Holomorphic Sections of Prequantum Line Bundles on G/N

MENG-KIAT CHUAH

1. Introduction

Let *K* be a compact connected semisimple Lie group, let *G* be its complexification, and let G = KAN be an Iwasawa decomposition. Let *T* be the centralizer of *A* in *K*, so that H = TA is a Cartan subgroup of *G*. Since *G* and *N* are complex, G/N is a complex manifold. Besides the left *G*-action on G/N, there is also a right *H*-action because *H* normalizes *N*.

In [10], Schwarz suggests the following scheme of geometric quantization on the space G/N: Equip G/N with a *K*-invariant Kähler structure ω , and consider the corresponding prequantum line bundle **L** [6; 9]. Namely, the Chern class of **L** is the cohomology class $[\omega]$, and **L** has a connection ∇ whose curvature is ω . In fact, we shall see that if ω is Kähler then it is exact, so **L** is just a trivial bundle. However, the geometry arising from the connection is interesting. Given a section *s* of **L**, we say that *s* is holomorphic if $\nabla_{\xi}s = 0$ for every antiholomorphic vector field ξ . Let $H(\mathbf{L})$ denote the holomorphic sections of **L**. The *K*-action on G/N lifts to a *K*-representation on $H(\mathbf{L})$. Let ξ be the Lie algebra of *K*. Then the infinitesimal representation on $H(\mathbf{L})$ is given by

$$\xi \cdot s = \nabla_{\xi^{\sharp}} s + \sqrt{-1} \phi^{\xi} s, \quad \xi \in \mathfrak{k}, \ s \in H(\mathbf{L})$$
(1.1)

[6, (3.1)], where ξ^{\sharp} is the infinitesimal vector field on G/N induced by the left *K*-action and $\xi \mapsto \phi^{\xi}$ is the moment map $\mathfrak{k} \longrightarrow C^{\infty}(G/N)$ corresponding to the *K*-action preserving ω . Note that the moment map exists, since *K* is semisimple [7]. A *K*-invariant Kähler structure on G/N has potential function if and only if it is invariant under the right *T*-action [3]. In joint work with Guillemin [4], we carry out the foregoing construction for such Kähler structures and prove the following theorem.

THEOREM. Let ω be a K-invariant Kähler structure on G/N. If it is right T-invariant, then $H(\mathbf{L})$ contains every finite-dimensional irreducible K-representation with multiplicity 1.

Such a representation is called a *model* if it is equipped with a unitary structure—a term due to Gelfand and Zelevinski [5]. The preceding theorem is an analog of

Received April 23, 1997.

This work is supported in part by research grant NSC86-2115-M-009-012 of Taiwan. Michigan Math. J. 45 (1998).

the Borel–Weil theorem [1], and holds even when ω is not positive definite. The main result of this paper is a converse to the previous theorem.

THEOREM 1. Let ω be a K-invariant Kähler structure on G/N. If it is not right *T*-invariant, then $H(\mathbf{L}) = 0$.

Hence, for a *K*-invariant Kähler structure ω , the multiplicity-free *K*-space $H(\mathbf{L})$ occurs on two extremes. Namely, $H(\mathbf{L})$ is either zero or contains every finitedimensional irreducible *K*-representation, depending on whether ω is invariant under the right *T*-action (or equivalently whether ω has potential function).

A partial result of Theorem 1 is obtained in [3]. There, we show that if ω has no potential function then the trivial *K*-representation is missing in $H(\mathbf{L})$.

In Section 2, we review some results from [3] and [4] that will be needed in later sections. In Section 3, we construct an example where K = SU(2) and a Kähler structure on G/N whose prequantum line bundle has no holomorphic section other than the zero section. In Section 4, we use this example to prove Theorem 1 for the case where *K* has rank 1; in Section 5 we prove Theorem 1 for *K* of higher rank.

ACKNOWLEDGMENT. The author would like to thank So-Chin Chen, Victor Guillemin, and David Vogan for many helpful suggestions.

2. Preliminaries

In this section, we recall some results in [3] and [4] that will be needed later. Recall that G = KAN is the Iwasawa decomposition and that H = TA a Cartan subgroup of G. Let g, \mathfrak{k} , a, n, \mathfrak{t} , \mathfrak{h} be the Lie algebras of G, K, A, N, T, H respectively.

Let *n* be the rank of *K*, and let $\lambda_1, \ldots, \lambda_n \in \mathfrak{h}^*$ be the positive simple roots. Let \mathbb{C}^{\times} be the multiplicative group of nonzero complex numbers, so that $\chi_i \colon H \to \mathbb{C}^{\times}$ is the character corresponding to λ_i . Thus $\exp(\lambda_i, v) = \chi_i(\exp v)$ for all $v \in \mathfrak{h}$. Given a *K*-invariant Kähler structure ω on G/N, it can be written as

$$\omega = \sqrt{-1}\partial\bar{\partial}F + \sum_{1}^{n} \omega_{i}$$
$$= \sqrt{-1}\partial\bar{\partial}F + \sum_{1}^{n} (\partial\alpha_{i} + \bar{\partial}\bar{\alpha}_{i}).$$
(2.1)

This structure satisfies the following: $\sqrt{-1}\partial\bar{\partial}F$ is $K \times T$ -invariant and Kähler; and, for i = 1, ..., n, each $\omega_i = \partial \alpha_i + \bar{\partial}\bar{\alpha}_i$ is a *K*-invariant (1, 1)-form. Also, ω_i is not right *T*-invariant and has no potential function unless it vanishes. In particular, for ω to be right *T*-invariant or to have potential function, a necessary and sufficient condition is that all the ω_i vanish. Each α_i is a (0, 1)-form with $\bar{\partial}\alpha_i =$ 0. In [3] we show that α_i transforms by the character χ_i under the right *T*-action. This means that, for all $t \in T$ and its right action R_t ,

$$R_t^*\alpha_i = \chi_i(t)\alpha_i.$$

We shall see that α_i also transforms by χ_i under the right A-action.

The possible values of each α_i is 1-dimensional in the sense that, if

$$\omega' = \sqrt{-1}\partial\bar{\partial}F' + \sum_{1}^{n}(\partial\alpha'_{i} + \bar{\partial}\bar{\alpha}'_{i})$$

is another Kähler form, then $a_i \alpha_i + b_i \alpha'_i = 0$ for some $a_i, b_i \in \mathbb{C}$. This result holds even when ω is merely a closed *K*-invariant real (1, 1)-form, which may not be positive-definite.

Since the possible values of α_i in (2.1) are 1-dimensional based on ω , we can find out more about α_i . Because *K* is compact semisimple, the Killing form on \mathfrak{k} is negative-definite. Let $V \subset \mathfrak{k}$ be the orthocomplement of $\mathfrak{t} \subset \mathfrak{k}$ with respect to the Killing form. Thus we have a vector space direct sum

$$\mathfrak{k} = \mathfrak{t} + V. \tag{2.2}$$

The real vector space *V* has dimension 2m, where *m* is the number of positive roots of *G*. Since *G* is semisimple, $n \le m$. We may arrange the positive roots $\lambda_1, \ldots, \lambda_m$ so that the first *n* of them are simple. There exists a basis of *V* [8, p. 421],

$$\zeta_1, \gamma_1, \dots, \zeta_m, \gamma_m \in V, \tag{2.3}$$

such that, for all $\xi \in \mathfrak{t}$,

$$[\xi, \zeta_i] = -\sqrt{-1}(\lambda_i, \xi)\gamma_i, \qquad [\xi, \gamma_i] = \sqrt{-1}(\lambda_i, \xi)\zeta_i. \tag{2.4}$$

Further, up to a constant scalar, $[\zeta_i, \gamma_i] \in \mathfrak{t}$ is dual to the restricted root $\lambda_i \in \mathfrak{t}^*$ via the Killing form. Let $\{\zeta_i^*, \gamma_i^*\} \subset V^*$ be the dual basis of (2.3), which we extend to $\{\zeta_i^*, \gamma_i^*\} \subset \mathfrak{k}^*$ by annihilating \mathfrak{t} . The Iwasawa decomposition allows us to imbed *V* into $\mathfrak{g/n}$ as a complex subspace via

$$V \hookrightarrow \mathfrak{k} \hookrightarrow \mathfrak{k} + \mathfrak{a} = \mathfrak{g}/\mathfrak{n}.$$

In fact, the almost-complex structure of $\mathfrak{g}/\mathfrak{n}$ sends ζ_i to γ_i and sends γ_i to $-\zeta_i$. It follows that $\zeta_i^* - \sqrt{-1}\gamma_i^* \in \wedge^{0,1}(\mathfrak{g}/\mathfrak{n})^*$. By Iwasawa, G/N = KA, so $K \times A$ acts transitively on G/N. Therefore, we may identify ζ_i^* , γ_i^* with the $K \times A$ -invariant 1-forms whose values at $e \in G/N$ are exactly ζ_i^* , γ_i^* . Here $e \in G/N = KA$ denotes the Cartesian product of identity elements of K, A.

Consider the $K \times A$ -invariant (0, 1)-form

$$v_i = \zeta_i^* - \sqrt{-1}\gamma_i^* \tag{2.5}$$

on G/N. From (2.4) we have that, for all $\xi \in \mathfrak{t}$,

$$ad_{\xi}^{*}\zeta_{i}^{*} = -\sqrt{-1}(\lambda_{i},\xi)\gamma_{i}^{*}, \qquad ad_{\xi}^{*}\gamma_{i}^{*} = \sqrt{-1}(\lambda_{i},\xi)\zeta_{i}^{*}.$$

This means that v_i of (2.5) satisfies

$$ad_{\xi}^* v_i = (\lambda_i, \xi) v_i \tag{2.6}$$

for all $\xi \in \mathfrak{t}$. Let $t \in T$, and let L_t , R_t denote (respectively) its left and right actions. In particular, the (0, 1)-form v_i is left *T*-invariant, so (2.6) means that

$$R_t^* v_i = L_t^* R_t^* v_i = A d_t^* v_i = \chi_i(t) v_i.$$

There exists a unique $f_i \in C^{\infty}(A)$, which can be identified with a *K*-invariant function on G/N, so that

$$f_i v_i = \alpha_i.$$

Since G/N = KA, such an f_i is automatically right *T*-invariant. On the other hand, in the construction of $f_i v_i = \alpha_i$ [3, Prop. 2.2] we see that, up to a nonzero scalar, f_i is given by $f_i(ka) = \chi_i(a)^{-1}$ for all $ka \in KA = G/N$. Thus f_i transforms by χ_i under the right *A*-action. From the behaviors of f_i and v_i under the right actions of *T* and *A*, we obtain the following result for $\alpha_i = f_i v_i$.

PROPOSITION 2.1. For i = 1, ..., n, α_i of (2.1) is a K-invariant (0, 1)-form that transforms by $\chi_i : H \to \mathbb{C}^{\times}$ under the right H-action. Namely, $R_h^* \alpha_i = \chi_i(h) \alpha_i$ for all right H-actions of $h \in H$. Its value at $e \in G/N$ is $c(\zeta_i^* - \sqrt{-1}\gamma_i^*)$ for some $c \in \mathbb{C}$.

It can be checked from (2.1) that ω is exact, though this also follows from the Whitehead lemma [7, p. 417]:

$$H^{2}(G/N, \mathbf{R}) = H^{2}(KA, \mathbf{R}) = H^{2}(K, \mathbf{R}) = H^{2}(\mathfrak{k}) = 0.$$

Therefore, since ω is closed, it must be exact.

3. Example

In this section we construct an example of a Kähler structure ω on G/N, where $G = SL(2, \mathbb{C})$, such that its prequantum line bundle \mathbb{L} has no global holomorphic section other than the zero section. In later sections, our proof of Theorem 1 for arbitrary ω on G/N is based on this example.

Throughout this section, let \mathbf{C}_0^2 denote \mathbf{C}^2 with origin removed. For our example, let K = SU(2) and $G = SL(2, \mathbf{C})$. Recall that G = KAN is the Iwasawa decomposition, *T* is the centralizer of *A* in *K*, and H = TA is a Cartan subgroup of *G*. In this case, we can have *T*, *A*, *H* to be diagonal matrices given by

$$T = \{ \operatorname{diag}(e^{\sqrt{-1}\theta}, e^{-\sqrt{-1}\theta}) \}, \ A = \{ \operatorname{diag}(r, r^{-1}); \ 0 < r \in \mathbf{R} \}, H = \{ \operatorname{diag}(z, z^{-1}); \ 0 \neq z \in \mathbf{C} \}.$$
(3.1)

Also, *N* is the complex upper triangular 2×2 matrix with 1 along the diagonal. Consider *G* acting on \mathbb{C}^2 in the standard manner. The *G*-orbit of the vector $(1, 0) \in \mathbb{C}^2$ is \mathbb{C}^2_0 . The isotropy subgroup of (1, 0) is *N*, so $G/N = \mathbb{C}^2_0$. In fact, since $K = SU(2) = S^3$ and $A = \mathbb{R}^+$ as manifolds, the polar coordinates $\mathbb{C}^2_0 = S^3 \times \mathbb{R}^+$ is just the Iwasawa decomposition G/N = KA.

Let (z, u) be the standard coordinates on \mathbb{C}_0^2 , and let r denote the length function

$$r = (z\bar{z} + u\bar{u})^{1/2}.$$

Fix a nonzero constant $c \in \mathbf{C}$, and consider the (1, 1)-form ω on \mathbf{C}_0^2 defined by

$$\alpha = \frac{c}{r^4} (\bar{z} \, d\bar{u} - \bar{u} \, d\bar{z}), \qquad \omega = \partial \alpha + \bar{\partial} \bar{\alpha}. \tag{3.2}$$

Note that c/r^4 is well-defined, for we ignore the origin here.

PROPOSITION 3.1. The (1, 1)-form ω in (3.2) is SU(2)-invariant and closed.

Proof. We first check that α in (3.2) is SU(2)-invariant, and this will imply that ω is also SU(2)-invariant. Because the function c/r^4 is clearly SU(2)-invariant, it suffices to check $\bar{z} d\bar{u} - \bar{u} d\bar{z}$. Pick

$$k = \begin{pmatrix} a & b \\ -\bar{b} & \bar{a} \end{pmatrix} \in \mathrm{SU}(2)$$

satisfying $a\bar{a} + b\bar{b} = 1$, and let L_k denote the left action by k. Then

$$\begin{aligned} L_k^*(\bar{z}\,d\bar{u} - \bar{u}\,d\bar{z}) &= (L_k^*\bar{z})(L_k^*\,d\bar{u}) - (L_k^*\bar{u})(L_k^*\,d\bar{z}) \\ &= (\bar{a}\bar{z} + \bar{b}\bar{u})(-b\,d\bar{z} + a\,d\bar{u}) - (-b\bar{z} + a\bar{u})(\bar{a}\,d\bar{z} + \bar{b}\,d\bar{u}) \\ &= -\bar{u}\,d\bar{z} + \bar{z}\,d\bar{u}. \end{aligned}$$

It follows that α is SU(2)-invariant, and so is ω .

To check that ω is closed, we note that

$$\frac{1}{c}\bar{\partial}\alpha = \bar{\partial}(z\bar{z} + u\bar{u})^{-2} \wedge (\bar{z}\,d\bar{u} - \bar{u}\,d\bar{z}) + (z\bar{z} + u\bar{u})^{-2}\,\bar{\partial}(\bar{z}\,d\bar{u} - \bar{u}\,d\bar{z}) = -2(z\bar{z} + u\bar{u})^{-3}(z\,d\bar{z} + u\,d\bar{u}) \wedge (\bar{z}\,d\bar{u} - \bar{u}\,d\bar{z}) + 2(z\bar{z} + u\bar{u})^{-2}d\bar{z} \wedge d\bar{u} = 0.$$

Hence $\bar{\partial}\alpha = \partial\bar{\alpha} = 0$ and so

$$d\omega = d(\partial \alpha + \bar{\partial}\bar{\alpha}) = (\partial + \bar{\partial})(\partial \alpha + \bar{\partial}\bar{\alpha}) = 0.$$

This proves the proposition.

Let **L** be the prequantum line bundle associated to ω of (3.2). Namely, the Chern class of **L** is the cohomology class $[\omega]$, and **L** is equipped with a connection ∇ whose curvature is ω . Since ω is exact, **L** is a trivial bundle. Given a section *s*, we say that *s* is *holomorphic* if $\nabla_{\xi}s = 0$ for every antiholomorphic vector field ξ . We claim that, for ω of (3.2), **L** has no global holomorphic section other than the zero section. Suppose otherwise; let $H(\mathbf{L}) \neq 0$ be the space of its holomorphic sections. The *K*-action on G/N lifts to a *K*-representation on $H(\mathbf{L})$. Let \mathbf{C}^{\times} be the multiplicative group of nonzero complex numbers. Recall that the Cartan subgroup of *G* is H = TA, where $H \cong \mathbf{C}^{\times}$ by (3.1). Let \mathfrak{h} be its Lie algebra. Pick a nonzero element *s* of the weight space

$$H(\mathbf{L})_{\lambda} = \{ s \in H(\mathbf{L}); \ \xi \cdot s = \lambda(\xi) s \text{ for all } \xi \in \mathfrak{h} \},$$
(3.3)

where $\lambda \in \mathfrak{h}^*$. For $\xi \in \mathfrak{t}$, $\xi \cdot s$ in (3.3) is the infinitesimal representation arising from the group action and is given in (1.1). Since $\mathfrak{a} = \sqrt{-1}\mathfrak{t}$, if $\xi \in \mathfrak{t}$ then [6, (5.2)] $\eta = \sqrt{-1}\xi \in \mathfrak{a}$ acts on *s* in (3.3) by $\eta \cdot s = \sqrt{-1}(\xi \cdot s)$.

From the section $0 \neq s \in H(\mathbf{L})_{\lambda}$, we define the domain $D = D_s$ by

$$D = \{ p \in \mathbf{C}_0^2; \ s_p \neq 0 \}.$$
(3.4)

Let Z and U be the z- and u-axes on \mathbf{C}_0^2 , respectively:

 \square

$$Z = \{(z, 0) \in \mathbb{C}_0^2\}, \qquad U = \{(0, u) \in \mathbb{C}_0^2\}.$$
(3.5)

Because *s* is nonzero and holomorphic, *D* is a dense open set in \mathbb{C}_0^2 . Choosing another weight space or holomorphic section if necessary, we may assume that *D* intersects *Z* and *U*. Let $\chi : H \to \mathbb{C}^{\times}$ be the character corresponding to $\lambda \in \mathfrak{h}^*$, and let L_h^* be the representation arising from the left action of $h \in H$. Since $L_h^*s = \chi(h)s$, if $\mathcal{O} \subset \mathbb{C}^2$ is an *H*-orbit then

$$\mathcal{O} \cap D = \emptyset \quad \text{or} \quad \mathcal{O} \subset D.$$
 (3.6)

Since Z and U are H-orbits that intersect D, it follows that $Z, U \subset D$.

PROPOSITION 3.2. Suppose that $0 \neq s \in H(\mathbf{L})_{\lambda}$, and that the domain D defined in (3.4) intersects Z and U. Then there exists a neighborhood B of the origin such that $(B \setminus \{0\}) \subset D$.

Proof. Suppose otherwise, so that the origin is a limit point of $\mathbb{C}_0^2 \setminus D$. There exists a sequence $\{(z_i, u_i)\} \subset \mathbb{C}_0^2 \setminus D$ that converges to the origin. Since $Z, U \subset D$, we have $(z_i, u_i) \notin (Z \cup U)$ and therefore $z_i, u_i \neq 0$. By (3.1), we obtain $h_i \in H$ by $h_i = \text{diag}(u_i, u_i^{-1})$. Because $(z_i, u_i) \notin D$, (3.6) implies that $h_i(z_i, u_i) \notin D$.

On the other hand, since (z_i, u_i) converges to the origin, the sequence $\{z_i u_i\} \subset \mathbb{C}$ converges to 0. It follows that the sequence $\{h_i(z_i, u_i) = (z_i u_i, 1)\}$, not contained in *D*, converges to $(0, 1) \in U \subset D$. But *D* is open, so we get a contradiction here. This proves the proposition.

Recall that $0 \neq s \in H(\mathbf{L})_{\lambda}$ and the domain *D* defined in (3.4) contains the standard axes *Z* and *U* in (3.5). Since *s* is holomorphic, ∇s annihilates all antiholomorphic vector fields. Therefore, there exist complex-valued functions $f, g \in C^{\infty}(D)$ such that

$$\sqrt{-1}\nabla s = \gamma s = (f \, dz + g \, du)s$$

for some (1, 0)-form $\gamma = f dz + g du$ on *D*. Here *z* and *u* are the standard coordinate functions on \mathbb{C}_0^2 . By the definition of curvature, $d\gamma = \omega$ on *D*. We now derive a contradiction, which arises from the above assumption that $0 \neq s \in H(\mathbf{L})$ exists. In what follows, we compute the function *f*. From (3.2),

$$\omega = \partial \left(\frac{c}{r^4} (\bar{z} \, d\bar{u} - \bar{u} \, d\bar{z}) \right) + \bar{\partial} \left(\frac{\bar{c}}{r^4} (z \, du - u \, dz) \right)$$

$$= \frac{-2}{r^6} \{ (c\bar{z}^2 + \bar{c}u^2) \, dz \wedge d\bar{u} + (-c\bar{z}\bar{u} + \bar{c}zu) \, dz \wedge d\bar{z} + (c\bar{z}\bar{u} - \bar{c}zu) \, du \wedge d\bar{u} + (-c\bar{u}^2 - \bar{c}z^2) \, du \wedge d\bar{z} \}.$$
(3.7)

Because $\omega = d\gamma$ is a (1, 1)-form and $\gamma = f dz + g du$ is a (1, 0)-form,

$$\omega = d\gamma = \bar{\partial}\gamma$$

= $\frac{\partial f}{\partial \bar{z}} d\bar{z} \wedge dz + \frac{\partial f}{\partial \bar{u}} d\bar{u} \wedge dz + \frac{\partial g}{\partial \bar{z}} d\bar{z} \wedge du + \frac{\partial g}{\partial \bar{u}} d\bar{u} \wedge du.$ (3.8)

From (3.7) and (3.8), we obtain

$$\frac{\partial f}{\partial \bar{z}} = 2(\bar{c}zu - c\bar{z}\bar{u})(z\bar{z} + u\bar{u})^{-3}, \qquad \frac{\partial f}{\partial \bar{u}} = 2(c\bar{z}^2 + \bar{c}u^2)(z\bar{z} + u\bar{u})^{-3}.$$
 (3.9)

Taking antiderivatives with respect to \bar{z} , \bar{u} in (3.9) yields

$$f = (z\bar{z} + u\bar{u})^{-2}(2cz^{-1}\bar{z}\bar{u} + cz^{-2}u\bar{u}^2 - \bar{c}u) + j(z, u, \bar{u})$$
(3.10)

and

$$f = -(z\bar{z} + u\bar{u})^{-2}(c\bar{z}^2u^{-1} + \bar{c}u) + h(z,\bar{z},u), \qquad (3.11)$$

where *j*, *h* are independent of \overline{z} , \overline{u} respectively. Let *B* be the neighborhood of the origin given by Proposition 3.2, and let $B_0 = B \setminus \{0\}$. Since $B_0 \subset D$, *f* is smooth on B_0 . By (3.11), we know that *uh* is smooth on B_0 . Further, by (3.10) and (3.11),

$$h = (z\bar{z} + u\bar{u})^{-2}(c\bar{z}^{2}u^{-1} + \bar{c}u) + f$$

= $(z\bar{z} + u\bar{u})^{-2}(c\bar{z}^{2}u^{-1} + \bar{c}u + 2cz^{-1}\bar{z}\bar{u} + cz^{-2}u\bar{u}^{2} - \bar{c}u) + j$
= $(z\bar{z} + u\bar{u})^{-2}(cz^{-2}u^{-1}(z^{2}\bar{z}^{2} + 2z\bar{z}u\bar{u} + u^{2}\bar{u}^{2})) + j$
= $cz^{-2}u^{-1} + j$.

Therefore h, and hence uh, are independent of \overline{z} . We conclude that uh is a holomorphic function on B_0 . By Hartog's theorem, uh is holomorphic on B.

Consider the function z^2uh , which is holomorphic on *B*. Define $B_1 \subset B$ by

$$B_1 = \{(z, u) \in B; u = 0\}.$$

We claim that the restriction of $z^2 uh$ to B_1 is not constant.

Suppose that $z^2uh \equiv b \in \mathbb{C}$ on B_1 ; then $uh = bz^{-2}$ on B_1 . But uh, being holomorphic on B, restricts to B_1 as a holomorphic function there. This gives a contradiction, since bz^{-2} blows up on $(0, 0) \in B_1$. Hence the restriction of the holomorphic function z^2uh to B_1 is not constant, as claimed.

Let *c* be the nonzero constant in (3.11). Since $(z^2uh)|_{B_1}$ is not a constant function, there exists $z_0 \neq 0$ such that $(z_0, 0) \in B_1 \subset B$ and

$$(z^2 uh)|_{(z_0,0)} \neq c. \tag{3.12}$$

Then (3.11) says that, on $B_0 \setminus Z$,

$$(z\bar{z} + u\bar{u})^{2}f = -c\bar{z}^{2}u^{-1} - \bar{c}u + (z\bar{z} + u\bar{u})^{2}h$$

$$= -c\bar{z}^{2}u^{-1} - \bar{c}u + \frac{(z\bar{z} + u\bar{u})^{2}}{u}(uh)$$

$$= \bar{z}^{2}u^{-1}(-c + z^{2}uh) - \bar{c}u + (2z\bar{z}\bar{u} + u\bar{u}^{2})uh. \quad (3.13)$$

Fix $z_0 \neq 0$ given by (3.12), and consider $(z_0, u) \in B_0 \setminus Z$. We evaluate (3.13) at (z_0, u) and take its limit as $u \to 0$. Then the limit of the LHS converges because f is smooth at $(z_0, 0) \in B_0 \subset D$. In the RHS of (3.13), we recall that uh is holomorphic near $(z_0, 0)$. Therefore,

$$\lim_{u\to 0}(-c+z_0^2uh)$$

converges and equals a nonzero constant, owing to (3.12). Also,

381

$$\lim_{u \to 0} (-\bar{c}u + (2z_0\bar{z}_0\bar{u} + u\bar{u}^2)uh) = 0.$$

Therefore, in (3.13),

$$\lim_{(z_0,u)\to(z_0,0)} \text{RHS}$$

blows up due to the term $\bar{z}_0^2 u^{-1}$.

This contradiction arises from our assumption that **L** has global holomorphic sections other than the zero section. We therefore conclude that for the example in this section where K = SU(2) and ω is the (1, 1)-form in (3.2), the only holomorphic section of **L** is the zero section. We shall use this example to prove Theorem 1 in the following two sections.

4. Groups of Rank 1

Recall that *K* is a compact connected semisimple Lie group. In this section, we prove Theorem 1 for the case where *K* has rank 1. In this case there are two possibilities for *K*, namely SU(2) or SO(3) [2, p. 185].

We first consider K = SU(2). From Secion 3 we know that $G = SL(2, \mathbb{C})$ and $G/N = \mathbb{C}_0^2$, where \mathbb{C}_0^2 is \mathbb{C}^2 with origin removed. Given a closed SU(2)-invariant (1, 1)-form ω on \mathbb{C}_0^2 , let \mathbb{L}_{ω} be its corresponding prequantum line bundle. The Chern class of \mathbb{L}_{ω} is the cohomology class $[\omega]$, and the curvature of the connection on \mathbb{L}_{ω} is ω . As observed in Section 2, ω is exact, so \mathbb{L}_{ω} is a trivial bundle. Hence, given any two such ω , ω' , their prequantum line bundles \mathbb{L}_{ω} , $\mathbb{L}_{\omega'}$ are topologically equivalent; however, the connections ∇ , ∇' can give rise to distinct geometric properties.

Given an arbitrary closed SU(2)-invariant (1, 1)-form ω on \mathbb{C}_0^2 , we apply (2.1) and express it canonically as

$$\omega = \omega_0 + \omega_1 = \omega_0 + (\partial \alpha_1 + \partial \bar{\alpha}_1),$$

where ω_0 is right *T*-invariant. Suppose that ω is not right *T*-invariant, so that $\omega_1 = \partial \alpha_1 + \bar{\partial} \bar{\alpha}_1$ does not vanish. Let $\mathbf{L}_{\omega}, \mathbf{L}_{\omega_0}, \mathbf{L}_{\omega_1}$ be their corresponding prequantum line bundles. Because ω_0 is right *T*-invariant, there exist plenty of holomorphic sections on \mathbf{L}_{ω_0} . In particular, \mathbf{L}_{ω_0} contains nonvanishing global holomorphic sections [4, Prop. 3.1]. Since $\mathbf{L}_{\omega} = \mathbf{L}_{\omega_0} \otimes \mathbf{L}_{\omega_1}$, such a nonvanishing section of \mathbf{L}_{ω_0} defines an isomorphism

$$H(\mathbf{L}_{\omega}) \cong H(\mathbf{L}_{\omega_1}). \tag{4.1}$$

_

Now let ω be the specific SU(2)-invariant (1, 1)-form given in (3.2), and let \mathbf{L}_{ω} be its prequantum line bundle. We write $\omega = \omega_0 + \omega_1$ as described in (2.1), where $\omega_1 = \partial \alpha_1 + \bar{\partial} \bar{\alpha}_1$. In Section 3 we saw that $H(\mathbf{L}_{\omega}) = 0$. It follows from (4.1) that $H(\mathbf{L}_{\omega_1}) = 0$. This means that $\omega_1 \neq 0$, for otherwise the prequantum line bundle corresponding to $\omega = \omega_0$ has plenty of holomorphic sections. Hence, in particular, $\alpha_1 \neq 0$.

Let ω' be another closed *K*-invariant (1, 1)-form on \mathbb{C}_0^2 . We again apply (2.1) and write $\omega' = \omega'_0 + \omega'_1$, where $\omega'_1 = \partial \alpha'_1 + \bar{\partial} \bar{\alpha}'_1$. Suppose that ω is not right

T-invariant, so that $\alpha'_1 \neq 0$. From Section 2, we know that the possible values of α_1 and α'_1 are 1-dimensional. Therefore, choosing the correct constant $c \in \mathbf{C}$ in (3.2), we get $\alpha_1 = \alpha'_1$. It follows that $\omega_1 = \omega'_1$, so $H(\mathbf{L}_{\omega'_1}) = 0$. Applying (4.1) to $\omega' = \omega'_0 + \omega'_1$, this implies that $H(\mathbf{L}_{\omega'}) = 0$. Thus Theorem 1 is proved for the case of K = SU(2).

We now consider the case K = SO(3), whose complexification is $G = SO(3, \mathbb{C})$. The Iwasawa decomposition of SO(3, \mathbb{C}) gives unipotent subgroup N_1 , as well as a maximal torus T_1 of SO(3). The double covering SU(2) \longrightarrow SO(3) extends to the covering

$$\pi: \mathrm{SL}(2, \mathbb{C})/N \to \mathrm{SO}(3, \mathbb{C})/N_1.$$

Here $\pi(T) = T_1$ is a double covering of the circle onto itself.

Because T_1 normalizes N_1 , it acts on SO(3, **C**)/ N_1 on the right. Let ω be an SO(3)-invariant Kähler structure on SO(3, **C**)/ N_1 , and suppose that it is not right T_1 -invariant. Then $\pi^*\omega$ is an SU(2)-invariant Kähler structure on SL(2, **C**)/N and is not right *T*-invariant. If \mathbf{L}_{ω} has any nonzero holomorphic section then it induces a nonzero holomorphic section on $\pi^*\mathbf{L}_{\omega}$, which is the prequantum line bundle corresponding to $\pi^*\omega$. This is impossible, so $H(\mathbf{L}_{\omega}) = 0$.

This proves Theorem 1 for *K* of rank 1.

5. Groups of Higher Rank

In this section, we consider the case where the rank of the Lie group K may be greater than 1. Recall that G = KAN is the Iwasawa decomposition and that H = TA is a Cartan subgroup of G. Let

$$n = \operatorname{rank} K = \dim_{\mathbb{C}} H.$$

Let ω be a K-invariant Kähler structure on G/N. It has the form

$$\omega = \sum_{0}^{n} \omega_{i} = \sqrt{-1} \partial \bar{\partial} F + \sum_{1}^{n} (\partial \alpha_{i} + \bar{\partial} \bar{\alpha}_{i}), \qquad (5.1)$$

as described in (2.1), where $\omega_0 = \sqrt{-1}\partial\bar{\partial}F$ is itself Kähler and has potential function. Suppose that ω is not right *T*-invariant, so that $\omega_i = \partial \alpha_i + \bar{\partial}\bar{\alpha}_i \neq 0$ for some i = 1, ..., n. Without loss of generality, we may assume that $\alpha_1 \neq 0$. Recall from Section 2 that α_1 is indexed by the simple root $\lambda_1 \in \mathfrak{h}^*$. Namely, under the right *H*-action, it transforms by the character $\chi_1 \colon H \to \mathbf{C}^{\times}$ associated to the root $\lambda_1 \in \mathfrak{h}^*$. This means that χ_1 satisfies $\chi_1(\exp v) = \exp(\lambda_1, v)$ for all $v \in \mathfrak{h}$, and that $R_h^* \alpha_1 = \chi_1(h)\alpha_1$ under the right action R_h of $h \in H$.

Let $\sigma \subset \mathfrak{t}$ be the hyperplane annihilated by λ_1 ;

$$\sigma = \{ v \in \mathfrak{t}; \ (\lambda_1, v) = 0 \}.$$

Let \mathfrak{k}^{σ} be the centralizer of σ in \mathfrak{k} , consisting of $\xi \in \mathfrak{k}$ such that $[\xi, v] = 0$ whenever $v \in \sigma$. We define the semisimple Lie algebra $\mathfrak{k}_{ss}^{\sigma}$ by

$$\mathfrak{k}^{\sigma}_{\mathrm{ss}} = [\mathfrak{k}^{\sigma}, \mathfrak{k}^{\sigma}] \subset \mathfrak{k}$$

Let $\mathfrak{g}_{ss}^{\sigma} = \mathfrak{k}_{ss}^{\sigma} \otimes \mathbf{C}$, and let a Cartan subalgebra of $\mathfrak{g}_{ss}^{\sigma}$ be given by

$$\mathfrak{h}^{\sigma} = \{ v \in \mathfrak{h}; \ (v, \sigma) = 0 \},\$$

where the pairing used is the Killing form. Let $\mathfrak{n}^{\sigma} = \mathfrak{g}_{ss}^{\sigma} \cap \mathfrak{n}$; then we have an Iwasawa decomposition

$$\mathfrak{g}_{ss}^{\sigma} = \mathfrak{k}_{ss}^{\sigma} \oplus \mathfrak{a}^{\sigma} \oplus \mathfrak{n}^{\sigma}. \tag{5.2}$$

Here $\mathfrak{t}_{ss}^{\sigma}$ is a rank-1 semisimple Lie algebra, and a maximal toral subalgebra of $\mathfrak{t}_{ss}^{\sigma}$ is given by $\mathfrak{t}^{\sigma} = \mathfrak{t} \cap \mathfrak{h}^{\sigma}$. From the Lie algebras in (5.2), we have the connected subgroups $G_{ss}^{\sigma}, K_{ss}^{\sigma}, A^{\sigma}, N^{\sigma}$ of *G*. Also, T^{σ} is the subgroup corresponding to \mathfrak{t}^{σ} and $H^{\sigma} = T^{\sigma}A^{\sigma}$ is a Cartan subgroup of G_{ss}^{σ} . Consider the complex manifold $G_{ss}^{\sigma}/N^{\sigma} = K_{ss}^{\sigma}A^{\sigma}$. Since H^{σ} normalizes N^{σ} , it acts on $G_{ss}^{\sigma}/N^{\sigma}$ on the right. The space $G_{ss}^{\sigma}/N^{\sigma}$ imbeds naturally into G/N,

$$j: G^{\sigma}_{ss}/N^{\sigma} \hookrightarrow G/N.$$
(5.3)

This is a holomorphic $K_{ss}^{\sigma} \times H^{\sigma}$ -equivariant imbedding. Since ω and ω_0 of (5.1) are *K*-invariant Kähler forms, it follows that $j^*\omega$ and $j^*\omega_0$ are K_{ss}^{σ} -invariant Kähler forms on $G_{ss}^{\sigma}/N^{\sigma}$. But since ω_1 is not Kähler, some work is still needed to ensure that it does not vanish on $G_{ss}^{\sigma}/N^{\sigma}$.

PROPOSITION 5.1. Let *j* be the imbedding (5.3), and let $\omega_1 \neq 0$ be the *K*-invariant (1, 1)-form in (5.1). Then $j^*\omega_1 \neq 0$.

Proof. Recall the elements $\zeta_1, \gamma_1 \in V \subset \mathfrak{k}$ in (2.3) and their dual $\zeta_1^*, \gamma_1^* \in \mathfrak{k}^*$. By Proposition 2.1, $\omega_1 = \partial \alpha_1 + \bar{\partial} \bar{\alpha}_1$ satisfies $(\alpha_1)_e = c(\zeta_1^* - \sqrt{-1}\gamma_1^*)$ for some nonzero constant $c \in \mathbb{C}$. Here $e \in G_{ss}^{\sigma}/N^{\sigma} = K_{ss}^{\sigma}A^{\sigma} \hookrightarrow KA = G/N$ is the product of identity elements of *K* and *A*. Since *j* is $K_{ss}^{\sigma} \times H^{\sigma}$ -equivariant, $j^*\alpha_1$ is K_{ss}^{σ} -invariant and transforms by $\chi_1 : A^{\sigma} \to \mathbb{R}^+$ under the right A^{σ} -action.

Because \mathfrak{k}^{σ} centralizes σ , (2.4) implies that $\zeta_1, \gamma_1 \in \mathfrak{k}^{\sigma}$. Also, up to a constant scalar, $[\zeta_1, \gamma_1] \in \mathfrak{t}$ is the vector dual to the restricted root $\lambda_1 \in \mathfrak{t}^*$ via Killing form. Thus $[\zeta_1, \gamma_1] \in \mathfrak{t}^{\sigma} \subset \mathfrak{k}_{ss}^{\sigma}$. In fact, taking the real span of these two vectors, we have a vector space direct sum

$$\mathbf{\mathfrak{k}}_{\mathrm{ss}}^{\sigma} = \mathbf{\mathfrak{t}}^{\sigma} + \mathbf{R}(\zeta_1, \gamma_1). \tag{5.4}$$

Here λ_1 is the unique positive root of this rank-1 Lie algebra. We compare (5.4) with (2.2) and apply Proposition 2.1 to $G_{ss}^{\sigma}/N^{\sigma}$. It says that every K_{ss}^{σ} -invariant Kähler structure ω' on $G_{ss}^{\sigma}/N^{\sigma}$ can be expressed uniquely as $\omega' = \omega'_0 + \omega'_1$, where $\omega'_1 = \partial \alpha'_1 + \bar{\partial} \bar{\alpha}'_1$. Further, the K_{ss}^{σ} -invariant α'_1 transforms by χ_1 under the right A^{σ} -action, and $(\alpha'_1)_e = c'(\zeta_1^* - \sqrt{-1}\gamma_1^*)$ for some $c' \in \mathbf{C}$. If $c' \neq 0$ then $\omega'_1 \neq 0$. Set c = c', so that $(\alpha_1)_e = (\alpha'_1)_e$. Both α_1 and α'_1 are K_{ss}^{σ} -invariant and transform by $\chi_1: A^{\sigma} \to \mathbf{R}^+$ under the right A^{σ} -action. Therefore, since $K_{ss}^{\sigma} \times A^{\sigma}$ acts transitively on $G_{ss}^{\sigma}/N^{\sigma}$, $(\alpha_1)_e = (\alpha'_1)_e$ implies that $j^*\alpha_1 = \alpha'_1$. Then

$$j^*\omega_1 = j^*(\partial\alpha_1 + \partial\bar{\alpha}_1)$$

= $\partial j^*\alpha_1 + \bar{\partial} j^*\bar{\alpha}_1$
= $\partial\alpha'_1 + \bar{\partial}\bar{\alpha}'_1$
= $\omega'_1 \neq 0.$

This proves the proposition.

Recall that $\chi_1: T \to S^1$ is the character corresponding to the restricted root $\lambda_1 \in \mathfrak{t}^*$. Since $(\lambda_1, \mathfrak{t}^{\sigma}) \neq 0$, there are many $t \in T^{\sigma}$ such that $\chi_1(t) \neq 1$. For such *t*, let R_t denote its right action. Then, since *j* is $K_{ss}^{\sigma} \times H^{\sigma}$ -equivariant,

$$R_t^* j^* \omega_1 = j^* R_t^* \omega_1 = j^* \chi_1(t) \omega_1 = \chi_1(t) j^* \omega_1 \neq j^* \omega_1.$$

It follows that $j^*\omega$ is not invariant under the right T^{σ} -action.

As observed in Section 2, ω is exact, so there exists a complex line bundle **L** whose Chern class is $[\omega] = 0$. It is equipped with a connection whose curvature is ω . Suppose that $s \neq 0$ is a global holomorphic section of **L**. We derive a contradiction from here. Since *G* acts transitively on G/N, we may assume that $s_p \neq 0$ for some $p \in G_{ss}^{\sigma}/N^{\sigma} \hookrightarrow G/N$. Then j^*s is a holomorphic section of the line bundle $j^*\mathbf{L}$ on $G_{ss}^{\sigma}/N^{\sigma}$, and it is not the zero section. But $j^*\mathbf{L}$ is the prequantum line bundle corresponding to Kähler form $j^*\omega$. Since K_{ss}^{σ} has rank 1, this contradicts the result of Section 4. We therefore conclude that the only global holomorphic section of **L** is the zero section. This completes the proof of Theorem 1.

References

- [1] A. Borel and A. Weil, *Représentations linéaires et espaces homogènes Kählerians des groupes de Lie compacts*, Séminaire Bourbaki, 1954.
- [2] T. Bröcker and T. tom Dieck, *Representations of compact Lie groups*, Springer, New York, 1985.
- [3] M. K. Chuah, K-invariant Kaehler structure on K_C/N and the associated line bundles, Proc. Amer. Math. Soc. 124 (1996), 3481–3491.
- [4] M. K. Chuah and V. Guillemin, *Kaehler structures on K_C/N*, Contemp. Math., 154, pp. 181–195, Amer. Math. Soc., Providence, RI, 1993.
- [5] I. M. Gelfand and A. Zelevinski, Models of representations of classical groups and their hidden symmetries, Funct. Anal. Appl. 18 (1984), 183–198.
- [6] V. Guillemin and S. Sternberg, Geometric quantization and multiplicities of group representations, Invent. Math. 67 (1982), 515–538.
- [7] V. Guillemin and S. Sternberg, Symplectic techniques in physics, Cambridge Univ. Press, 1984.
- [8] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Academic Press, New York, 1978.
- [9] B. Kostant, *Quantization and unitary representations*, Lecture Notes in Math., 170, pp. 87–208, Springer, Berlin, 1970.
- [10] H. S. La, P. Nelson, and A. S. Schwarz, *Virasoro model space*, Comm. Math. Phys. 134 (1990), 539–554.

Department of Applied Mathematics National Chiao Tung University Hsinshu, Taiwan

chuah@math.nctu.edu.tw