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Introduction

For integersn > 1, Hermite’s constant is the smallest numberγn such that, for all
lattices3⊂ Rn of rankn, there is a nonzero lattice pointx ∈3 with

‖x‖ ≤ γ 1/2
n det(3)1/n.

Here‖x‖ denotes the usual Euclidean length ofx. Hermite was the first to prove
the existence of such a constant. He showed that

γn ≤ γ (n−1)/(n−2)
n−1 (1)

for n > 2. Using (1) and a quick induction argument givesγn ≤ γ n−1
2 . After ver-

ifying that γ2 = 2/
√

3, Hermite arrived at the upper boundγn ≤ (2/
√

3)n−1.

Later, Minkowski used his first convex bodies theorem (see [3]) to show that

γn ≤ 4V(n)−2/n, (2)

whereV(n) denotes the volume of the unit ball inRn. Note that this upper bound
for γn grows linearly inn asn → ∞, as opposed to the exponential growth of
Hermite’s original upper bound.

Note that, by introducing a scaling factor, we may restrict to lattices of determi-
nant 1 in the definition of Hermite’s constant (see Lemma 4). Minkowski’s work
on the space of such lattices led him to state (without proof ) that

γn ≥
(

2ζ(n)

V(n)

)2/n

. (3)

This result was first proven by Hlawka (see [3, Sec. 19]); it is a special case of what
is now called the Minkowski–Hlawka theorem. This, along with Minkowski’s up-
per bound stated in (2), shows thatγn in fact grows linearly inn asn→∞. It is
not known whetherγn/n approaches a limit asn→∞. The exact value ofγn is
known only forn ≤ 8 (see [3]).

Hermite’s constant is directly related to the densest lattice packing of spheres
in Rn, and through this to many areas of mathematics and even other natural sci-
ences (number theory, lie algebras, numerical integration, chemistry, and digital
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communication, just to name a few). The comprehensive book by Conway and
Sloane [1] is an excellent source of such applications. Finding the value ofγn, or
even a better understanding of its growth asn → ∞, is an important and much
studied problem.

In this paper we will consider two ways of extending the notion of Hermite’s
constant. The first generalization we consider originated in a paper of Rankin [4],
who extended Hermite’s original work. For 0< d < n, define (a generalized)
Hermite’s constant to be the smallest numberγn,d such that, for any lattice3 ⊂
Rn of rankn and determinant 1, there is a rank-d sublattice of determinant≤ γ 1/2

n,d .

Thenγn,1 = γn. Extending Hermite’s method, Rankin showed such a constant
exists and satisfies

γn,d ≤ γm,d(γn,m)d/m (4)

for 0 < d < m < n. As we will see, this reduces to Hermite’s original inequality
(1) whend = 1 andm = n− 1. In [4], no upper or lower bounds for generalγn,d
are given.

Another way to extend Hermite’s constant comes from arithmetic geometry and
the notion of height. In [7] it is shown that Hermite’s constant can be described as
the smallest numberγn such that, for allA in the general linear group GLn(QA)
over the ring of adelesQA, there is anx ∈P n−1(Q) with twisted height

HA(x) ≤ γ 1/2
n |det(A)|1/nA .

(The relevant definitions will be given in Section 2.) This leads to the follow-
ing generalization of Hermite’s constant. For a number fieldK andn > 1, let
Hermite’s constant forK be the smallest numberγn(K) such that, for allA ∈
GLn(KA), there is anx ∈P n−1(K) with

HA(x) ≤ (γn(K))1/2|det(A)|1/n[K :Q]
A .

Thenγn(Q) = γn. The “adelic” versions of Minkowski’s first convex bodies the-
orem and the Minkowski–Hlawka theorem give generalizations to the bounds (2)
and (3) forγn(K). (See also Theorem 1 of [2].)

In this paper we will study the following generalization of Hermite’s constant,
which includes both Rankin’s and the one just discussed. We use Grn,d(K) to
denote the Grassmannian ofd-planes inKn.

Definition. LetK be a number field and let 0< d < n. Hermite’s constant
is the smallest numberγn,d(K) such that, for allA ∈ GLn(KA), there is aV ∈
Grn,d(K) with

HA(V ) ≤ (γn,d(K))1/2|det(A)|d/n[K :Q]
A .

As explained in [7], we haveγn,d(Q) = γn,d . In particular,γn,1(Q) = γn.We will
prove a generalization of Rankin’s result (4) and generalizations of the bounds (2)
and (3). Specifically, we will prove the following.

Theorem 1. LetK be a number field and let0 < d < n. Then Hermite’s con-
stantγn,d(K) exists and
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(γn,d(K))
[K :Q]/2d ≤ 2r+s |D(K)|1/2

V(n)r/nV(2n)s/n
. (5)

We also have
γn,d(K) ≤ γm,d(K)(γn,m(K))d/m (6)

for all 0 < d < m < n. HereD(K) denotes the discriminant ofK, r ands de-
note the number of real and complex places ofK, respectively, andV(l) denotes
the volume of the unit ball inRl for l > 1.

Note that (5) and (6) generalize Minkowski’s bound (2) and Rankin’s inequality
(4), respectively. The next result generalizes (3).

Theorem 2. LetK be a number field and let0< d < n. Then

(γn,d(K))
n[K :Q]/2 ≥ w(K)n

h(K)R(K)
·

n∏
j=n−d+1

ζK(j)|D(K)|j/2

j r+s2jsV (j)rV(2j)s

d∏
l=2

ζK(l)|D(K)| l/2

lr+s2lsV (l)rV(2l)s

.

Here, in addition to the notation in Theorem 1,h(K), R(K), andw(K) denote the
class number, the regulator, and the number of roots of unity inK, respectively;
ζK is the Dedekind zeta function ofK. (As usual, the empty product is interpreted
as1.)

Theorem 2 in the cased = 1 andK = Q yields the lower bound (3). In particular,
we have the following corollary.

Corollary 1. Let 0 < d < n. Then Rankin’s generalized Hermite’s constant
satisfies

2nd

(V(n))d
≥ (γn,d)n/2 ≥ 2n ·

n∏
j=n−d+1

ζ(j)

jV(j)

d∏
l=2

ζ(l)

lV(l)

.

Combining the upper and lower bounds in Theorems 1 and 2 gives the following
estimate for the growth ofγn,d(K).

Corollary 2. LetK be a number field and let0< d. Then

log(γn,d(K)) = d logn+O(1)
asn→∞, where the implicit constant depends ond andK.

The proof of Theorem 1 uses properties of the twisted height and the adelic ver-
sion of Minkowski’s second convex bodies theorem. The proof of Theorem 2 is
more difficult, involving a mean value argument on certain homogeneous spaces
and the computation of the measures of certain subsets of these spaces. In the
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next section we will give the definition of twisted heights along with some rel-
evant results concerning them. Section 3 is devoted to the proof of Theorem 1.
Section 4 lays out the mean value argument for proving Theorem 2, and the last
section contains a measure computation that completes the proof of Theorem 2.

1. Twisted Heights

Throughout this paperK will denote a number field. In addition to the notation in
the statements of Theorems 1 and 2, we letKA, K

×
A , andM(K) denote the ring

of adeles, idele group, and set of places ofK, respectively. For eachv ∈M(K),
let Kv denote the completion ofK at v and letOv denote the maximal compact
subring ofKv wheneverv is finite.

Let αv be the Haar measure onKv obtained by takingαv(Ov) = 1 if v is finite;
αv is the usual Lebesgue measure onR if v is real and is twice the usual measure
onC whenv is complex. We obtain a Haar measureα onKA given by

α = |D(K)|−1/2 ·
∏
v

αv.

We will write αn for the Haar measure on(KA)n derived by taking the product
measure. Thenαn is the Tamagawa measure on(KA)n, and we note that

αn((KA)
n/Kn) = 1 (7)

(see [10, Chap. 2]).
For each placev we define| · |v onKv by αv(aM) = |a|vαv(M) for any mea-

surable setM ⊂ Kv anda ∈ Kv. We then have the product formula [9, Chap. 4,
Thm. 5] ∏

v∈M(K)
|x|v = 1

for all nonzerox ∈K. We let| · |A denote the module onK×A as in [9]:

|a|A =
∏

v∈M(K)
|av|v.

Given an infinite placev,we let‖ · ‖v denote the usualL2 norm on(Kv)n raised
to the local degree:

‖x‖v =
{ (∑n

i=1|xi |2v
)1/2

if v is real,∑n
i=1|xi |v if v is complex.

If v is a finite place, we let

‖x‖v = max
1≤i≤n
{|xi |v}.

For x ∈Kn andA∈GLn(KA) with local componentsAv, define

‖A(x)‖A =
∏

v∈M(K)
‖Av(x)‖v.
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For anyA∈GLn(KA)andx ∈Kn,one sees by the product formula that‖A(x)‖A
is invariant under scalar multiplication ofx by nonzero elements ofK. Thus, the
heightsHA for A∈GLn(KA) defined by

HA(x) = ‖A(x)‖1/[K :Q]
A

are really heights on projective spaceP n−1(K). These are the “twisted heights” in
[5] and [7]. In the case whereA = In is the identity element of GLn(KA), HIn(x)
is the “usual” absolute multiplicative Weil height usingL2 norms at the infinite
places. We extendHA to Grn,d(K) via exterior products. Specifically, ifV ⊂
Kn is ad-dimensional subspace, then∧dV ∈ P(nd)−1(K) and we defineHA(V ) to
beH∧dA(∧dV ). We also setHA({0}) = 1 andHA(Kn) = |det(A)|A for anyA ∈
GLn(KA).

We end this section with some auxiliary results.

Lemma 1 [5, Lemma 3.2, Cor. 4.3]. Let v ∈M(K) andA ∈GLn(Kv). Let 0 <
m ≤ n and letφv : Km

v → Kn
v be an injectiveKv-linear map. Then there is aB ∈

GLm(Kv) such that

‖(∧dB)(x)‖v = ‖(∧dA)((∧dφ)(x))‖v
for all x ∈∧d((Kv)m) and0< d < m.

If φ : Km→ Kn is an injectiveK-linear map andA∈GLn(KA), then there is
aB ∈GLm(KA) that satisfies

HB(V ) = HA(φ(V ))
for all 0< d < m andV ∈Grm,d(K).

Lemma 2 [6, Duality Theorem]. Let 0 ≤ d ≤ n. For a V ∈Grn,d(K), let V ∗ ∈
Grn,n−d(K) denote the subspace orthogonal toV with respect to the canonical bi-
linear form onKn. For A ∈GLn(KA), let A∗ = (A−1)tr, where“tr” denotes the
transpose. Then, for anyA∈GLn(KA) and anyV ∈Grn,d(K),

HA(V ) = HA∗(V ∗)|det(A)|A.
Thus,

γn,d(K) = γn,n−d(K).

Lemma 3 [8, Lemma 4; 6, Thm. 2]. Letv ∈M(K) and0< d < n.Given aVv ∈
Grn,d(Kv), there is a linear mapPv : Kn

v → Vv such that, for allx ∈Kn
v \Vv and

bases{x1, . . . , xd} of Vv,

‖x1 ∧ · · · ∧ xd ∧ x‖v = ‖x1 ∧ · · · ∧ xd‖v · ‖x − Pv(x)‖v.
LetA ∈ GLn(KA) and V ∈ Grn,d(K). There is an isomorphismφ : Kn−d →

Kn/V (asK-vector spaces) and aB ∈GLn−d(KA) such that

HA(W + V ) = HA(V )HB(W)
for all W ∈Grn−d,m(K) andm ≤ n− d, where
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W + V = { x ∈Kn : x +V ∈ φ(W) } ∈Grn,d+m(K).

In particular,

|det(B)|A = |det(A)|A
HA(V )[K :Q]

.

Lemma 4. Hermite’s constant is the smallest numberγn,d(K) such that, for all
A∈GLn(KA) with |det(A)|A = 1, there is aV ∈Grn,d(K) with

HA(V ) ≤ (γn,d(K))1/2.

Proof. Let A ∈ GLn(KA). Let a ∈ K×A with |a|A = |det(A)|−1/n
A and letD ∈

GLn(KA) be the diagonal element with diagonal entries alla. Then|det(DA)|A =
1 and

HA(V ) = HDA(V )|det(A)|d/n[K :Q]
A

for all 0≤ d ≤ n andV ∈Grn,d(K).

2. Proof of Theorem 1

Fix a number fieldK.To ease readability, we will writeγn,d for γn,d(K) throughout
this section. By the adelic version of Minkowski’s second convex bodies theorem
(see e.g. the corollary to [7, Thm. 3]), for anyA ∈ GLn(KA) there are linearly
independentx1, . . . , xn ∈Kn with

HA(x1) · · ·HA(xn) ≤ 2n(r+s)|D(K)|n/2

V(n)rV(2n)s
|det(A)|A.

We may assume without loss of generality thatHA(x1) ≤ · · · ≤ HA(xn). By [5,
Lemma 4.7], for 0< d ≤ n we have

HA(V ) ≤ HA(x1) · · ·HA(xd),
whereV ∈ Grn,d(K) is generated byx1, . . . , xd . This proves the first part of
Theorem 1.

For the second part, let 0< d < m < n and letA∈GLn(KA)with |det(A)|A =
1. Let V ∈ Grn,d(K) with smallest heightHA(V ) and letW ∈ Grn,m(K) with
HA(W) ≤ γ

1/2
n,m. Let φ : Km → Kn be an injective linear map with imageW.

By Lemma 1 there is aB ∈ GLm(KA) that satisfiesHB(T ) = HA(φ(T )) for all
subspacesT ⊆ Km.

There is aT ∈Grm,d(K) with

HB(T ) ≤ γ 1/2
m,d |det(B)|d/m[K :Q]

A = γ 1/2
m,dHA(W)

d/m ≤ γ 1/2
n,d γ

d/2m
n,m .

By construction,

HA(V ) ≤ HA(φ(T )) = HB(T ) ≤ γ 1/2
m,dγ

d/2m
n,m .

This proves (6) by Lemma 4.
Another way to prove (6) is as follows. Let 0< d < m < n and letA ∈

GLn(KA) with |det(A)|A = 1. Take aV ∈ Grn,n−m(K) with HA(V ) ≤ γ 1/2
n,n−m.
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By Lemma 3, there is aB ∈GLm(KA) and aφ : Km→ Kn/V with |det(B)|−1
A =

HA(V )
[k :Q] and

HA(V +W) = HA(V )HB(W)
for all W ∈Grm,m−d(K). LetW ∈Grm,m−d(K) with

HB(W) ≤ γ 1/2
m,m−d |det(B)|(m−d )/m[K :Q]

A .

ThenV +W ∈Grn,n−d(K) satisfies

HA(V +W) ≤ HA(V )γ 1/2
m,m−d |det(B)|(m−d )/m[K :Q]

A

= HA(V )γ 1/2
m,m−dHA(V )

(d−m)/m

= HA(V )d/mγ 1/2
m,m−d

≤ γ 1/2
m,m−d · γ d/2m

n,n−m.

Thus, γn,n−d ≤ γm,m−d · γ d/mn,n−m by Lemma 4, and (6) follows from this and
Lemma 2.

3. A Mean Value Argument

The proof of Theorem 2 uses a mean value argument and is more involved than
the proof of Theorem 1. In this section we give this mean value argument; the
proof of Theorem 2 will be completed in the next section, where we will carry out
a certain computation.

We define
Gn = {A∈GLn(KA) : |det(A)|A = 1}.

Note that GLn(K) is a discrete subgroup ofGn and thatGn/GLn(K) is compact.
One can construct an invariant Haar measure onGn as in [7], where by “invariant”
we mean that the measure is invariant under multiplication on the left or right.
ThenGn/GLn(K) has finite measure; we letµn be the invariant Haar measure on
Gn with

µn(Gn/GLn(K)) = 1. (8)

Define

Gn,d =
{(

A B

0 C

)
∈Gn : A∈Gd, C ∈Gn−d

}
,

so that GLn(K)/(GLn(K)∩Gn,d) = Grn,d(K). Letµn,d be the measure onGn,d

given by

dµn,d

(
A B

0 C

)
= dµd(A)× dα(n−d )d(B)× dµn−d(C).

Then
µn,d

(
Gn,d/(Gn,d ∩GLn(K))

) = 1 (9)

by (7) and (8).
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We will write dνn,d for the relatively invariant gauge form on the homogeneous
spaceGn/Gn,d that satisfiesdµn = dνn,d × dµn,d in the sense of [10]. In other
words, for any integrable functionf onGn,∫

Gn

f(A) dµn(A) =
∫
Gn/Gn,d

∫
Gn,d

f(AB) dµn,d(B) dνn,d(AGn,d).

For t > 0 we will denote the characteristic function of [0, t) by χt . For l a
positive integer, letS l =∏v S

l
v ⊂ (KA)l be defined by

S lv =
{ { xv ∈ (Kv)l : ‖xv‖v < 1} if v is Archimedean,

(Ov)
l if v is non-Archimedean.

Then

αl(S l) = 2lr2V(l)r1V(2l)r2

|D(K)| l . (10)

For ann×d matrixX = (xtr
1 · · · xtr

d )with x i ∈ (KA)n, defineψ : X→ (KA)(
n
d)

by
ψ(X) = x1 ∧ · · · ∧ xd .

Define

fn,d(X) = inf
a∈K×A
{ |a|A : ψ(X)∈ aS (nd) }

= inf
A∈GLd (KA)

{ |det(A)| : ψ(XA−1)∈ S (nd) }.

Certainlyfn,d(X) is invariant under multiplication on the right by elements ofGd,

so we may viewfn,d as a function onGn/Gn,d, for example (where it is con-
tinuous). Note thatfn,d(A(V )) = HA(V )

[K :Q] for all V ∈ Grn,d(K) andA ∈
GLn(KA). Let

c(n, d ) =
∫
Gn/Gn,d

χ1(fn,d(AGn,d)) dνn,d(AGn,d).

Lemma 5. LetD ∈GLn(KA) andt > 0. Then∫
Gn/Gn,d

χt (fn,d(DAGn,d)) dνn,d(AGn,d) = |det(D)|−dA c(n, d )t n.

For any measurable functionf onR,∫
Gn/Gn,d

f(fn,d(AGn,d)) dνn,d(AGn,d) = nc(n, d )
∫ ∞

0
f(x)xn−1 dx.

Proof. Let

G′n,d =
{(

Id B

0 C

)
∈Gn,d : C ∈Gn−d

}
and letµ′n,d be the measure onG′n,d given by

dµ′n,d

(
Id B

0 C

)
= dα(n−d )d(B)× dµn−d(C),
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so thatdµn,d = dµd × dµ′n,d . Let dν ′n,d be the relatively invariant gauge form
onGn/G

′
n,d that satisfiesdµn = dν ′n,d × dµ′n,d . Then, by the uniqueness of Haar

measure,dν ′n,d = c · dαnd for somec > 0.
By [9, Chap. 4, Thm. 6], GLd(KA) ∼= R×+×Gd,whereR×+ is the multiplicative

group of positive real numbers. Herer = |det(r · A)|A for r ∈ R×+ andA ∈Gd,
wherer ·A denotes the image under an isomorphism fromR×+ ×Gd to GLd(KA).
Let 0 be a fundamental set modulo GLd(K) of Gd. Forn× d matricesX define

f ′n,d(X) = inf
r>0
{ r : ψ(X(r · A)−1)∈ S (nd) for someA∈0 }.

Sinceµd(0) = 1 by (8), we have∫
Gn/Gn,d

χ1(fn,d(DAGn,d)) dνn,d(AGn,d)

=
∫
Gn/G

′
n,d

χ1(f
′
n,d(DAG

′
n,d)) dν

′
n,d(AG

′
n,d)

= c
∫
(KA)nd

χ1(f
′
n,d(DX))

∏
i,j

dα(xij )

= |det(D)|−dA c
∫
(KA)nd

χ1(f
′
n,d(X))

∏
i,j

dα(xij )

= |det(D)|−dA c(n, d ).
This proves the first part of the lemma whent = 1.

Now let t > 0 and leta ∈ K×A with |a|A = t−1/d . Let Dt ∈ GLn(KA) be the
diagonal element with diagonal entries all equal toa. Then∫

Gn/Gn,d

χt (fn,d(DAGn,d)) dνn,d(AGn,d)

=
∫
Gn/Gn,d

χ1(fn,d(DtDAGn,d)) dνn,d(AGn,d)

= |det(DtD)|−dA c(n, d )
= |det(D)|−dA c(n, d )t n

by what we have already shown. This shows that the first part of the lemma is
true. In particular, the second part of the lemma is true forf = χt , and thus forf
any simple function. The case for generalf follows by approximating with sim-
ple functions.

We now give our mean value argument for proving Theorem 2.

Lemma 6. Let t > 0 satisfyt−n > c(n, d ). Then there is anA ∈Gn such that,
for all V ∈Grn,d(K),

HA(V )
[K :Q] > t.
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In particular, by Lemma 4,

γn,d(K) ≥ c(n, d )2/n[K :Q] .

This will prove Theorem 2 once we computec(n, d ), which will be done in the
next section.

Proof. Let ε > 0 satisfy(t n + ε)c(n, d ) < 1. Let

f(x) =
{

1 if x ≤ t,
(x/t)−n−nt

n/ε if x > t.

Then, by Lemma 5,∫
Gn/Gn,d

f(fn,d(AGn,d)) dνn,d(AGn,d) = nc(n, d )
∫ ∞

0
xn−1f(x) dx

≤ (t n + ε)c(n, d )
< 1.

Sincef B fn,d is a positive, continuous, and integrable function, we may apply
[10, Lemma 2.4.2] to yield∫

Gn/Gn,d

f(fn,d(AGn,d)) dνn,d(AGn,d)

=
∫
Gn/GLn(K)

[ ∑
V∈Grn,d (K)

f
(
fn,d(A(V ))

)]
dµn(A),

by (9). By (8), there is anA∈Gn such that

1>
∑

V∈Grn,d (K)

f
(
fn,d(A(V ))

)
.

Thus,HA(V )[K :Q] = fn,d(A(V )) > t for all V ∈Grn,d(K).

4. A Computation

We will not computec(n, d ) directly for d > 1, but instead prove the following
theorem.

Theorem 3. For 0< d < n,

c(n, d ) =
(
n

d

)
n
·
∏d−1

i=0 c(n− i,1)∏d
j=2 c(j, j − 1)

,

where the empty product is interpreted as1.

Note that Theorem 3 impliesc(n, d ) = c(n, n− d ). In particular,c(j, j − 1) =
c(j,1) and so Theorem 2 follows from Lemma 6, Theorem 3, (10), and the fol-
lowing result.
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Lemma 7 [7, Lemma 1]. For n > 1,

c(n,1) = αn(S n)nr+s−1h(K)R(K)

w(K)ζK(n)
.

Our proof of Theorem 3 requires some preliminary considerations. Define

gn,d =
{(

A B

0 C

)
∈Gn,d : A∈Gd,d−1

}
=
{(

A B

0 C

)
∈Gn,d : C ∈Gn−d+1,1

}
= Gn,d ∩Gn,d−1.

ForD ∈ gn,d we may write

D =
(
A B1 B2

0 B3 B4

0 0 C

)
,

whereA ∈ Gd−1, B3 ∈ G1, andC ∈ Gn−d . We letσn,d be the measure ongn,d
given by

dσn,d(D) = dµd−1(A)× dαd−1(B1)× dα(n−d )d(B2)

× dµ1(B3)× dαn−d(B4)× dµn−d(C).
Writing

A0 =
(
A B1

0 B3

)
and C0 =

(
B3 B4

0 C

)
,

we have

dσn,d(D) = dµd,d−1(A0)× dα(n−d )d(B2)× dαn−d(B4)× dµn−d(C)
= dµd−1(A)× dαd−1(B1)× dα(n−d )d(B2)× dµn−d+1,1(C0). (11)

Lemma 8. For A∈Gd andC ∈Gn−d+1, write

A′ =
(
A 0
0 In−d

)
∈Gn,d and C ′ =

(
Id−1 0

0 C

)
∈Gn,d−1.

Let τn,d be the relatively invariant gauge form on the homogeneous spaceGn/gn,d
that satisfiesdµn = dτn,d × dσn,d . Then, forf any measurable function on
Gn/gn,d , we have∫

Gn/gn,d

f(Dgn,d) dτn,d(Dgn,d)

=
∫
Gn/Gn,d

∫
Gd/Gd,d−1

f(DA′gn,d) dνd,d−1(AGd,d−1) dνn,d(DGn,d)

=
∫
Gn/Gn,d−1

∫
Gn−d+1/Gn−d+1,1

f(DC ′gn,d) dνn−d+1,1(CGn−d+1,1)

dνn,d−1(DGn,d−1).
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Proof. We have

Gd/Gd,d−1
∼= Gn,d/gn,d and Gn−d+1/Gn−d+1,1

∼= Gn,d−1/gn,d

via the mapsAGd,d−1 7→ A′gn,d andCGn−d+1,1 7→ C ′gn,d . Further, ifτ1 andτ2

satisfydµn,d = dτ1× dσn,d anddµn,d−1= dτ2 × dσn,d , then

dτ1(A
′gn,d) = dνn,d(AGd,d−1) and

dτ2(C
′gn,d) = dνn−d+1,1(CGn−d+1,1)

by (11). Thus,∫
Gn/gn,d

f(Dgn,d) dτn,d(Dgn,d)

=
∫
Gn/Gn,d

∫
Gn,d/gn,d

f(DA′gn,d) dτ1(A
′gn,d) dνn,d(DGn,d)

=
∫
Gn/Gn,d

∫
Gd/Gd,d−1

f(DA′gn,d) dνd,d−1(AGd,d−1) dνn,d(DGn,d)

=
∫
Gn/Gn,d−1

∫
Gn,d−1/gn,d

f(DC ′gn,d) dτ2(C
′gn,d) dνn,d−1(DGn,d−1)

=
∫
Gn/Gn,d−1

∫
Gn−d+1/Gn−d+1,1

f(DC ′gn,d) dνn−d+1,1(CGn−d+1,1)

dνn,d−1(DGn,d−1).

Proof of Theorem 3.We will prove Theorem 3 by induction ond. The cased =
1 is trivially true. Now suppose 1< d < n. We will compute the quantity

C(n, d ) =
∫
Gn/gn,d

χ1(fn,d(Agn,d))χ1(fn,d−1(Agn,d)) dτn,d(Agn,d)

two different ways.
By Lemma 1, for everyD ∈Gn there is aD ′ ∈GLd(KA) with

fn,d(DGn,d) = |det(D ′)|A
and

fn,d−1(DA
′gn,d) = fd,d−1(D

′AGd,d−1)

for all A∈Gd, whereA′ ∈Gn,d as in Lemma 8. By Lemma 5,∫
Gd/Gd,d−1

χ1(fd,d−1(D
′AGd,d−1)) dνd,d−1(AGd,d−1)

= c(d, d − 1)|det(D ′)|1−dA
= c(d, d − 1)(fn,d(DGn,d))

1−d .

Hence, by Lemmas 5 and 8,
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C(n, d )= c(d, d −1)
∫
Gn/Gn,d

χ1(fn,d(DGn,d))(fn,d(DGn,d))
1−d dνn,d(DGn,d)

= c(d, d −1)c(n, d )n
∫ 1

0
xn−1+1−d dx

= c(d, d −1)c(n, d )
n

n− d +1
. (12)

Now letD ∈Gn with columnsdtr
1, . . . ,d

tr
n ∈ (KA)n. For each placev ∈M(K),

let Vv ∈Grn,d−1(Kv) be generated by(d1)v, . . . , (dd−1)v and takePv : Kn
v → Vv

as in Lemma 3. Letd ′d , . . . ,d
′
n ∈ (KA)n be given by(d ′i )v = (d i )v −Pv(d i )v for

eachv ∈M(K) andi = d, . . . , n. Then, lettingX be then × (n − d + 1) ma-
trix with columns(d ′d)

tr, . . . , (d ′n)
tr and lettingY be then× (d − 1) matrix with

columnsdtr
1, . . . ,d

tr
d−1, we have

fn,n−d+1(X)fn,d−1(Y ) = |det(D)|A = 1.

Thus, by Lemma 1 we obtain aD ′ ∈GLn−d+1(KA) with

fn,d−1(DGn,d−1) = |det(D ′)|−1
A

fn,d(DC
′gn,d) = fn,d−1(DGn,d−1)fn−d+1,1(D

′CGn−d+1,1) (13)

for all C ∈Gn−d+1, whereC ′ ∈Gn,d−1 as in Lemma 8.
By Lemma 5,∫
Gn−d+1/Gn−d+1,1

χt(fn−d+1,1(D
′CGn−d+1,1)) dνn−d+1,1(CGn−d+1,1)

= c(n− d + 1,1)|det(D ′)|−1
A t

n−d+1.

Settingt = (fn,d−1(DGn,d−1))
−1, by Lemma 8 and (13) we have

C(n, d )

= c(n− d + 1,1)

×
∫
Gn/Gn,d−1

χ1(fn,d−1(DGn,d−1))(fn,d−1(DGn,d−1))
d−n dνn,d−1(DGn,d−1)

= c(n− d + 1,1)c(n, d − 1)n
∫ 1

0
xn−1+d−n dx

= c(n− d + 1,1)c(n, d − 1)
n

d
. (14)

Comparing (12) and (14) gives

c(n, d ) = n− d + 1

d
· c(n− d + 1,1)c(n, d − 1)

c(d, d − 1)
.

Theorem 3 now follows by the induction hypothesis.
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