Families of Morse Functions
Parameterized by Maxima

MicHAEL D. HirscH & MoRrRIsS W. HIRSCH

0. Introduction

A C?function f: M — R on a Riemannian manifold¥ is called aMorse func-

tion if, at every critical pointp, in local coordinates the Hessian matdif,, is
nonsingular. The classical Morse’s lemma states that, in suitable local coordinates
centered at a critical pointf, is expressed as a sum and difference of squares of
coordinates.

Morse functions have been of great importance in differential topology and dy-
namical systems. Mobius’s proof of the classification of surfaces decomposed a
surface into elementary pieces bounded by noncritical level sets of a Morse func-
tion (Mobius [9]; see Hirsch [3] for a modern presentation). In a far-reaching de-
velopment of M6bius’s idea, Smale [12] used Morse functions in an essential way
to prove his generalized Poincaré conjecture: he showed that, for a generic set
of Morse functionsf, the stable and unstable manifolds of singular points of the
gradient vector field/f provide dual cell decompositions #f. For discussion of
Smale’s work see Hirsch [4].

Stable and unstable manifolds ®f also played a key role in Smale’s work
[13] on structural stability of generic gradient flows. One-parameter families of
Morse-like functions were utilized by Cerf [2] for analyzing the diffeomorphism
group of S°.

In a different type of application, which motivated this paper, Rimon and
Koditschek [11] used gradients of Morse functions to attack a problem in ro-
botics. They gave a formula for analytic Morse functions on domains consist-
ing of a closed:-ball D" with the the interiors of smaller-balls deleted, having
prescribed critical points and boundary values. It is noteworthy that the Rimon—
Koditschek formula depends discontinuously on a certain parameter derived from
the data. This raises the problem of determining whether continuous formulas
exist.

We simplify the problem by considering only Morse functiohs D? — R on
the closed unit diskD = D? having the following properties.
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HypoTHEsIs 0.1.

(&) f has precisely local maxima;

(b) f has no local minima;

(c) the gradient vector fielsff of f points inward at boundary points &f;
(d) f is of differentiability classC?.

The spaceM, of such functions is given th€? topology. ThusM, is an open
set in the Banach space 6 functions on the disk.

We are chiefly concerned with= 3. The Morse inequalities (or older results
going back to Poincaré and even Maxwell) imply that a functiop g has pre-
cisely two saddle points in addition to the three local maxima.

LetC, be the space of unordered setg dlistinct points in the interior InD of
the disk. Define the continuous map: M, — C,, which assigns to eacfi its
set of maxima. In Section 3 we show that this is a locally trivial fibre space.

Our main result is that; does not have a section.

TueoreM 0.2. There is no continuous map: C3 — M3z such thatuz oo is the
identity map ofCs.

Note that it is easy to construct a sectionoafC, — M, of u,; for example,
o(a,b) = 0, Where

0ap(x) = —llx — al?llx — b|% @)

The same formula works in any dimension. The analogous formula for three or
more critical points does not always define a Morse function, however; this is
discussed in Section 3.

We consider also the spaﬂé, of labeledMorse functions inM,: An element
of M, is an ordered paitf, (m, ..., m,)), where f € M, and(my, ..., m,)
is a list of its maxima. M, is topologized so that the natural “forgetful” map
D g M, - M, isa covering space.

Denote byC, c D x - - - x D the manifold of lists of distinct pomts of the disk.

The forgetful mapd,: C — C, is a covering space. The map= i, : M, —
C,., which assigns to each labeled Morse function its list of maxima, is continuous.

The question of whethgt, has a section is a natural one. Itis easy to seqihat
has a section. We prove in Section 3 that, in contrast to Theoremi§.2; —

M doeshave a section.

Theorem 0.2 is an immediate corollary of a more general result, Theorem 0.4,
about families ofC?! vector fields onD? whose flows have dynamical properties
similar to the gradients of the Morse functions considered in Theorem 0.2, but
which are not required to be gradient fields.

Our main tools are unstable manifolds, and especially their saddle connec-
tions. A key computation makes use of the structure of the braid group on three
strands.

Analogous questions can be raised for higher-dimensional disks, and indeed for
Morse functions on arbitrary manifolds. We suspect that, except for very special
cases, there do not exist sections.
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All maps are assumed or easily proved to be continuous unless the contrary is
mentioned. Sections, in particular, are continuous.

It will be more convenient to work with vector fields than with functions. Let
X: D — R? be aC? vector field. Anequilibrium p € D is a point for which
X(p) = 0, or equivalently, a fixed point for the flow generated by. Recall
that p is hyperbolicif the Jacobian matrixXDX(p) is invertible and has no pure
imaginary eigenvalue. A hyperbolic equilibrium isek if the real parts of the
eigenvalues are negative, andaddleif one eigenvalue is positive and the other
is negative. A sink is an asymptotically stable fixed point$or

Let » denote a positive integer. We work in the spageof C* vector fields
X: D — R?on the disk having the following properties.

HypoTHEsIs 0.3.

(a) all equilibria are hyperbolic with real eigenvalues;

(b) there are sinks,r — 1 saddles, and no other equilibria;

(c) X is transverse inward odD;

(d) every complete semitrajectory i converges to an equilibrium;
(e) there are no heteroclinic or homoclinic loops.

These properties are equivalent to Smale’s Axiom A, and they imply the existence
of a smooth Liapunov function for the corresponding flow (see Smale [13]).

Itis easy to see that, is an open set of the Banach spac€éfvector fields on
the disk (compare Abraham and Robbins [1]). In particular, we may congjder
as an infinite-dimensional analytic manifold.

It is clear that the gradient vector field of a functioni, lies inV,, and that
the resulting map\U, — V), is a homeomorphism onto its image. By assigning to
each vector field its set of sinks, we define a continuous Yhap- C,. By a con-
venient abuse of notation we denote this/y In Theorem 3.2 we prove that,
is a fibre bundle projection.

Theorem 0.2 is an immediate consequence of the following.

THeoreEM 0.4. The mapus: V3 — C3 has no section.

As the space¥, for r > 3 will play little role in this paper, we simplify notation
by settingV; = V andus = u.

Later we shall need to consider the covering sphge V — V, whereVis the
space of pairs comprising a vector fieldirtogether with an ordering of its sinks,
and®,, is the forgetful map.

Outline of Proof. The proof is by contradiction. A sectian: C3 — V of p in-
duces the homomorphism of fundamental groapsmz1(C3) — m1(V). By Hy-
pothesis 0.3(b), evety € V has two saddles. These vary continuously &t he
resulting continuous map: V — C» induces the homomorphism: 7:(V) —
m1(C2) of fundamental groups.

Sincer1(C,) = B,, the braid group om strandsg determines in this way a
homomorphism of braid groups, o o,: B3 — Bz. This homomorphism may,
of course, depend otn; however, by analyzing on a particular toral subset of
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C3, we can make an a priori computation of the value,of o, on a certain ele-
ment of B3. Finally, it will be easy to show algebraically, from the structure of
braid groups, that no homomorphis®g — B, can realize this computation. This
contradiction will complete the proof.

Section 1 sets up the basic definitions and constructions needed for Section 2,
in which Theorem 0.4 is proven. Section 3 further explores the bundle of Morse
functions and has some positive results. The final section contains some open
problems and discussion.

1. Loops, Isotopies, and Winding Numbers

In this section we develop the topological tools needed for the proof of the main
theorem. Smale [13] or Hirsch and Pugh [5] can be consulted for the theory of
stable and unstable manifolds.

The Unstable Manifold Complex

Let W denote the flow generated by a vector figlce V. Let p € Int D be a sad-
dle equilibrium forX. The stable manifoldW*(p, X) = W*(p) is the set ofx
D such that lim_ . ¥,(x) = p. There is an injectiveC® immersioni: J —
D, whereJ C R is a closed infinite interval, such thatJ) = W3(p, X). If
W(p, X) is disjoint from the boundary circleD, thenJ = R; otherwise, the
unique endpoint of is mapped by: to W¥(p, X) N aD.

Theunstable manifolaf p is the seW"(p) = W*(p, X) comprising all points
x € D such that lim_, _o, ¥, (x) = p. Itis the injective image of &€ immersion
of R.

Deletingp from its stable manifold leaves twiranchesof the stable manifold,
homeomorphic to open or half-open intervals. The unstable manifold similarly
has two branches. Each branch is invariant under the flow and is thereftre a
curve; its closure is & arc. Only a stable branch (i.e., a branch of a stable man-
ifold) can be a half-open interval, by Hypothesis 0.3(c). This occurs when a point
of the stable branch is on the disk’s boundary.

A saddle connectioiis a branch that connects two saddles, or connects one
saddle to itself; however, the latter situation (a homoclinic loop) is precluded by
Hypothesis 0.3(e). Nor can two branches reciprocally connect a pair of saddles
(producing a heteroclinic loop). By 0.3(e), there is at most one saddle connection.

Each unstable branch is a complete orbit, which by 0.3(d) connects two equi-
libria. These equilibria are distinct by 0.3(e); one or both may be saddles.

GivenX eV, let Kx be theunstable manifold complef the saddles oX, that
is, the closure of the union of the unstable manifolds of the saddles. We show in
Proposition 1.1 thaKy is a contractible graph having as vertices the three sinks
and two saddles oX. These graphs divide into two homeomorphism types—"T-
shaped” and “V-shaped”—according to whetbehnas a saddle connection or not.

By labeling the equilibria we makgy into a labeled graph.

Figure 1 is a picture of the two types of complexes. Small parts of the stable
manifolds have been drawn to indicate the saddles, and arrows on the unstable
manifolds indicate the direction of the flow.



Families of Morse Functions Parameterized by Maxima 351

P S P Q
Q
- S s
s
e} o
(a) T-shaped (b) V-shaped

Figure1 The two combinatorial types of unstable manifold complexes

ProrosiTiON 1.1. For each vector field( € C3, one of the following conditions
holds for the compleXy:

(i) there are no saddle connections aikd, is homeomorphic to a compact
interval;
(i) thereis just one saddle connection akig is homeomorphic to the triod

T={(x,y)eR?:xy=0-1<x<1 0<y<1}

Proof. Suppose there is no saddle connection; then each unstable branch limits
at a sink. Since there are four unstable branches and three sinks, two unstable
branches must limit at the same sink.

These two branches can not be from the same saddle, §ay otherwise the
closure of their union would form a Jordan curve bounding a simply connected
compact invariant seR C Int D. For any pointx € W*(s) N R, there exists an
equilibrium lim,_, ., ¢_,x = p. But p must be a saddle, violating the assumption
of no saddle connections.

A similar argument shows that of the four unstable branches, precisely two limit
at a common sink. This suffices to prove (i). Similarly, if there is a saddle con-
nection it is easy to see that (ii) holds. O

LetV+ C V denote the closed set of vector field34aving a saddle connection;
that is,Vt is the set of vector fields with T-shaped unstable manifold complexes.
It is known thatV is a closed set which is @' submanifold (Abraham and
Robbins [1]).

Isotopies of Unstable Manifold Complexes

A pathin a spacer isamapl — E defined on the closed unitintervak= [0, 1].
A path which identifies the endpoints biis aloop.

LetY: I — V be path, that is, a 1-parameter family of vector fields. Denote
the unstable manifold compleky ;) by K.
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A labelingfor Y is an indexed set of five pathig.;: I — D:i=1,...,5}in
D such that, for eache I, the set{x;(¢), i =1, ..., 5} consists of the five equi-
libria of Y (). Even if Y is a loop, it is possible that some of the pathsare not
loops. If all thex; areloops then we say that the labelifig } is consistent.

Because the equilibria occurring in a 1-parameter family of vector fields in
cannot coalesce (owing to hyperbolicity), every labelfagl has the important
property that, for alt,

Li(t) #rj(@) 0f i #

By continuity, the labeling is completely determined by its initial val{ieg0)}.
Moreover, for eachi, the type (sink or saddle) of the equilibrium(¢) remains
constant as varies.

We often denote a labeling byO (), P(¢), Q(t), s1(t), s2(t)}, with O, P, O
labeling sinks andj, s, labeling saddles.

LEmMA 1.2. Every pathY in V has a labeling.

Proof. It suffices to prove this locally id, that is, to show that every point @f
has a closed interval neighborhoédc I such that’|J has a labeling. For this it
suffices to construct the pathgr) separately for each

Fix tg € I and letpg € Int D be an equilibrium for the vector field(zg): D —
R?. We seek amap: J — R?in a subintervall containingt, such that

Y() (A1) =0, (2)
t0) = po. 3)

Hyperbolicity of pg validates application of the implicit function theorem to ob-
tain the desired map. O

The pathy : I — Vispureif eitherY(I) c YVt orY(I) Cc V\V. Thus either all
the K, are T-shaped or all are V-shaped. In the first case we&'dagstypeT and
in the second caggpeV.

An isotopyof unstable manifold complexes ovEris a map

H:KoxI— D, H(x,t)= H/(x), 4)

with the following properties:

(a) for eachr € I, H, mapsK, homeomorphically ont&,,

(b) Hjy is the identity map oK.

Each vector fieldY () has nondegenerate equilibria (Hypothesis 0.3(a)); thus,
given a labelind;}, both{i;} and{H, (1;(0))} are labelings with the same initial
values. HenceH,(1;(0)) = »;(¢) foralli e {1,...,5} witht e I.

ProrosiTioNn 1.3. If Y: I — Visapure path, thenthere is an isotopy of unstable
manifold complexes ovét. In fact, every labeling extends to an isotopy.

The first thing we need to establish is that the way unstable branches connect equi-
libria cannot change discontinuouslyrin_et {1;} be a labeling for a pure path
We abbreviatéV*(x;(¢), Y (¢t)) = W*(, t), and similarly forw*.
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An i, j connection at € I is a branch oW*(i, t) going from a saddle;(¢) to
a sink or another saddlg(¢). Equivalently, it isW*(i, t) N W*(j, t).

Lemma 1.4. If Y: I — Vis a pure path and there is anj connection at some
to € I, then there is ani, j connection at eache 1.

Proof. Fix a compact ard in the branchW(i, to) N W3(j, to) having;(zg) as

an endpoint. Continuity of unstable manifolds (Hirsch and Pugh [5]) means that,
for anye > 0, there exist$ > 0 such that ifir — 79| < § thenW"(i, r) contains

a compact ard, havingx;(¢) as endpoint, and there is diffeomorphigm A —

A, within ¢ of the identity map ofd in the C* topology.

Consider the case whekg(r) is a sink forY (rg), so thatW?(j, 7o) is an open
setinD. Itis well known (see e.g. Hirsch and Smale [6, Chap. 16]) that, for any
compact seD C W*(j, to), there is a neighborhoaly” of Y (o) in space ofC*
vector fields onD such that ifX € A/ thenX has a unique hyperbolic sirkwith
the property thaD c W*(g, X). This implies that forr sufficiently near, we
have A N W3(j, 1) # @. It follows that there exists > 0 such thatr — 7] <
8 implies g;(A) N W(j, 1) # §. Sinceg,(A) C W*(x;(¢)), this exhibits an, j
connection for nearzg.

Suppose now that; (¢) is a saddle and that (o) is also. Therk,, is T-shaped,
S0 K, is T-shaped for ali. Of the four unstable branches, three go to sinks and one
goes fromk; (7o) to A(fo). Under sufficiently small perturbations, the correspond-
ing unstable branches go to corresponding sinks, by the preceding continuity con-
siderations. Therefore it must be that, forzala branch ofW*“(x;, r) connects to
a saddle. Since there are no homoclinic loops, it must connéttta;, r). O

Proof of Proposition 1.3.For each’ we defineH, on equilibria inKy by
H;(2:(0)) = 4,(t).

Let i, j be such that there is anj connection at some € I. Hence, by
Lemma 1.4 there is ai j connection at for all ¢+ € I. We denote this branch
by B,(i, j) = W“(,t) N W*(j, 1); its closure is &C* compact ard’, (i, j). For
eachr € I, the union of these arcs is;.

We defineH, (i, j): Co(i, j) — C(i, j) so that it multiplies length by a con-
stant, as follows. For anye I andz € C,(i, j), let A;(z) denote the arc length
alongC, (i, j) from A;(s) to z. Forx € Co(i, j) we defineH,(x) to be the point
y € C,(i, j) such that

A(y) _ Aon)

A A
Continuity of unstable manifolds implies that the resulting nt&(x, 1): Ko —
K, is continuous and thus a homeomorphism. O

It is easy to see, using purity &f and continuity of stable manifolds, that for any
11, t» € ST the unstable manifold complexes ¥fr,) and X (¢,) are isomorphic as
labeled graphs.

CoroLLARY 1.5. All the unstable manifold complexé§ for a pure path are
isomorphic as labeled graphs.
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Winding Numbers

Let ST = {x € R? : ||x|| = 1} denote the unit circle. Recall that to each loop
A: I — S'there corresponds an integer ¢eg called itsdegreedefined as fol-
lows. Expressi(z) continuously as.(z) = (cosf(t), sind(z)). As 6(¢) is well
defined modulo 2, we can define degi) = (0(1) — 6(0))/2x. Loops that are
homotopic (through loops) have the same degree.

Let P! denote the (real) projective line, that is, the space of lines through the
origin in R2. An elementL e P! is represented ihomogeneous coordinatey
[a, b], where(a, b) # (0, 0) is any point onL \ (0, 0). The formula

. 6 .0
h(cosh, sinf) = | cos—, SIn—
coss.sin)  [cost. sin’|

defines a homeomorphism S* — P?*.
To aloopir: I — P! we also assign a degree:
deg, (1) = degg(h 1o 1),
noting that:~1 o A is a loop in the circle.
Consider now the canonical double covering projection
7: 8t P (x,y) > [x, ]

The following lemma is well known.

LEmMA 1.6.

(@) If »: I — Stisaloop, therdeg, (7 o 1) = 2deg A.
(b) A loop in P lifts throughz to a loop inS* if and only if its degree is even.

Recall thatC, is the space of unordered pairs of distinct points in the disk and that
Cyis the space of ordered pairs of such points. The canonicakmaf, — P?!

into the (real) projective line*! is defined by sendingu, v} € C, to the point of

P! with homogeneous coordinates |- vy, u» — vs]. Thusy ({u, v}) = [u1— vy,

us — v2]. We denote byjr: C, — S* the unique continuous map coveriggso

that the following diagram commutes:

ég# Sl

Lo

CZ L} Pl’
where the vertical maps are the canonical projections.
Letp: I — C, be aloop. Topo we associate an integer, called ft®jective
relative winding numbePRWN(p), defined as the degree of the composition
125 c, L P,

This is invariant under homotopies of loopsin
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Lemma 1.7. Aloopp: I — C, lifts to a loop inC» if and only if PRWN(p) is
even.

Proof. Consider the commutative diagram
A v 1
Co —— S
I —2> ¢, —X py

PRWN(p) is even if and only ifi o p lifts to a loopI — S*, by Lemma 1.6. By
properties of covering spaces, this is equivalent tifting to a loop inC». O

In the rest of this section we assume thiat/ — V is a pure loop with labeling

{20} ={0), P(1), Q(1), 51(1), 52(1)}

in the notation of Section 1. Without loss of generality we assume that the labeling
of Kgis as in Figure 1.

Then for allz, the equilibriaO(¢), P(t), and Q(¢) are sinks, whiles;(¢) and
s2(t) are saddles. Sincéis a loop, each sink (or saddle) fB(1) coincides with
a sink (or saddle, respectively) far(0), but perhaps with a different label. It
turns out (Proposition 1.9) that If takes values iVt then the labeling is in fact
consistentA;(0) = 1;(D) fori =1,...,5.

Aglance at Figure 1 shows thB{z) andQ (¢) can be topologically distinguished
from O(¢) in K, (but not from each other). That is, no homeomorphismtofan
sendP (¢) or Q(¢) to O(t). Moreover, the saddles are topologically distinguishable
from the sinks.

Consider a pair of distinct indices4 i, j < 5 such that the map

8ij: 1 —>Cy t+ {)\i([),)\.j([)}

is a loop; that is{A;(0), 2;(0)} = {Ar;(1), 2;(1)}. Denote the projective relative
winding number ofg;; by d); = d;;. Notice thatg;; andg;; are the same map,
WhenC&i,'j = dj,‘.

ProrosiTION 1.8. LetY: [0, 1] — V be a pure loop. Thedg is the same for alll
pairs (i, j), wherei, j = 1,...,5andi # j, such thatg;; is a loop.

Proof. Consider two such pairg, j) and(k, 7). We look for paths:, v: I — Ko

such that

(@) {u(0), v(0)} = {1:(0), 4; (O},

(b) {u(1), v(D)} = {Ax(0), 1,(0)}, and

() u(s) #v(s),sel.

Given such: andv, we obtain a homotopy from; to gy, as follows. Define
G,: 1 — P,

G,(t) = y({H,(u(s)), H(v(s))}), s,1€l,
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whereH is an isotopy of unstable manifold complexes covering the patbee
(4)). ThenH; is a homeomorphism oK to itself that permutes the equilibria
among themselves, and the saddles among themselves, an@ ®esloreover
H; maps each unstable branchyaf) to an unstable branch af(0).

Properties (a) and (b) ensure titag = g;; andG1 = gi, while (c) implies that
{H;(u(s)), H;(v(s))} € C2. Thus the existence of sueh v will imply d;; = dy.

If such a pairu, v exists then we writé, j ~ k, [. Standard homotopy theory
implies that this is an equivalence relation. It therefore suffices to prove that, for
anyi, j,k,l€{1,...,5 withi # jandk # [, we have eithet, j ~ k,lori, j ~
I, k.

Consider first the case th#ttakes values ivt. Let the equilibria inKg be la-
beledO, P, Q, 51, s2, as in the left-hand side of Figure 1. We extend these labels
to a labeling oftY by Lemma 1.2.

In order to prove0, s; >~ O, s,, we definex: I — K to be the constant path
at O andv: I — Kj to be the path froms; to s, whose image is the closure of
Wh(s1) N W¥(s2)—in other words, that branch d¥“(s;) which leads to, (the
upper branch in Figure 1).

A similar construction shows tha&?, s, =~ 53, s2. Now, by transitivity,O, s; ~
51, §2.

Proceeding in this way reveals thatj ~ k, [ for i # j andk # . This proves
the proposition for the T-shaped case. The proof for the V-shaped case of unsta-
ble manifold complexes is similar, except that for each sughk, I we can only
prove that eithef, j ~ k, [ or elsei, j >~ [, k. This, however, suffices to complete
the proof. O

ProrosiTioN 1.9. SupposeY is a pure loop inVy. Then every labeling is
consistent.

Proof. We assume the labeling is

{Ma1(2), A2(1), A3(2), Aa(r), As(t)} = {O(1), P (1), Q(1), 51(1), 52(1)}

as usual.

By Lemma 1.7 it suffices to prove théj is even wheri # j. By Proposition 1.8
it is enough to prove thai, s is even or, equivalently, that the saddles cannot be
interchanged by an isotopy of T-shaped unstable manifold complexes. This is ob-
vious because in a T-shaped complex the saddles are topologically distingt.

The analogous statement is false for V-shaped pure loops, as there are loops in
VY \ V1 whose induced isotopy of unstable manifold complexes starts and ends
with the right hand diagram in Figure 1 (ignoring labels) but excha®yard Q.

2. Proof of the Main Theorem

In proving the main theorem we make use of a certain t@ras C3 of configura-
tions. Ifo: C3 — Vis a section then (T) is a torus of vector fields. From loops
in T we obtain, viao, isotopies of stable manifold complexes and hence winding
numbers.
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Tori

The standard torusT'? is the Cartesian produstt x S* of unit circles. The two
projectionsT? — S*induce an isomorphism of the fundamental grouf ®fvith

Z x Z. Thus to each loop ifT'? we assign an ordered pair of integers called its
type. To an oriented embedded circ ¢ 72 we assign the type of any charac-
teristic loop forX. The type of an unoriented embedded circle means the type for
some convenient orientation.

LEmma 2.1. Let = c T2 be an oriented embedded circle of ty@e, n). Then
one of the following holds

(@ m=n=0;or
(b) |m| and |n| are relatively prime.

Proof. This well-known topological fact (due to Hopf?) can be proved as follows
from the theory of covering spaces and the classification of surfaces. Suppose
(a) does not hold. TheR represents a nontrivial homotopy clasg 71(T?) =

Z x Z. There is a unique maximal positive integesuch thaix = k8 for some
nonzero clasg € m1(T?), namely, the greatest common divisor |of|, |n|. If

k = 1 then the proof is complete.

There is a covering spage. E — T2 such thatry(E) = Z, p.(1) = B, and
ps(k) = a; we may takeE = R?\ 0. The covering homotopy theorem yields a
mapf: ¥ — E suchthat o f is the identity map ok. Thereforef(X) C E is
a Jordan curve representikgimes the generator of,(E).

In other words, the winding number of the Jordan cuf¢&) about the origin
in R? is k, and a classical theorem says= 1. O

We now describe an important torus of configurations (see Figure 2). Define the
subsefl’ C C3 to be the set of those unordered triples in the interiabdhat can

be labeled 0, P, Q), whereO is the origin andP, Q are antipodal points on the
circle of radius% centered at a point at distanéérom 0.

Figure 2 The torusT of configurations irC3
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The torusr is an analytic submanifold @f;, diffeomorphic to the (nonstandard)
torusS* x P! by the map

P

r=0wur): T — Stx P, {O0,P, Q) <”P“,

v({P, Q})>,
wherey : C, — P is the canonical map defined in Section 1. Notice that
induces an isomorphism of fundamental groups.

Aloop A: I — T determines an element in the fundamental grouf, e¥hich
is isomorphic t&Z x Z underr,.. Thus to each loop we associate an ordered pair of
integers(m, n), called itstype m is the degree of the loop o A: I — S*, while
n is the degree of, o A: I — P*. From this and the definition of the projective
relative winding number (PRWN), the following computation follows easily.

LeEmMma 2.2. LetA: I — T,t+— (O(t), P(t), Q(t)) be aloop such thaD(z) is
the origin, P(0) = P(1), and Q(0) = Q(1). Leta € Z be the PRWN of the loop
in C, defined by — (O(¢), P(¢)). Similarly, letb € Z denote the PRWN ofi—
(P(t), Q()). Theni has typea/2, b).

The following results will be used to show that certain kinds of loop¥ imust
contain vector fields having T-shaped unstable manifold complexes.

LemMma 2.3. LetX c T be an embedded circle. Assume there exists an embed-
ded circleA c V \ V1 that maps homeomorphically ont under the canonical
mapu: V — Cs. Then, with suitable orientatiord; has type(1, 2) or (0, 0).

Proof. Fix a characteristic map: I — A for A. Thenv: I — Visapureloopin
the sense of the preceding sections, with V-shaped unstable manifold complexes.
Consider a labeling; } for u o v with

{21(0), 12(0), 13(0), 24(0), A5(0)} = {O, P, Q, 51, 52}

andO(r) at the origin. The labeling may not be consistent, in which case the loop
interchanges” with Q ands; with s,. In any casep#v, the composition of the
pathv with itself, is consistently labeled.

It follows from Lemma 1.7 that the projective relative winding number of
v#v is even. Therefore, from Proposition 18; = 2n for all i # j. Thusv#v
has typan, 2n) by Lemma 2.2, so the degreeXfis (n/2, n). Sincen/2 must be
integral,> has degreék, 2k). By Lemma 2.1)k| = 1 or O O

CoroLLARY 2.4. Let A C V be a set mapped homeomorphicallytbyV — C3
to an embedded circl& c T. If ¥ has typel, 0), then A meetsV in at least
one point.

The next proposition concerns a circle of tye2), embedded in the torug that
is covered by a pure typE loop Y in V. Figure 3 suggests such a circle, together
with the unstable manifold comple, for Y (¢).
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Q(b)

“~|

Figure 3 A (1, 2)-circle in T lifting to a type-T loop

ProPOSITION 2.5. AssumeQ? c V is a C! 2-dimensional submanifold trans-
verse toV1 that maps homeomorphically onfounder .. ThenQ? N V1 contains
an oriented embedded circle such thatu(A) has type(l, 2).

Proof. We first show thatQ? N V1 is nonempty. In fact, from Corollary 2.4
we see that, iS C T is any embedded circle of typ&, 0), then the circleA =
(1] 0 ~1(X) must meeVr. Therefore, by the transversality assumptiod N V1
is a nonempty compact submanifold@f of dimension 1 and hence a finite union
of disjoint embedded circles; c T (j =1,...,N, N > 1).

Setu(Aj) = X; C T. As aloopinT, X; has type(n;, 2n;) with |n;| < 1, by
Lemma 2.3. We orienk; so thatn; > 0.

It cannot be that alk; = 0. To see this, suppose otherwise. Then e&gh
bounds diskD; in T and, since the boundaries are disjoint, each pair of these disks
is either disjoint or nested. We may therefore change their indexing so that, for

some 1< m < N, the maximal disks are disjoint diskB, . .., D,, and their
union contains all thé®;, j =1,..., N.
Now, by shrinking Dy, . . ., D,, isotopically, one can see that there exists a

type«(1, 0) embedded circl& C T disjoint from theD;. ThusX is disjoint from
w(Q?NT), contradicting the second sentence of the proof. Therefpote 1 for
some;. O

Completion of Proof of the Main Theorem

The following notation will be used. 1B is a loop in a spacé&, then [8] de-
notes the element of the fundamental grewjpE ) represented by. Wheng is
a characteristic loop for an oriented embedded circle E, we also denote this
element by I'].

Suppose now there is a section C3 — V. Invoking standard approximation
techniques, we assume the restricttdi is smooth and transverse Y.
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LeEMMA 2.6. There is an oriented embedded cirdlec T such that

(1) o(A) C V7, and
(i) A hastypel, 2).

Proof. Apply Proposition 2.5 ta@? = o(T). O

Lety:V — C, assign to each vector field its set of saddles. We obtain a contin-
uous mapr = y oo : C3 — C, and the corresponding homomorphispof fun-
damental groups, which in this case are braid groups. Thus a section gives us a
homomorphism of braid groups : Bs — B». Because& , admits the projective
line as deformation retract, we make the identificathan= Z.

The standard presentation Bf has generatois, a, and the relatioa;asa; =
azaiay; see Figure 4.

A
A

a as

Figure 4 The two generators a3

Let:: T — C3 denote the inclusion. Consider the following commutative
diagram of continuous maps,

T ool V
|
C3 029

as well as the corresponding commutative diagram of homomorphisms of funda-
mental groups,

m(T) =t m (V)
L,\ O« lu,
B3 By,=72

Tx

We will show that the section cannot exist by computing,¢.[A] € Z in two
different ways. On the one hantg,t.[A] = 2. But on the other hand,

t[A] = (a1a2)® € B,

so the fact that, is a homomorphism makes:.[ A]* divisible by 3
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To carry out these calculations, fix a characteristic loopfodenoted by
a1 =T, t{0,P@),Q00).

SetX(t) = o(x(t)) € V. ThenX: I — V is a loop with values in/y. Let
s1(t), s2(t) be a continuous labeling of the saddlesxaf). Then Proposition 1.9
implies that we have a consistent labeling of the equilibrix @f as

{)"l(t)} = {09 P(t)v Q(t)’ Sl(t), S2(f)}

Consistency means that each path I — D is a loop.

With this notationy (X(¢)) = {s1(¢), s2(z)}, and from the definition of we see
thatz,t,[A] is the PRWN of the loop +— {s1(¢), s2(¢)} in C».

By Proposition 1.8, we can therefore calculate.[ A] as the PRWN of the loop
t — {P(t), Q(1)}; this loop can also be expressed as

goa:l — Cy,
where
g:T_>CZ, {09P3Q}'_){PaQ}

It follows thatz,t.[A] is the homotopy class gfok: I — C», wherex is any
loop in the torus homotopic ®; that is,« can be anyl, 2)-loop. For this purpose
we choose thetandard(1, 2)-loop,

k: I —T, t—{0,P@),0®0)}

for which P(¢) and Q(¢) are both collinear withD and each wind once around
the origin in concentric circles, centered@t of radii % andg respectively (see
Figure 3). Because the PRWN @f o ) = 2, this gives

Tl A] = 2.

It is interesting that this is independent of the choice of
On the other hand, we can also calculatg[A] asz. (14[«]). Figure 5 suggests
the proof of the fact that
Llk] = (a1a2)* € B.

;\ oy, \
Wﬁ
~_______
(o1} 0; o, 0, (O3 O,

Figure 5 A (1, 2)-loop in T yields (6105)% in B3

Therefore, using additive notation B, = Z, we have
Tole[A] = 314 (a1a2).

This yields the contradiction that 3 divides 2ompleting the proof of Theo-
rem 0.2. O
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3. Sections of Morse Bundles

In this section we discuss some settings in which there is a section of the Morse
bundle for low values of, the number of maxima. Our first task is to show that
u, . M, — C, isin fact a fibre bundle. Some of the material on equivariant maps
is adapted from Palais [10].

Group Actions, Fibre Bundles, and Sections
Amapp: E — B will also be denoted byp, E, B). For a subset/ C B we set
E|lU = p~tU.
We say(p, E, B) istrivial over an open sd¥ if there is a spacé (called the
standard fibrg¢ and a commutative diagram

UxF E\U
P1 p
U U,

whereh is a homeomorphism ang is projection on the first factor. We cdila
local trivialization of (p, E, B) overU. If U = B then we callh a global trivi-
alizationand say that p, E, B) is globally trivial. Notice that a globally trivial
map(p, E, B) has a cross-section.

If there is a local trivialization over each open set of some open cogy tfen
(p, E, B) islocally trivial map, also called fibre bundle.For the theory of fibre
bundles see the books by Hu [7], Husemoller [8] or Steenrod [14].

Let G be a topological group with identity elementacting continuously on
a topological spac& through homeomorphisms. Thus there is given a map
0. G x Z — Z,written

p(g,x) = pg(x) =g x,

such that the mag — p, is a homomorphism into the group of homeomorphisms
of Z.

Let U C Z be an open set and lete U. A local transsectiorat (U, z) of the
actionp isamapo: (U,z) — (G,e) suchthato(x) -z = x forall x € U. If
U = Z then we calb aglobal transsectionWe say thaG actsequivariantlyon
(p, E, B) if we have actions o&; on E and B such thatg - p(x) = p(g - x) for
allxeE.

ProrosiTioN 3.1. LetG act equivariantly onp, E, B).

(a) If the action ofG on B has a global transsection, themp, E, B) is globally
trivial.

(b) If everyb € B belongs to an open sét C B such that the action off on B
has a local transsection at, b), then(p, E, B) is locally trivial.

(c) SupposeB is a manifold and5 is a Lie group, and suppose the action@®f
on B is simply transitive. Thefp, E, B) is globally trivial and therefore has
a cross-section.
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Proof. Supposev: (B, b) — (G, e) is a global section fop. SetF = E,. Then
the map
h: BXE,— E, (x,y)r p(x)-y

is a global trivialization. This proves (a), and (b) follows.

To prove (c), fix any € B. Forx € B defines(x) € G to be the unique group
elementg such thafg - » = x. The resulting map : B — G is the inverse to the
evaluation map a: ev,: G — B, g — g-b. As G andB are locally Euclidean
andev, is continuous and bijective, it follows from invariance of domain that its
inverseo is continuous. O

THEOREM 3.2. For everyr, the following maps are fibre bundtegu,, M,,C,),
(ftrs M;, Cp), and (i, Vi, Cy).

Proof. It is easy to see that the group 6f diffeomorphisms of the disk acts
equivariantly on each of these three maps with local transsections, so that Propo-
sition 3.1(b) applies. O

A classical topological method of obtaining sections is the following.

ProrosiTiON 3.3. Let (p, E, B) be a locally trivial map of metric spaces. Let
B; C B be aclosed subspace that is a deformation retrad.dfhen every section
of E| B, extends to a global section @p, E, B).

Proof. This follows from the homotopy lifting property of fibre bundles (Hu [7]).

O
A Canonical Morse Function
LetC = {c1, ..., ¢} €C, be any set of > 1 distinct points irR2. Define a map
fe: R?2 > R by
fe@ =[]z =l (5)
j=1
Denote bypc: Cc — C¢ the monic polynomial
pc@=[]c@-¢ (6)
J

whose set of roots i€, so thatfc(z) = |pc(2)|%
The goal of this subsection is to prove the following theorem.

THEOREM 3.4.

(a) fc is a Morse function if and only if the polynomigis: and p. have only
simple roots.

(b) Suppose = 3. Thenf is a Morse function if and only if is not the set of
vertices of an equilateral triangle.

For the proof it is convenient to identify complex numbers with vectoRArThe
real inner product ot, w € C = R? is denoted by(z, w).
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Multiplication by the complex number= a + ib determines a linear operator
in R? whose matrix in the standard basis is

a —b
M(z) = [ b a }
With this notation we haverz = M (w)z. Note thatM (z) = M(z)" = the trans-
pose ofM (z).
Let p(z) be a complex analytic function defined in some open suliset the
plane. We considep as a mafR? — R?; then its real derivativF. is a linear
operator orR? whose matrix isM (p'(z)).

The conjugation — Z defines a real (not complex) linear transformatioRéf
whose matrix is denoted by

1 0
-2 9]
Define a real-valued functiofi on the plane by

@) =31p@1° = 3(p@), p)).
Denote its gradient vector atby Vf, and its Hessian matrix b¥f,.

LeEMMA 3.5.
Vf. = p'(2) p(). @)
Hf, = M(p"(@ p@)R + |p' @)1 (8)

Proof. From the chain rule we have that, for evérg R?,

Df.& = (p(2), M(p'(2))&) 9)
= (M(p'@)" p(2), &), (10)
Df.& = (p'@)p(2), &), (11)

which is equivalent to (7). Differentiating (11) with respecttalongé, we obtain
Hf.(§,§) = (p"(DEp(2), &) + (P'(D) P'(2E, &)

= (p"(2) p(D)RE, &) + | p'(x)I(E, &),
which yields (8). O

CoRrOLLARY 3.6. The function|p(z)|%is a Morse function if and only if botjp
and p’ have only simple zeroes.

Proof. From (7) we see thafy is a critical point of| p(z)|? if and only if z is a
zero ofp’ or p.

Suppose (zo) = 0. Then equation (8) shows thais a degenerate critical point
of | p(z)|?ifand only if p'(z¢) = 0, which is equivalent tag being a multiple root
of p.
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If p'(zo) = 0O, then (8) shows thaiy is a degenerate critical point b (z)|? if
and only if p”(zo) = O; that is,zo is a multiple root ofp’. O
CoroLLARY 3.7. The gradient vector at of the functionfc(z) = |pc(z)|? is

(z—¢))

V.fe = Ipc(x) Z pex

Proof. Follows from (6) and (7). O

CoroLLARY 3.8. LetC = {cy, ..., ¢} be a set of distinct points in the open
unit disk. TherV, fc points outward at every boundary poinbf the disk.

Proof. Follows from Corollary 3.7, becausg,z — ¢;) > 0 if |z] = 1 and
lejl < 1. O

Proof of Theorem 3.4Part (a) follows from Corollary 3.6. To prove (b), we
setC = {a, b, ¢} and apply Corollary 3.6; thus we need to show thgh, c are
equidistant from each other if and onlyzf. has a double root. Now

Pe(2) =32 = 2(a+ b+ )z +ab + be + ca,
and its discriminant is
(a4 b+ c)?>—=3(ab + bc + ca) = a’ + b> + ¢ — (ab + be + ca).
Thereforefc is not a Morse function if and only if
a?+b?+c¢?>—ab+bc+ca =0.

Since the hypotheses and conclusion are unchanged if we refdldnef o H
whereH : R? — R?is a Euclidean isometry or homothety, we may assume that
¢ = 0 andb = 1. Then f¢ is a non-Morse function if and only if> + 1 —a = 0.

But this equation holds if and only if, 1, and O form an equilateral triangle [0

Sections of Some Morse Bundles

LetS, C C, denote the set of configuratiosof » points in the plane for which
the polynomialp,. (see Equation (6)) does not have simple roots. Set C,
denote the set of labeled setsropoints whose unlabeled configurations lie in
S,. Itis easy to see that.  C, andS, c C, are algebraic varieties of codimen-
sion 2 If C €C, \ S, then— f¢ is a Morse function satisfying Hypothesis 0.1 by
Theorem 3.4(b) and Corollary 3.8.

Letv: C, — C, denote the natural covering space projection. We define the
canonical sections

k:C\NS = M,, Cr— —fc, (12)
and o ) .
K:C\S > M, Cr —f,(C). (13)

In Section 2 we defined a certain torfisc C3 and proved that no section of
V3| T, and a fortiori of M3| T, extends to a global section. We did not, however,
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construct a section 0813 T. We now see from Corollary 3.8 and Theorem 3.4(b)
thatks defines such a section, as it is clear that no equilateral triangle has its set of
vertices inT.

From Proposition 3.1(b) we derive the following.

ProposiTioN 3.9. Letu: M — C be the bundle of Morse functions over a sub-
manifoldC c C, of configurations of maxima. Lék be a Lie group of diffeomor-
phisms of the disk> such that the induced action 6f onC, is simply transitive
onC. Then there exists a section 6ft, M, C). In fact, for any Morse function
F € M we obtain a sectioa : C — M through F by defining

o(C) = Foggh (14)
wheregc € G is the unique group element such tigat(u(F)) = C.

ScHorLiuMm. We can choose the sectiensuch that, for every € C, the Morse
functiono (C) takes the same constant valu®n the boundary oD. This can
be proved from Hypothesis 0.1 by deforming any section, but it follows instantly
from equation (14) by choosing to have constant boundary valueSuch bound-
ary conditions are motivated by the original robotics formulation of the section
problem by Rimon and Koditschek [11].

There are many other possibilities; for example, we could make all the Morse
functions in the section have exactly two critical points when restricted to the
boundary.

ExampLE 3.10. To obtain a section of the Morse bundle a¥grwe can simply

use the canonical sectien defined previously (sincs; is empty). Alternatively,

to specify boundary behavior we can use Proposition 3.9 and its Scholium, since
the groupH of hyperbolic translations of the Poincaré disk acts simply transitively
onCy. Thus we have our last corollary.

CoroLLARY 3.11. The mapu:: M; — C; has a section with constant boundary
values.

ExampLE 3.12. Considefis: MZ — C}, the bundle of Morse functions with
two labeled maxima in the open disk, as well as the corresponding unlabeled
bundleu,: My — C,. Clearly,k, andk, are sections.

ExampPLE 3.13. Considelis: Mz — (3, the Morse functions with three la-
beled maxima. Tak&; C C3 to be the set of labeled configuratiot®, Q, R)
such that the distanc& P, Q, R) from P to the (Euclidean) ling@R is less than
O — R||/2, which prevents the triangleP, Q, R) from being equilateral.

It is easy to see thak; is a deformation retract of’s: We deform the ordered
triple of distinct points(P, O, R) € 53 along the path — (P,, 0, R), 0 <1t <
1, defined as follows. LeP’ € QR be the point nearest t8. Define

P, = (1—1)P +1(0.1P + 0.9P").
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Because the standard sectiggmapsB; into Ms, application of Proposition 3.3
yields the following.

THeoreM 3.14. The mapis: M3 — C3 has a section.

4. Open Questions
There is an abundance of open and easily stated problems in this area.

QuesTtioN 4.1.  What spaces of configurations on which manifolds admit sections
of the bundle of Morse function?

This paper is a first attack on this question. The global nature of the question
makes it difficult to use results on one configuration space for another. An obvi-
ous conjecture, of which Theorem 0.2 is just the case3, is the following.

CoNIECTURE 4.2. Forr > 3, the mapu, : M, — C, does not have a section.

Many interesting questions arise concerning the topology of Morse bundles; we
give one example.

QuestioN 4.3. What is the topology of the standard filsFe of the bundle of
Morse functiong i, M,, C,)? Whatis the primary obstruction to a cross-section?
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