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0. Introduction

A C2 functionf : M → R on a Riemannian manifoldM is called aMorse func-
tion if, at every critical pointp, in local coordinates the Hessian matrixHfp is
nonsingular. The classical Morse’s lemma states that, in suitable local coordinates
centered at a critical point,f is expressed as a sum and difference of squares of
coordinates.

Morse functions have been of great importance in differential topology and dy-
namical systems. Möbius’s proof of the classification of surfaces decomposed a
surface into elementary pieces bounded by noncritical level sets of a Morse func-
tion (Möbius [9]; see Hirsch [3] for a modern presentation). In a far-reaching de-
velopment of Möbius’s idea, Smale [12] used Morse functions in an essential way
to prove his generalized Poincaré conjecture: he showed that, for a generic set
of Morse functionsf, the stable and unstable manifolds of singular points of the
gradient vector field∇f provide dual cell decompositions ofM. For discussion of
Smale’s work see Hirsch [4].

Stable and unstable manifolds of∇f also played a key role in Smale’s work
[13] on structural stability of generic gradient flows. One-parameter families of
Morse-like functions were utilized by Cerf [2] for analyzing the diffeomorphism
group ofS3.

In a different type of application, which motivated this paper, Rimon and
Koditschek [11] used gradients of Morse functions to attack a problem in ro-
botics. They gave a formula for analytic Morse functions on domains consist-
ing of a closedn-ballDn with the the interiors of smallern-balls deleted, having
prescribed critical points and boundary values. It is noteworthy that the Rimon–
Koditschek formula depends discontinuously on a certain parameter derived from
the data. This raises the problem of determining whether continuous formulas
exist.

We simplify the problem by considering only Morse functionsf : D2→ R on
the closed unit diskD = D2 having the following properties.
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Hypothesis 0.1.

(a) f has preciselyr local maxima;
(b) f has no local minima;
(c) the gradient vector field∇f of f points inward at boundary points ofD;
(d) f is of differentiability classC2.

The spaceMr of such functions is given theC2 topology. ThusMr is an open
set in the Banach space ofC2 functions on the disk.

We are chiefly concerned withr = 3. The Morse inequalities (or older results
going back to Poincaré and even Maxwell) imply that a function inM3 has pre-
cisely two saddle points in addition to the three local maxima.

Let Cr be the space of unordered sets ofr distinct points in the interior IntD of
the disk. Define the continuous mapµr : Mr → Cr , which assigns to eachf its
set of maxima. In Section 3 we show that this is a locally trivial fibre space.

Our main result is thatµ3 does not have a section.

Theorem 0.2. There is no continuous mapσ : C3→M3 such thatµ3 Bσ is the
identity map ofC3.

Note that it is easy to construct a section ofσ : C2 → M2 of µ2; for example,
σ(a, b) = σa,b where

σa,b(x) = −‖x − a‖2‖x − b‖2. (1)

The same formula works in any dimension. The analogous formula for three or
more critical points does not always define a Morse function, however; this is
discussed in Section 3.

We consider also the spacêMr of labeledMorse functions inMr : An element
of M̂r is an ordered pair(f, (m1, . . . , mr)), wheref ∈Mr and (m1, . . . , mr)

is a list of its maxima.M̂r is topologized so that the natural “forgetful” map
8M : M̂r →Mr is a covering space.

Denote byĈr ⊂ D×· · ·×D the manifold of lists ofr distinct points of the disk.
The forgetful map8V : Ĉr → Cr is a covering space. The mapµ̂ = µ̂r : M̂r →
Ĉr ,which assigns to each labeled Morse function its list of maxima, is continuous.

The question of whether̂µr has a section is a natural one. It is easy to see thatµ̂2

has a section. We prove in Section 3 that, in contrast to Theorem 0.2,µ̂3 : Ĉ3→
M̂3 doeshave a section.

Theorem 0.2 is an immediate corollary of a more general result, Theorem 0.4,
about families ofC1 vector fields onD2 whose flows have dynamical properties
similar to the gradients of the Morse functions considered in Theorem 0.2, but
which are not required to be gradient fields.

Our main tools are unstable manifolds, and especially their saddle connec-
tions. A key computation makes use of the structure of the braid group on three
strands.

Analogous questions can be raised for higher-dimensional disks, and indeed for
Morse functions on arbitrary manifolds. We suspect that, except for very special
cases, there do not exist sections.



Families of Morse Functions Parameterized by Maxima 349

All maps are assumed or easily proved to be continuous unless the contrary is
mentioned. Sections, in particular, are continuous.

It will be more convenient to work with vector fields than with functions. Let
X : D → R2 be aC1 vector field. Anequilibriump ∈ D is a point for which
X(p) = 0, or equivalently, a fixed point for the flow9 generated byX. Recall
thatp is hyperbolicif the Jacobian matrixDX(p) is invertible and has no pure
imaginary eigenvalue. A hyperbolic equilibrium is asink if the real parts of the
eigenvalues are negative, and asaddleif one eigenvalue is positive and the other
is negative. A sink is an asymptotically stable fixed point for9.

Let r denote a positive integer. We work in the spaceVr of C1 vector fields
X : D→ R2 on the disk having the following properties.

Hypothesis 0.3.

(a) all equilibria are hyperbolic with real eigenvalues;
(b) there arer sinks,r − 1 saddles, and no other equilibria;
(c) X is transverse inward on∂D;
(d) every complete semitrajectory inD converges to an equilibrium;
(e) there are no heteroclinic or homoclinic loops.

These properties are equivalent to Smale’s Axiom A, and they imply the existence
of a smooth Liapunov function for the corresponding flow (see Smale [13]).

It is easy to see thatVr is an open set of the Banach space ofC1 vector fields on
the disk (compare Abraham and Robbins [1]). In particular, we may considerVr
as an infinite-dimensional analytic manifold.

It is clear that the gradient vector field of a function inMr lies inVr , and that
the resulting mapMr → Vr is a homeomorphism onto its image. By assigning to
each vector field its set of sinks, we define a continuous mapVr → Cr . By a con-
venient abuse of notation we denote this byµr. In Theorem 3.2 we prove thatµr
is a fibre bundle projection.

Theorem 0.2 is an immediate consequence of the following.

Theorem 0.4. The mapµ3 : V3→ C3 has no section.

As the spacesVr for r > 3 will play little role in this paper, we simplify notation
by settingV3 = V andµ3 = µ.

Later we shall need to consider the covering space8V : V̂ → V,whereV̂ is the
space of pairs comprising a vector field inV together with an ordering of its sinks,
and8V is the forgetful map.

Outline of Proof.The proof is by contradiction. A sectionσ : C3 → V of µ in-
duces the homomorphism of fundamental groupsσ∗ : π1(C3) → π1(V). By Hy-
pothesis 0.3(b), everyX ∈V has two saddles. These vary continuously withX.The
resulting continuous mapν : V → C2 induces the homomorphismν∗ : π1(V) →
π1(C2) of fundamental groups.

Sinceπ1(Cr ) = Br, the braid group onr strands,σ determines in this way a
homomorphism of braid groups,ν∗ B σ∗ : B3 → B2. This homomorphism may,
of course, depend onσ ; however, by analyzingσ on a particular toral subset of
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C3, we can make an a priori computation of the value ofν∗ B σ∗ on a certain ele-
ment ofB3. Finally, it will be easy to show algebraically, from the structure of
braid groups, that no homomorphismB3→ B2 can realize this computation. This
contradiction will complete the proof.

Section 1 sets up the basic definitions and constructions needed for Section 2,
in which Theorem 0.4 is proven. Section 3 further explores the bundle of Morse
functions and has some positive results. The final section contains some open
problems and discussion.

1. Loops, Isotopies, and Winding Numbers

In this section we develop the topological tools needed for the proof of the main
theorem. Smale [13] or Hirsch and Pugh [5] can be consulted for the theory of
stable and unstable manifolds.

The Unstable Manifold Complex

Let9 denote the flow generated by a vector fieldX ∈ V. Let p ∈ IntD be a sad-
dle equilibrium forX. Thestable manifoldWs(p,X) = Ws(p) is the set ofx ∈
D such that limt→∞9t(x) = p. There is an injectiveC1 immersionh : J →
D, whereJ ⊂ R is a closed infinite interval, such thath(J ) = Ws(p,X). If
Ws(p,X) is disjoint from the boundary circle∂D, thenJ = R; otherwise, the
unique endpoint ofJ is mapped byh toWs(p,X) ∩ ∂D.

Theunstable manifoldof p is the setWu(p) = Wu(p,X) comprising all points
x ∈D such that limt→−∞9t(x) = p. It is the injective image of aC1 immersion
of R.

Deletingp from its stable manifold leaves twobranchesof the stable manifold,
homeomorphic to open or half-open intervals. The unstable manifold similarly
has two branches. Each branch is invariant under the flow and is therefore aC2

curve; its closure is aC1 arc. Only a stable branch (i.e., a branch of a stable man-
ifold) can be a half-open interval, by Hypothesis 0.3(c). This occurs when a point
of the stable branch is on the disk’s boundary.

A saddle connectionis a branch that connects two saddles, or connects one
saddle to itself; however, the latter situation (a homoclinic loop) is precluded by
Hypothesis 0.3(e). Nor can two branches reciprocally connect a pair of saddles
(producing a heteroclinic loop). By 0.3(e), there is at most one saddle connection.

Each unstable branch is a complete orbit, which by 0.3(d) connects two equi-
libria. These equilibria are distinct by 0.3(e); one or both may be saddles.

GivenX ∈V, letKX be theunstable manifold complexof the saddles ofX, that
is, the closure of the union of the unstable manifolds of the saddles. We show in
Proposition 1.1 thatKX is a contractible graph having as vertices the three sinks
and two saddles ofX. These graphs divide into two homeomorphism types—“T-
shaped” and “V-shaped”—according to whetherX has a saddle connection or not.
By labeling the equilibria we makeKX into a labeled graph.

Figure 1 is a picture of the two types of complexes. Small parts of the stable
manifolds have been drawn to indicate the saddles, and arrows on the unstable
manifolds indicate the direction of the flow.
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Figure 1 The two combinatorial types of unstable manifold complexes

Proposition 1.1. For each vector fieldX ∈ C3, one of the following conditions
holds for the complexKX:

(i) there are no saddle connections andKX is homeomorphic to a compact
interval;

(ii) there is just one saddle connection andKX is homeomorphic to the triod

T = { (x, y)∈R2 : xy = 0, −1≤ x ≤ 1, 0 ≤ y ≤ 1}.
Proof. Suppose there is no saddle connection; then each unstable branch limits
at a sink. Since there are four unstable branches and three sinks, two unstable
branches must limit at the same sink.

These two branches can not be from the same saddle, says. For otherwise the
closure of their union would form a Jordan curve bounding a simply connected
compact invariant setR ⊂ IntD. For any pointx ∈ Ws(s) ∩ R, there exists an
equilibrium limt→∞ φ−t x = p. But p must be a saddle, violating the assumption
of no saddle connections.

A similar argument shows that of the four unstable branches, precisely two limit
at a common sink. This suffices to prove (i). Similarly, if there is a saddle con-
nection it is easy to see that (ii) holds.

LetVT ⊂ V denote the closed set of vector fields inV having a saddle connection;
that is,VT is the set of vector fields with T-shaped unstable manifold complexes.
It is known thatVT is a closed set which is aC1 submanifold (Abraham and
Robbins [1]).

Isotopies of Unstable Manifold Complexes

A pathin a spaceE is a mapI → E defined on the closed unit intervalI = [0,1].
A path which identifies the endpoints ofI is a loop.

Let Y : I → V be path, that is, a 1-parameter family of vector fields. Denote
the unstable manifold complexKY(t) byKt.
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A labelingfor Y is an indexed set of five paths{ λi : I → D : i = 1, . . . ,5} in
D such that, for eacht ∈ I, the set{λi(t), i = 1, . . . ,5} consists of the five equi-
libria of Y(t). Even ifY is a loop, it is possible that some of the pathsλi are not
loops. If all theλi are loops then we say that the labeling{λi} is consistent.

Because the equilibria occurring in a 1-parameter family of vector fields inV

cannot coalesce (owing to hyperbolicity), every labeling{λi} has the important
property that, for allt,

λi(t) 6= λj(t) if i 6= j.
By continuity, the labeling is completely determined by its initial values{λi(0)}.

Moreover, for eachi, the type (sink or saddle) of the equilibriumλi(t) remains
constant ast varies.

We often denote a labeling by{O(t), P (t),Q(t), s1(t), s2(t)}, with O,P,Q
labeling sinks ands1, s2 labeling saddles.

Lemma 1.2. Every pathY in V has a labeling.

Proof. It suffices to prove this locally inI, that is, to show that every point ofI
has a closed interval neighborhoodJ ⊂ I such thatY |J has a labeling. For this it
suffices to construct the pathsλi(t) separately for eachi.

Fix t0 ∈ I and letp0 ∈ IntD be an equilibrium for the vector fieldY(t0) : D→
R2. We seek a mapλ : J → R2 in a subintervalJ containingt0 such that

Y(t)(λ(t)) = 0, (2)

λ(t0) = p0. (3)

Hyperbolicity ofp0 validates application of the implicit function theorem to ob-
tain the desired mapλ.

The pathY : I → V is pureif eitherY(I) ⊂ VT or Y(I) ⊂ V \VT. Thus either all
theKt are T-shaped or all are V-shaped. In the first case we sayY hastypeT and
in the second casetypeV.

An isotopyof unstable manifold complexes overY is a map

H : K0 × I → D, H(x, t) = Ht(x), (4)

with the following properties:

(a) for eacht ∈ I, Ht mapsK0 homeomorphically ontoKt,
(b) H0 is the identity map ofK0.

Each vector fieldY(t) has nondegenerate equilibria (Hypothesis 0.3(a)); thus,
given a labeling{λi}, both{λi} and{Ht(λi(0))} are labelings with the same initial
values. Hence,Ht(λi(0)) = λi(t) for all i ∈ {1, . . . ,5} with t ∈ I.
Proposition1.3. If Y : I → V is a pure path, then there is an isotopy of unstable
manifold complexes overY. In fact, every labeling extends to an isotopy.

The first thing we need to establish is that the way unstable branches connect equi-
libria cannot change discontinuously int. Let {λi} be a labeling for a pure pathY.
We abbreviateWs(λi(t), Y(t)) = Ws(i, t), and similarly forWu.
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An i,j connection att ∈ I is a branch ofWu(i, t) going from a saddleλi(t) to
a sink or another saddleλj(t). Equivalently, it isWu(i, t) ∩Ws(j, t).

Lemma 1.4. If Y : I → V is a pure path and there is ani,j connection at some
t0 ∈ I, then there is ani, j connection at eacht ∈ I.
Proof. Fix a compact arcA in the branchWu(i, t0) ∩Ws(j, t0) havingλi(t0) as
an endpoint. Continuity of unstable manifolds (Hirsch and Pugh [5]) means that,
for anyε > 0, there existsδ > 0 such that if|t − t0| < δ thenWu(i, t) contains
a compact arcAt havingλi(t) as endpoint, and there is diffeomorphismgt : A→
At within ε of the identity map ofA in theC1 topology.

Consider the case whereλj(t0) is a sink forY(t0), so thatWs(j, t0) is an open
set inD. It is well known (see e.g. Hirsch and Smale [6, Chap. 16]) that, for any
compact setQ ⊂ Ws(j, t0), there is a neighborhoodN of Y(t0) in space ofC1

vector fields onD such that ifX ∈N thenX has a unique hyperbolic sinkq with
the property thatQ ⊂ Ws(q,X). This implies that fort sufficiently neart0 we
haveA ∩ Ws(j, t) 6= ∅. It follows that there existsδ > 0 such that|t − t0| <
δ impliesgt (A) ∩ Ws(j, t) 6= ∅. Sincegt (A) ⊂ Wu(λi(t)), this exhibits ani,j
connection fort neart0.

Suppose now thatλj(t0) is a saddle and thatλi(t0) is also. ThenKt0 is T-shaped,
soKt is T-shaped for allt.Of the four unstable branches, three go to sinks and one
goes fromλi(t0) toλj(t0).Under sufficiently small perturbations, the correspond-
ing unstable branches go to corresponding sinks, by the preceding continuity con-
siderations. Therefore it must be that, for allt, a branch ofWu(λi, t) connects to
a saddle. Since there are no homoclinic loops, it must connect toWu(λj, t).

Proof of Proposition 1.3.For eachi we defineHt on equilibria inK0 by

Ht(λi(0)) = λi(t).
Let i, j be such that there is ani, j connection at somet ∈ I. Hence, by

Lemma 1.4 there is ani, j connection att for all t ∈ I. We denote this branch
by Bt(i, j) = Wu(i, t) ∩ Ws(j, t); its closure is aC1 compact arcCt(i, j). For
eacht ∈ I, the union of these arcs isKt.

We defineHt(i, j) : C0(i, j) → Ct(i, j) so that it multiplies length by a con-
stant, as follows. For anys ∈ I andz ∈ Cs(i, j), let As(z) denote the arc length
alongCs(i, j) from λi(s) to z. For x ∈ C0(i, j) we defineHt(x) to be the point
y ∈Ct(i, j) such that

At(y)

At(1)
= A0(x)

A0(1)
.

Continuity of unstable manifolds implies that the resulting mapH(x, t) : K0 →
Kt is continuous and thus a homeomorphism.

It is easy to see, using purity ofY and continuity of stable manifolds, that for any
t1, t2 ∈ S1 the unstable manifold complexes ofX(t1) andX(t2) are isomorphic as
labeled graphs.

Corollary 1.5. All the unstable manifold complexesKt for a pure path are
isomorphic as labeled graphs.
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Winding Numbers

Let S1 = { x ∈ R2 : ‖x‖ = 1} denote the unit circle. Recall that to each loop
λ : I → S1 there corresponds an integer degS(λ) called itsdegree,defined as fol-
lows. Expressλ(t) continuously asλ(t) = (cosθ(t), sinθ(t)). As θ(t) is well
defined modulo 2π, we can define degS(λ) = (θ(1) − θ(0))/2π. Loops that are
homotopic (through loops) have the same degree.

Let P 1 denote the (real) projective line, that is, the space of lines through the
origin in R2. An elementL ∈ P 1 is represented inhomogeneous coordinatesby
[a, b], where(a, b) 6= (0,0) is any point onL \ (0,0). The formula

h(cosθ, sinθ) =
[
cos

θ

2
, sin

θ

2

]
defines a homeomorphismh : S1→ P 1.

To a loopλ : I → P 1 we also assign a degree:

degP (λ) = degS(h
−1 B λ),

noting thath−1 B λ is a loop in the circle.
Consider now the canonical double covering projection

π : S1→ P 1, (x, y) 7→ [x, y].

The following lemma is well known.

Lemma 1.6.

(a) If λ : I → S1 is a loop, thendegP (π B λ) = 2 degS λ.
(b) A loop inP 1 lifts throughπ to a loop inS1 if and only if its degree is even.

Recall thatC2 is the space of unordered pairs of distinct points in the disk and that
Ĉ2 is the space of ordered pairs of such points. The canonical mapψ : C2→ P 1

into the (real) projective lineP 1 is defined by sending{u, v} ∈ C2 to the point of
P 1 with homogeneous coordinates [u1− v1, u2− v2]. Thusψ({u, v}) = [u1− v1,

u2 − v2]. We denote byψ̂ : C2 → S1 the unique continuous map coveringψ so
that the following diagram commutes:

Ĉ2
ψ̂−−−−→ S1y y

C2
ψ−−−−→ P 1,

where the vertical maps are the canonical projections.
Let ρ : I → C2 be a loop. Toρ we associate an integer, called itsprojective

relative winding numberPRWN(ρ), defined as the degree of the composition

I
λ−−→ C2

ψ−−→ P 1.

This is invariant under homotopies of loops inC2.
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Lemma 1.7. A loopρ : I → C2 lifts to a loop inĈ2 if and only if PRWN(ρ) is
even.

Proof. Consider the commutative diagram

Ĉ2
ψ̂−−−−→ S1y y

I
ρ−−−−→ C2

ψ−−−−→ P 1;
PRWN(ρ) is even if and only ifψ B ρ lifts to a loopI → S1, by Lemma 1.6. By
properties of covering spaces, this is equivalent toρ lifting to a loop in Ĉ2.

In the rest of this section we assume thatY : I → V is a pure loop with labeling

{λi(t)} = {O(t), P (t),Q(t), s1(t), s2(t)}
in the notation of Section 1. Without loss of generality we assume that the labeling
of K0 is as in Figure 1.

Then for all t, the equilibriaO(t), P (t), andQ(t) are sinks, whiles1(t) and
s2(t) are saddles. SinceY is a loop, each sink (or saddle) forY(1) coincides with
a sink (or saddle, respectively) forY(0), but perhaps with a different label. It
turns out (Proposition 1.9) that ifY takes values inVT then the labeling is in fact
consistent:λi(0) = λi(1) for i = 1, . . . ,5.

A glance at Figure1shows thatP(t)andQ(t) can be topologically distinguished
fromO(t) inKt (but not from each other). That is, no homeomorphism ofKt can
sendP(t) orQ(t) toO(t).Moreover, the saddles are topologically distinguishable
from the sinks.

Consider a pair of distinct indices 1≤ i, j ≤ 5 such that the map

gij : I → C2, t 7→ {λi(t), λj(t)}
is a loop; that is,{λi(0), λj(0)} = {λi(1), λj(1)}. Denote the projective relative
winding number ofgij by dYij = dij . Notice thatgij andgji are the same map,
whencedij = dji .
Proposition 1.8. LetY : [0,1]→ V be a pure loop. ThendYij is the same for all
pairs (i, j), wherei, j = 1, . . . ,5 andi 6= j, such thatgij is a loop.

Proof. Consider two such pairs(i, j) and(k, l).We look for pathsu, v : I → K0

such that

(a) {u(0), v(0)} = {λi(0), λj(0)},
(b) {u(1), v(1)} = {λk(0), λl(0)}, and
(c) u(s) 6= v(s), s ∈ I.
Given suchu andv, we obtain a homotopy fromgij to gkl as follows. Define

Gs : I → P 1,

Gs(t) = ψ({Ht(u(s)),Ht(v(s))}), s, t ∈ I,
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whereH is an isotopy of unstable manifold complexes covering the pathY (see
(4)). ThenH1 is a homeomorphism ofK0 to itself that permutes the equilibria
among themselves, and the saddles among themselves, and fixesO(0).Moreover
H1 maps each unstable branch ofY(0) to an unstable branch ofY(0).

Properties (a) and (b) ensure thatG0 = gij andG1= gkl, while (c) implies that
{Ht(u(s)),Ht(v(s))} ∈ C2. Thus the existence of suchu, v will imply dij = dkl.

If such a pairu, v exists then we writei, j ' k, l. Standard homotopy theory
implies that this is an equivalence relation. It therefore suffices to prove that, for
anyi, j, k, l ∈ {1, . . . ,5}with i 6= j andk 6= l,we have eitheri, j ' k, l or i, j '
l, k.

Consider first the case thatY takes values inVT. Let the equilibria inK0 be la-
beledO,P,Q, s1, s2, as in the left-hand side of Figure 1. We extend these labels
to a labeling ofY by Lemma 1.2.

In order to proveO, s1 ' O, s2, we defineu : I → K0 to be the constant path
atO andv : I → K0 to be the path froms1 to s2 whose image is the closure of
Wu(s1) ∩Ws(s2)—in other words, that branch ofWu(s1) which leads tos2 (the
upper branch in Figure 1).

A similar construction shows thatO, s2 ' s1, s2. Now, by transitivity,O, s1 '
s1, s2.

Proceeding in this way reveals thati, j ' k, l for i 6= j andk 6= l. This proves
the proposition for the T-shaped case. The proof for the V-shaped case of unsta-
ble manifold complexes is similar, except that for each suchi, j, k, l we can only
prove that eitheri, j ' k, l or elsei, j ' l, k. This, however, suffices to complete
the proof.

Proposition 1.9. SupposeY is a pure loop inVT. Then every labeling is
consistent.

Proof. We assume the labeling is

{λ1(t), λ2(t), λ3(t), λ4(t), λ5(t)} = {O(t), P (t),Q(t), s1(t), s2(t)}
as usual.

By Lemma1.7 it suffices to prove thatdij is even wheni 6= j.By Proposition1.8
it is enough to prove thatd4,5 is even or, equivalently, that the saddles cannot be
interchanged by an isotopy of T-shaped unstable manifold complexes. This is ob-
vious because in a T-shaped complex the saddles are topologically distinct.

The analogous statement is false for V-shaped pure loops, as there are loops in
V \VT whose induced isotopy of unstable manifold complexes starts and ends
with the right hand diagram in Figure 1 (ignoring labels) but exchangesP andQ.

2. Proof of the Main Theorem

In proving the main theorem we make use of a certain torusT ⊂ C3 of configura-
tions. If σ : C3→ V is a section thenσ(T ) is a torus of vector fields. From loops
in T we obtain, viaσ, isotopies of stable manifold complexes and hence winding
numbers.
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Tori

Thestandard torusT 2 is the Cartesian productS1 × S1 of unit circles. The two
projectionsT 2→ S1 induce an isomorphism of the fundamental group ofT 2 with
Z × Z. Thus to each loop inT 2 we assign an ordered pair of integers called its
type. To an oriented embedded circle6 ⊂ T 2 we assign the type of any charac-
teristic loop for6. The type of an unoriented embedded circle means the type for
some convenient orientation.

Lemma 2.1. Let 6 ⊂ T 2 be an oriented embedded circle of type(m, n). Then
one of the following holds:

(a) m = n = 0; or
(b) |m| and |n| are relatively prime.

Proof. This well-known topological fact (due to Hopf?) can be proved as follows
from the theory of covering spaces and the classification of surfaces. Suppose
(a) does not hold. Then6 represents a nontrivial homotopy classα ∈ π1(T

2) =
Z × Z. There is a unique maximal positive integerk such thatα = kβ for some
nonzero classβ ∈ π1(T

2), namely, the greatest common divisor of|m|, |n|. If
k = 1 then the proof is complete.

There is a covering spacep : E → T 2 such thatπ1(E) = Z, p∗(1) = β, and
p∗(k) = α; we may takeE = R2 \ 0. The covering homotopy theorem yields a
mapf : 6→ E such thatp B f is the identity map of6. Thereforef(6) ⊂ E is
a Jordan curve representingk times the generator ofπ1(E).

In other words, the winding number of the Jordan curvef(6) about the origin
in R2 is k, and a classical theorem saysk = 1.

We now describe an important torus of configurations (see Figure 2). Define the
subsetT ⊂ C3 to be the set of those unordered triples in the interior ofD that can
be labeled(O, P,Q), whereO is the origin andP,Q are antipodal points on the
circle of radius1

3 centered at a point at distance1
2 fromO.

O

P

Q

Figure 2 The torusT of configurations inC3
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The torusT is an analytic submanifold ofC3,diffeomorphic to the (nonstandard)
torusS1× P 1 by the map

r = (r1, r2) : T → S1× P 1, {O,P,Q} 7→
(
P

‖P ‖ , ψ({P,Q})
)
,

whereψ : C2 → P 1 is the canonical map defined in Section 1. Notice thatr

induces an isomorphismr∗ of fundamental groups.
A loop λ : I → T determines an element in the fundamental group ofT, which

is isomorphic toZ×Z underr∗. Thus to each loop we associate an ordered pair of
integers(m, n), called itstype: m is the degree of the loopr1 B λ : I → S1, while
n is the degree ofr2 B λ : I → P 1. From this and the definition of the projective
relative winding number (PRWN), the following computation follows easily.

Lemma 2.2. Let λ : I → T, t 7→ (O(t), P (t),Q(t)) be a loop such thatO(t) is
the origin,P(0) = P(1), andQ(0) = Q(1). Leta ∈ Z be the PRWN of the loop
in C2 defined byt 7→ (O(t), P (t)). Similarly, letb ∈ Z denote the PRWN oft 7→
(P (t),Q(t)). Thenλ has type(a/2, b).

The following results will be used to show that certain kinds of loops inV must
contain vector fields having T-shaped unstable manifold complexes.

Lemma 2.3. Let6 ⊂ T be an embedded circle. Assume there exists an embed-
ded circle3 ⊂ V \VT that maps homeomorphically onto6 under the canonical
mapµ : V → C3. Then, with suitable orientation,6 has type(1,2) or (0,0).

Proof. Fix a characteristic mapν : I → 3 for3. Thenν : I → V is a pure loop in
the sense of the preceding sections, with V-shaped unstable manifold complexes.

Consider a labeling{λi} for µ B ν with

{λ1(0), λ2(0), λ3(0), λ4(0), λ5(0)} = {O,P,Q, s1, s2}
andO(t) at the origin. The labeling may not be consistent, in which case the loop
interchangesP with Q ands1 with s2. In any case,ν#ν, the composition of the
pathν with itself, is consistently labeled.

It follows from Lemma 1.7 that the projective relative winding numberd12 of
ν#ν is even. Therefore, from Proposition 1.8,dij = 2n for all i 6= j. Thusν#ν
has type(n,2n) by Lemma 2.2, so the degree of6 is (n/2, n). Sincen/2 must be
integral,6 has degree(k,2k). By Lemma 2.1,|k| = 1 or 0.

Corollary 2.4. Let3 ⊂ V be a set mapped homeomorphically byµ : V → C3

to an embedded circle6 ⊂ T . If 6 has type(1,0), then3 meetsVT in at least
one point.

The next proposition concerns a circle of type(1,2), embedded in the torusT, that
is covered by a pure typeT loopY in V. Figure 3 suggests such a circle, together
with the unstable manifold complexKt for Y(t).
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O

P(t)

Q(t)

Figure 3 A (1,2)-circle inT lifting to a type-T loop

Proposition 2.5. AssumeQ2 ⊂ V is a C1 2-dimensional submanifold trans-
verse toVT that maps homeomorphically ontoT underµ. ThenQ2∩VT contains
an oriented embedded circle3 such thatµ(3) has type(1,2).

Proof. We first show thatQ2 ∩ VT is nonempty. In fact, from Corollary 2.4
we see that, if6 ⊂ T is any embedded circle of type(1,0), then the circle3 =
(µ|Q2)−1(6)must meetVT.Therefore, by the transversality assumption,Q2∩VT

is a nonempty compact submanifold ofQ2 of dimension 1 and hence a finite union
of disjoint embedded circles3j ⊂ T (j = 1, . . . , N, N ≥ 1).

Setµ(3j) = 6j ⊂ T . As a loop inT, 6j has type(nj,2nj ) with |nj | ≤ 1, by
Lemma 2.3. We orient6j so thatnj ≥ 0.

It cannot be that allnj = 0. To see this, suppose otherwise. Then each6j
bounds diskDj in T and, since the boundaries are disjoint, each pair of these disks
is either disjoint or nested. We may therefore change their indexing so that, for
some 1≤ m ≤ N, the maximal disks are disjoint disksD1, . . . , Dm and their
union contains all theDj, j = 1, . . . , N.

Now, by shrinkingD1, . . . , Dm isotopically, one can see that there exists a
type-(1,0) embedded circle6 ⊂ T disjoint from theDj . Thus6 is disjoint from
µ(Q2∩ T ), contradicting the second sentence of the proof. Thereforenj = 1 for
somej.

Completion of Proof of the Main Theorem

The following notation will be used. Ifβ is a loop in a spaceE, then [β] de-
notes the element of the fundamental groupπ1(E) represented byβ. Whenβ is
a characteristic loop for an oriented embedded circle0 ⊂ E, we also denote this
element by [0].

Suppose now there is a sectionσ : C3 → V. Invoking standard approximation
techniques, we assume the restrictionσ |T is smooth and transverse toVT.
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Lemma 2.6. There is an oriented embedded circle3 ⊂ T such that:

(i) σ(3) ⊂ VT, and
(ii) 3 has type(1,2).

Proof. Apply Proposition 2.5 toQ2 = σ(T ).
Let γ : V → C2 assign to each vector field its set of saddles. We obtain a contin-
uous mapτ = γ B σ : C3→ C2 and the corresponding homomorphismτ∗ of fun-
damental groups, which in this case are braid groups. Thus a section gives us a
homomorphism of braid groupsτ∗ : B3→ B2. BecauseC2 admits the projective
line as deformation retract, we make the identificationB2 = Z.

The standard presentation ofB3 has generatorsa1, a2 and the relationa1a2a1=
a2a1a2; see Figure 4.

Figure 4 The two generators ofB3

Let ι : T → C3 denote the inclusion. Consider the following commutative
diagram of continuous maps,

as well as the corresponding commutative diagram of homomorphisms of funda-
mental groups,

We will show that the sectionσ cannot exist by computingτ∗ ι∗[3] ∈ Z in two
different ways. On the one hand,τ∗ ι∗[3] = 2. But on the other hand,

ι∗[3] = (a1a2)
3 ∈B3,

so the fact thatτ∗ is a homomorphism makesτ∗ ι∗[3]∗ divisible by 3.
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To carry out these calculations, fix a characteristic loop for3, denoted by

α : I → T, t 7→ {O,P (t),Q(t)}.
SetX(t) = σ(α(t)) ∈ V. ThenX : I → V is a loop with values inVT. Let
s1(t), s2(t) be a continuous labeling of the saddles ofX(t). Then Proposition 1.9
implies that we have a consistent labeling of the equilibria ofX(t) as

{λi(t)} = {O,P (t),Q(t), s1(t), s2(t)}.
Consistency means that each pathλi : I → D is a loop.

With this notationγ (X(t)) = {s1(t), s2(t)}, and from the definition ofτ we see
thatτ∗ ι∗[3] is the PRWN of the loopt 7→ {s1(t), s2(t)} in C2.

By Proposition 1.8, we can therefore calculateτ∗ ι∗[3] as the PRWN of the loop
t 7→ {P(t),Q(t)}; this loop can also be expressed as

g B α : I → C2,

where
g : T → C2, {O,P,Q} 7→ {P,Q}.

It follows thatτ∗ ι∗[3] is the homotopy class ofg B κ : I → C2, whereκ is any
loop in the torus homotopic toα; that is,κ can be any(1,2)-loop. For this purpose
we choose thestandard(1,2)-loop,

κ : I → T, t 7→ {O,P (t),Q(t)},
for which P(t) andQ(t) are both collinear withO and each wind once around
the origin in concentric circles, centered atO, of radii 1

6 and 5
6 respectively (see

Figure 3). Because the PRWN of(g B κ) = 2, this gives

τ∗ ι∗[3] = 2.

It is interesting that this is independent of the choice ofσ.

On the other hand, we can also calculateτ∗ ι∗[3] asτ∗(ι∗[κ]). Figure 5 suggests
the proof of the fact that

ι∗[κ] = (a1a2)
3 ∈B3.

σ1 σ2 σ1 σ2 σ2σ1

Figure 5 A (1,2)-loop inT yields(σ1σ2)
3 in B3

Therefore, using additive notation inB2 = Z, we have

τ∗ ι∗[3] = 3τ∗(a1a2).

This yields the contradiction that 3 divides 2, completing the proof of Theo-
rem 0.2.
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3. Sections of Morse Bundles

In this section we discuss some settings in which there is a section of the Morse
bundle for low values ofr, the number of maxima. Our first task is to show that
µr : Mr → Cr is in fact a fibre bundle. Some of the material on equivariant maps
is adapted from Palais [10].

Group Actions, Fibre Bundles, and Sections
A mapp : E→ B will also be denoted by(p,E,B). For a subsetU ⊂ B we set
E|U = p−1U.

We say(p,E,B) is trivial over an open setU if there is a spaceF (called the
standard fibre) and a commutative diagram

whereh is a homeomorphism andp1 is projection on the first factor. We callh a
local trivialization of (p,E,B) overU. If U = B then we callh a global trivi-
alization and say that(p,E,B) is globally trivial. Notice that a globally trivial
map(p,E,B) has a cross-section.

If there is a local trivialization over each open set of some open cover ofB, then
(p,E,B) is locally trivial map, also called afibre bundle.For the theory of fibre
bundles see the books by Hu [7], Husemoller [8] or Steenrod [14].

Let G be a topological group with identity elemente, acting continuously on
a topological spaceZ through homeomorphisms. Thus there is given a map
ρ : G× Z→ Z, written

ρ(g, x) = ρg(x) = g · x,
such that the mapg 7→ ρg is a homomorphism into the group of homeomorphisms
of Z.

Let U ⊂ Z be an open set and letz ∈ U. A local transsectionat (U, z) of the
actionρ is a mapσ : (U, z) → (G, e) such thatσ(x) · z = x for all x ∈ U. If
U = Z then we callσ aglobal transsection.We say thatG actsequivariantlyon
(p,E,B) if we have actions ofG onE andB such thatg · p(x) = p(g · x) for
all x ∈E.
Proposition 3.1. LetG act equivariantly on(p,E,B).
(a) If the action ofG onB has a global transsection, then(p,E,B) is globally

trivial.
(b) If everyb ∈ B belongs to an open setU ⊂ B such that the action ofG onB

has a local transsection at(U, b), then(p,E,B) is locally trivial.
(c) SupposeB is a manifold andG is a Lie group, and suppose the action ofG

onB is simply transitive. Then(p,E,B) is globally trivial and therefore has
a cross-section.



Families of Morse Functions Parameterized by Maxima 363

Proof. Supposeρ : (B, b)→ (G, e) is a global section forρ. SetF = Eb. Then
the map

h : B × Eb → E, (x, y) 7→ ρ(x) · y
is a global trivialization. This proves (a), and (b) follows.

To prove (c), fix anyb ∈ B. For x ∈ B defineσ(x) ∈G to be the unique group
elementg such thatg · b = x. The resulting mapσ : B → G is the inverse to the
evaluation map atb: evb : G→ B, g 7→ g · b. AsG andB are locally Euclidean
andevb is continuous and bijective, it follows from invariance of domain that its
inverseσ is continuous.

Theorem 3.2. For everyr, the following maps are fibre bundles: (µr,Mr , Cr ),
(µ̂r ,M̂r , Ĉr ), and (µr,Vr , Cr ).
Proof. It is easy to see that the group ofC2 diffeomorphisms of the disk acts
equivariantly on each of these three maps with local transsections, so that Propo-
sition 3.1(b) applies.

A classical topological method of obtaining sections is the following.

Proposition 3.3. Let (p,E,B) be a locally trivial map of metric spaces. Let
B1⊂ B be a closed subspace that is a deformation retract ofB. Then every section
ofE |B1 extends to a global section of(p,E,B).

Proof. This follows from the homotopy lifting property of fibre bundles (Hu [7]).

A Canonical Morse Function

LetC = {c1, . . . , cr} ∈ Cr be any set ofr ≥ 1 distinct points inR2. Define a map
fC : R2→ R by

fC(z) =
r∏

j=1

‖z− cj‖2. (5)

Denote bypC : CC → CC the monic polynomial

pC(z) =
∏
j

(z− cj ) (6)

whose set of roots isC, so thatfC(z) = |pC(z)|2.
The goal of this subsection is to prove the following theorem.

Theorem 3.4.

(a) fC is a Morse function if and only if the polynomialspC andp′C have only
simple roots.

(b) Supposer = 3. ThenfC is a Morse function if and only ifC is not the set of
vertices of an equilateral triangle.

For the proof it is convenient to identify complex numbers with vectors inR2. The
real inner product ofz,w ∈C = R2 is denoted by〈z,w〉.
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Multiplication by the complex numberz = a + ib determines a linear operator
in R2 whose matrix in the standard basis is

M(z) =
[
a −b
b a

]
.

With this notation we havewz = M(w)z. Note thatM(z̄) = M(z)T = the trans-
pose ofM(z).

Let p(z) be a complex analytic function defined in some open subsetW of the
plane. We considerp as a mapR2→ R2; then its real derivativeDFz is a linear
operator onR2 whose matrix isM(p′(z)).

The conjugationz 7→ z̄ defines a real (not complex) linear transformation ofR2

whose matrix is denoted by

R =
[

1 0
0 −1

]
.

Define a real-valued functionf on the plane by

f(z) = 1
2|p(z)|2 = 1

2〈p(z), p(z)〉.
Denote its gradient vector atz by∇fz and its Hessian matrix byHfz.

Lemma 3.5.

∇fz = p′(z)p(z), (7)

Hfz = M(p′′(z)p(z))R + |p′(z)|2I. (8)

Proof. From the chain rule we have that, for everyξ ∈R2,

Dfzξ = 〈p(z),M(p′(z))ξ〉 (9)

= 〈M(p′(z))T p(z), ξ〉, (10)

Dfzξ = 〈p′(z)p(z), ξ〉, (11)

which is equivalent to (7). Differentiating (11) with respect toz alongξ,we obtain

Hfz(ξ, ξ) = 〈p′′(z)ξ̄p(z), ξ〉 + 〈p′(z)p′(z)ξ, ξ〉
= 〈p′′(z)p(z)Rξ, ξ〉 + |p′(x)|2〈ξ, ξ〉,

which yields (8).

Corollary 3.6. The function|p(z)|2is a Morse function if and only if bothp
andp′ have only simple zeroes.

Proof. From (7) we see thatz0 is a critical point of|p(z)|2 if and only if z0 is a
zero ofp′ or p.

Supposep(z0) = 0. Then equation (8) shows thatz is a degenerate critical point
of |p(z)|2 if and only ifp′(z0) = 0,which is equivalent toz0 being a multiple root
of p.
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If p′(z0) = 0, then (8) shows thatz0 is a degenerate critical point of|p(z)|2 if
and only ifp′′(z0) = 0; that is,z0 is a multiple root ofp′.

Corollary 3.7. The gradient vector atz of the functionfC(z) = |pC(z)|2 is

∇zfC = |pC(x)|2
r∑

j=1

(z− cj )
|z− cj |2 .

Proof. Follows from (6) and (7).

Corollary 3.8. LetC = {c1, . . . , cr} be a set ofr distinct points in the open
unit disk . Then∇zfC points outward at every boundary pointz of the disk.

Proof. Follows from Corollary 3.7, because〈z, z − cj〉 > 0 if |z| = 1 and
|cj | < 1.

Proof of Theorem 3.4.Part (a) follows from Corollary 3.6. To prove (b), we
setC = {a, b, c} and apply Corollary 3.6; thus we need to show thata, b, c are
equidistant from each other if and only ifp′C has a double root. Now

p′C(z) = 3z2 − 2(a + b + c)z+ ab + bc + ca,
and its discriminant is

(a + b + c)2 − 3(ab + bc + ca) = a2 + b2 + c2 − (ab + bc + ca).
ThereforefC is not a Morse function if and only if

a2 + b2 + c2 − ab + bc + ca = 0.

Since the hypotheses and conclusion are unchanged if we replacefC by f BH
whereH : R2 → R2 is a Euclidean isometry or homothety, we may assume that
c = 0 andb = 1. ThenfC is a non-Morse function if and only ifa2+ 1− a = 0.
But this equation holds if and only ifa, 1, and 0 form an equilateral triangle.

Sections of Some Morse Bundles

Let Sr ⊂ Cr denote the set of configurationsC of r points in the plane for which
the polynomialp′C (see Equation (6)) does not have simple roots. LetŜr ⊂ Ĉr
denote the set of labeled sets ofr points whose unlabeled configurations lie in
Sr . It is easy to see thatSr ⊂ Cr andŜr ⊂ Ĉr are algebraic varieties of codimen-
sion 2. If C ∈ Cr \ Sr then−fC is a Morse function satisfying Hypothesis 0.1 by
Theorem 3.4(b) and Corollary 3.8.

Let υ : Ĉr → Cr denote the natural covering space projection. We define the
canonical sections

κr : Cr \ Sr →Mr , C 7→ −fC, (12)

and
κ̂r : Ĉr \ Ŝr → M̂r , Ĉ 7→ −fυ(C). (13)

In Section 2 we defined a certain torusT ⊂ C3 and proved that no section of
V3|T, and a fortiori ofM3|T, extends to a global section. We did not, however,
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construct a section ofM3|T .We now see from Corollary 3.8 and Theorem 3.4(b)
thatκ3 defines such a section, as it is clear that no equilateral triangle has its set of
vertices inT .

From Proposition 3.1(b) we derive the following.

Proposition 3.9. Letµ : M→ C be the bundle of Morse functions over a sub-
manifoldC ⊂ Cr of configurations of maxima. LetG be a Lie group of diffeomor-
phisms of the diskD such that the induced action ofG on Cr is simply transitive
on C. Then there exists a section of(µ,M, C ). In fact, for any Morse function
F ∈M we obtain a sectionσ : C →M throughF by defining

σ(C) = F B g−1
C , (14)

wheregC ∈G is the unique group element such thatgC(µ(F )) = C.

Scholium. We can choose the sectionσ such that, for everyC ∈ C, the Morse
functionσ(C) takes the same constant valuey on the boundary ofD. This can
be proved from Hypothesis 0.1 by deforming any section, but it follows instantly
from equation (14) by choosingF to have constant boundary valuey.Such bound-
ary conditions are motivated by the original robotics formulation of the section
problem by Rimon and Koditschek [11].

There are many other possibilities; for example, we could make all the Morse
functions in the section have exactly two critical points when restricted to the
boundary.

Example 3.10. To obtain a section of the Morse bundle overC1, we can simply
use the canonical sectionκ1 defined previously (sinceS1 is empty). Alternatively,
to specify boundary behavior we can use Proposition 3.9 and its Scholium, since
the groupH of hyperbolic translations of the Poincaré disk acts simply transitively
onC1. Thus we have our last corollary.

Corollary 3.11. The mapµ1 : M1→ C1 has a section with constant boundary
values.

Example 3.12. Consider̂µ2 : M̂2 → Ĉ2, the bundle of Morse functions with
two labeled maxima in the open disk, as well as the corresponding unlabeled
bundleµ2 : M2→ C2. Clearly,κ̂2 andκ2 are sections.

Example 3.13. Consider̂µ3 : M̂3 → Ĉ3, the Morse functions with three la-
beled maxima. TakeB1 ⊂ Ĉ3 to be the set of labeled configurations(P,Q,R)
such that the distanceδ(P,Q,R) from P to the (Euclidean) lineQR is less than
‖Q− R‖/2, which prevents the triangle(P,Q,R) from being equilateral.

It is easy to see thatB1 is a deformation retract ofĈ3: We deform the ordered
triple of distinct points(P,Q,R) ∈ Ĉ3 along the patht 7→ (Pt ,Q,R), 0 ≤ t ≤
1, defined as follows. LetP ′ ∈QR be the point nearest toP. Define

Pt = (1− t)P + t (0.1P + 0.9P ′).
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Because the standard sectionκ̂3 mapsB1 into M̂3, application of Proposition 3.3
yields the following.

Theorem 3.14. The mapµ̂3 : M̂3→ Ĉ3 has a section.

4. Open Questions

There is an abundance of open and easily stated problems in this area.

Question 4.1. What spaces of configurations on which manifolds admit sections
of the bundle of Morse function?

This paper is a first attack on this question. The global nature of the question
makes it difficult to use results on one configuration space for another. An obvi-
ous conjecture, of which Theorem 0.2 is just the caser = 3, is the following.

Conjecture 4.2. Forr ≥ 3, the mapµr : Mr → Cr does not have a section.

Many interesting questions arise concerning the topology of Morse bundles; we
give one example.

Question 4.3. What is the topology of the standard fibreFr of the bundle of
Morse functions(µr,Mr , Cr )? What is the primary obstruction to a cross-section?
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