting ofξ ∈ k such that [ξ, v] = 0 whenever
v ∈ σ. We define the semisimple Lie algebrakσss by

kσss= [kσ , kσ ] ⊂ k.

Let gσss= kσss⊗ C, and let a Cartan subalgebra ofgσss be given by
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hσ = {v ∈ h; (v, σ) = 0},
where the pairing used is the Killing form. Letnσ = gσss∩ n; then we have an
Iwasawa decomposition

gσss= kσss⊕ aσ ⊕ nσ . (5.2)

Herekσss is a rank-1 semisimple Lie algebra, and a maximal toral subalgebra ofkσss
is given bytσ = t ∩ hσ . From the Lie algebras in (5.2), we have the connected
subgroupsGσ

ss,K
σ
ss, A

σ ,Nσ of G. Also, T σ is the subgroup corresponding totσ

andHσ = T σAσ is a Cartan subgroup ofGσ
ss. Consider the complex manifold

Gσ
ss/N

σ = Kσ
ssA

σ . SinceHσ normalizesNσ , it acts onGσ
ss/N

σ on the right. The
spaceGσ

ss/N
σ imbeds naturally intoG/N,

j : Gσ
ss/N

σ ↪→ G/N. (5.3)

This is a holomorphicKσ
ss×Hσ -equivariant imbedding. Sinceω andω0 of (5.1)

areK-invariant Kähler forms, it follows thatj ∗ω andj ∗ω0 areKσ
ss-invariant Käh-

ler forms onGσ
ss/N

σ . But sinceω1 is not Kähler, some work is still needed to
ensure that it does not vanish onGσ

ss/N
σ .

Proposition 5.1. Letj be the imbedding(5.3),and letω1 6= 0be theK-invariant
(1,1)-form in (5.1). Thenj ∗ω1 6= 0.

Proof. Recall the elementsζ1, γ1 ∈ V ⊂ k in (2.3) and their dualζ ∗1 , γ
∗
1 ∈ k∗.

By Proposition 2.1,ω1 = ∂α1+ ∂̄ ᾱ1 satisfies(α1)e = c(ζ ∗1 −
√−1γ ∗1 ) for some

nonzero constantc ∈C. Heree ∈Gσ
ss/N

σ = Kσ
ssA

σ ↪→ KA = G/N is the prod-
uct of identity elements ofK andA. Sincej is Kσ

ss× Hσ -equivariant,j ∗α1 is
Kσ

ss-invariant and transforms byχ1 : Aσ → R+ under the rightAσ -action.
Becausekσ centralizesσ, (2.4) implies thatζ1, γ1 ∈ kσ . Also, up to a constant

scalar, [ζ1, γ1] ∈ t is the vector dual to the restricted rootλ1 ∈ t∗ via Killing form.
Thus [ζ1, γ1] ∈ tσ ⊂ kσss. In fact, taking the real span of these two vectors, we have
a vector space direct sum

kσss= tσ + R(ζ1, γ1). (5.4)

Hereλ1 is the unique positive root of this rank-1 Lie algebra. We compare (5.4)
with (2.2) and apply Proposition 2.1 toGσ

ss/N
σ . It says that everyKσ

ss-invariant
Kähler structureω ′ onGσ

ss/N
σ can be expressed uniquely asω ′ = ω ′0+ω ′1,where

ω ′1 = ∂α ′1 + ∂̄ ᾱ ′1. Further, theKσ
ss-invariantα ′1 transforms byχ1 under the right

Aσ -action, and(α ′1)e = c ′(ζ ∗1 −
√−1γ ∗1 ) for somec ′ ∈ C. If c ′ 6= 0 thenω ′1 6=

0. Setc = c ′, so that(α1)e = (α ′1)e. Bothα1 andα ′1 areKσ
ss-invariant and trans-

form byχ1 : Aσ → R+ under the rightAσ -action. Therefore, sinceKσ
ss×Aσ acts

transitively onGσ
ss/N

σ , (α1)e = (α ′1)e implies thatj ∗α1 = α ′1. Then

j ∗ω1 = j ∗(∂α1+ ∂̄ ᾱ1)

= ∂j ∗α1+ ∂̄j ∗ᾱ1

= ∂α ′1+ ∂̄ ᾱ ′1
= ω ′1 6= 0.

This proves the proposition.
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Recall thatχ1 : T → S1 is the character corresponding to the restricted rootλ1 ∈
t∗. Since(λ1, t

σ ) 6= 0, there are manyt ∈ T σ such thatχ1(t) 6= 1. For sucht, let
Rt denote its right action. Then, sincej isKσ

ss×Hσ -equivariant,

R∗t j
∗ω1 = j ∗R∗t ω1 = j ∗χ1(t)ω1 = χ1(t)j

∗ω1 6= j ∗ω1.

It follows thatj ∗ω is not invariant under the rightT σ -action.
As observed in Section 2,ω is exact, so there exists a complex line bundleL

whose Chern class is [ω] = 0. It is equipped with a connection whose curvature
is ω. Suppose thats 6= 0 is a global holomorphic section ofL . We derive a con-
tradiction from here. SinceG acts transitively onG/N, we may assume thatsp 6=
0 for somep ∈Gσ

ss/N
σ ↪→ G/N. Thenj ∗s is a holomorphic section of the line

bundlej ∗L onGσ
ss/N

σ , and it is not the zero section. Butj∗L is the prequantum
line bundle corresponding to Kähler formj ∗ω. SinceKσ

ss has rank 1, this contra-
dicts the result of Section 4. We therefore conclude that the only global holomor-
phic section ofL is the zero section. This completes the proof of Theorem 1.
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