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1. Introduction

In this note we consider an analog of the notion of angle between two directions,
possibly based at different points, for a space of curvature bounded above.

The set of all unit tangent vectors of andimensional Riemannian manifold
M" constitutes aphere-bundl&y(M™") overM". In[13; 14], Sasakiintroduced a
natural Riemannian metric on a sphere-bundle of a Riemannian §p#itals?),
which now is known as th&asaki metric.Let £ and& be a pair of vectors in
T1(M") at the nearby points andX. Translate the vectd in a parallel way to
the pointx by Levi—Civita parallelism along a minimizing geodesic joinkgnd
X, and denote the angle between the tangent vector thus obtained and the tangent
vectoré by A6. Then, by a standard limiting process,

do? = ds? + do?

specifies the Sasaki metric tensorZift/M"). Thus the restriction of the Sasaki
metric to a sphere fiber is the canonical round metric; that is, a sphere fiber is iso-
metric to a unit sphere in a Euclidean space and, for a smooth field of unit vectors
along a smooth curve: [a, )] — M", the length of the corresponding curve
E(t) = (y@),&@) in Toi(M") is given by

b
/ \/IIJ'/(I)II2 +1IVy0E®II7dt,

wherey = y, (%), V is the Levi-Civita connection, arit || denotes the norm of
a vector relative tals?.

Itis natural that an angle measurement should produce the canonical Sasaki met-
ric defined via the Levi—Civita parallel transport for Riemannian spaces. In a met-
ric space it should be sensitive enough to distinguish admittedly nonparallel direc-
tions; in particular, it should agree in a very strong sense with the well-established
notion of the (upper) angle for two directions based at the same point in an Alek-
sandrov space. Finally, as a working hypothesis, directions on a geodesic should
be, up to reversal, at angle zero to each other. We present such a construction and
discuss some natural modifications.
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258 I.D.BERG & I. G. NIKOLAEV

It is not clear what an ideal theory could be. The simultaneous achievement of
sensitivity and stability may simply be impractical because of the instability of the
exponential map. Indeed, for two fixed directions based at nearby points it appears
unreasonable for such an angle measurement between the two to be a continuous
function of the directions and base points. As an elementary example consider a
graph and a triple of directiorés ¢, andn that are tangent to the graph (see Fig-
ure 1). Since the polygonal liné&@T andYOT are minimizing geodesics in the
graph, according to the principles of the angle measurenjesmid¢ should be
“parallel” ton (i.e., in both cases the angle should be zero), whitenot parallel
to ¢ since the angle between them equals

Figure 1

Our major technical apparatus is that of a development of estimates on the met-
ric constructions called quadrilateral cosine and quadrilateral sine. These provide
machinery with which to construct a Sasaki metric and appear to be of interest in
the general context of Aleksandrov spaces. For example, we show that equidistant
cross-bars forming nested isosceles triangles with a fixed vertex are approximately
parallel (Lemma 23).

Recent works [5; 6; 7; 8] show the growing interest of analysts in spaces of cur-
vature< K in the sense of Aleksandrov. These spaces give a natural generaliza-
tion of Riemannian manifolds. However, Aleksandrov’s spaces are of much more
general nature.

In the present paper we propose a construction that in a certain sense extends
the notion of the sine of the angheto the spaces of curvature bounded above in
the sense of Aleksandrov. We call this generalized singtiaglrilateral sine In
a metric space a concept difectionreplaces the notion of a vector in a sphere-
bundle. The quadrilateral sine of a pair of directions makes sense in any metric
space, as does Aleksandrov’s upper angle. However, it can be equal to infinity in
the general case. In our paper we prove that, ifiardomain of a space of cur-
vature< K, the quadrilateral sine possesses a stability property. In other words,
it is independent of the choice of the curves specifying a given pair of directions;
the quadrilateral sine is always bounded and, for a pair of direc§ioghe&manat-
ing from one point, the quadrilateral sine coincides with 2.8, ¢)/2). In ad-
dition, [11, Prop. 10] ensures that the quadrilateral sine induces the Sasaki metric
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in the sphere-bundle of a Riemannian manifold. The quadrilateral sine arises in a
natural way from the notion of the quadrilateral cosine.
The basis of the definition of the quadrilateral cosine (notation: cosq) is the
following generalization of the cosine formulalitz:
. |AV]+|BX|* - |AB) - |x¥|?
cos/(AX, BY) = ———
2|AX|-|BY|

b

which is a substitute for the Levi—Civita parallel transport in metric spaces. We
show that the quadrilateral cosine possesses certain additivity properties (Sec-
tion 3.2), which are essential in the proofs of our results.

Though cosq can be infinite in a general metric space, the quadrilateral cosine
possesses a boundedness property in Aleksandrov spaces that depends surprisingly
sharply on Aleksandrov’s curvature (Corollaries 11 and 12), and these boundedness
estimates are equally vital and interesting in their own right. Indeed, in a space of
curvature not greater than zero in the sense of Aleksandrov, 1is a local bound for
the absolute value of the quadrilateral cosine. Conversely, under reasonably gen-
eral hypotheses that we shall discuss later, a local lower positive bound of Aleks-
androv’s curvature implies that the quadrilateral cosine will exceed 1 for certain
configurations (Proposition 13).

In particular, we establish that a Riemannian space has nonpositive sectional
curvature if and only if 1 is a local bound for the absolute value of the quadrilateral
cosine (Proposition 14).

Along this line we establish an extremal property of the quadrilateral cosine
(Theorem 15): In a geodesic metric space where the absolute value of the quadri-
lateral cosine is bounded by 1, we show that two pairs of distinct points for which
cosq achieves this bound have a convex (geodesic) hull that is either isometric to
a trapezoid irE, or to a segment of straight line.

In a Riemannian space we can see &6s— cosqé, £) = O(|x — X|?). Thus,
one cannot use the quadrilateral cosine directly to construct the Sasaki metric.
However, inE; we see

(AX, BY)
2sin/~———2 = sup cos(ﬁ(, C_>Z) — cos(ﬁ)’, C_>Z)
2 &E]Eg
and, it turns out,
Zsinzﬁ = sup {cosqn,§&) —cosqn, £)},
2 penmn

which is a basis of the definition of the generalized sine, gives the correct result in
Riemannian spaces.

The quadrilateral cosine is geometrically accessible but, as we see, is inade-
guate even in the Riemannian case for analytic purposes. The quadrilateral sine,
defined by a family of quadrilateral cosines, is harder to compute but it is more sat-
isfactory analytically; for example, it is adequate to define parallel transport in the
Riemannian case. For Aleksandrov spaces of curvature bounded from above it is
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not difficult to show that directions on a geodesic (up to reversal) are “parallel” in
the sense that the quadrilateral sine between them equals zero (Remark 8). One of
our basic results (see Theorem 21 and Corollary 22) states that, in a space of cur-
vature< K in the sense of Aleksandrov, the quadrilateral sine locally produces the
same distance between a pair of directions stemming from one point as the Alek-
sandrov upper angle does. This result is not quite simple since, in contrast to the
upper angle, computation of the quadrilateral sine involves pairs of points not ly-
ing on the geodesics. Thus we show that the angle measurement specified by the
guadrilateral sine obeys the principles stated at the beginning of this section.

The quadrilateral cosine (under another name) was introduced in [10]. The con-
struction of a generalized sine was developed in [3; 11] and was applied to the prob-
lem of synthetic description of Riemannian geometry. In the present paper we use
a modification of that generalized sine because, in a space of curvatkirehe
old definition does not give the correct answer for a pair of directions emanating
from one point.

2. Basic Definitions

In what follows, for a pair of pointgl, B in a metric spacéM, p) we will denote
by AB = p(A, B) the distance betweef and B.

2.1. Upper Angle between Curves

Let (M, p) be a metric space and I€t NV be a pair of curves inM, p) ema-
nating from a pointP € M. ConsiderX € £ andY € N (X,Y # P). Define
ao(X,Y) by means of the equation
PX?+ PY? — XY?

2PX - PY
Aleksandrov's upper angle betweé€rand\ is defined as follows:

COSxo(X,Y) =

cosa (L, N) = lim, ,  ,cosao(X,Y).

2.2. Space of Directions at a Point

A curve y starting at a point? has adirectionif @(y, y) = 0. Consider the set
A p(M) of all curves emanating from the poift and having a direction at this
point. Lety;, y2 € Ap(M). We introduce an equivalence relatiop; ~ y; if
a(y1, y2) = 0. ThenQp (M) = Ap(M)/(~) is called aspace of directionsWe
denote byll: Ap(M) — Qp(M) the canonical projection.

Thedistancex between two directions is the upper angle between any of their
representatives.

2.3. Quadrilateral Cosine

We will keep the notatiod = P_Q> for an ordered pair of point&P, Q) in a metric
spacg M, p) and|u| for the distance between the poift@andQ, that is,|P_Q>| =
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PQ.Let{P, X, Q,Y} be a quadruple of points in a metric spagde, p) such that
P # X andQ # Y. Thequadrilateral cosine betweeRX and QY is defined as
PY? 4+ QX? — XY? — PQ?

2-PX-QY '

cosc(ﬁ(, @?) =

RemArk 1. It follows immediately from the definition that
cosq PX, Q) = — cosXP, QY).
REMARK 2. Let(P, X) and(Q,Y) be two pairs of distinct points iR". Observe
that
PY? + QX?— XY? - PQ?
—> 2 — =2 — —>2 —> 2 — —>
=|PY|"+|PX — PO|" — |PY — PX|" — |PQ|" =2PX - QY,

-

whence N N
cosq PX, QY) = cosZ(PX, QY).

Thus, in a Euclidean spackz;osc(ﬁ(, @)’)| < 1. In a general metric space the
guadrilateral cosine can be as large as one wishes, but we will show that a curvature
bound affords a bound on the quadrilateral cosine.

ExampLE 1 [3]. On the sefR? we specify the normi(x, y)[l1 = |x| + |y]. In
the resulting normed space we consider the rags = (0, 1 + r) andr,(t) =
(1,1+¢),t>0.LetP=(0,1),X=(0,1+5), 0 =(,1),andY = (1, 1+71).
Then

— —>)_ 2t +2s — 2|t — s| + 2st _{1+2/t if 1>,
2st

cosd PX, QY .
C( 1+2/s if s>rt.

Thus, cos@ﬁ(, @)’) can be arbitrarily large. By Remark 1, the quadrilateral

cosine ofﬁ(, @)/ can be an arbitrarily small negative number.

— —
REMARK 3.  cosPX, PY) = cosao(X,Y).

REMARK 4. LetL, A be a pair of curves emanating from the pafhin a metric
spaceM. ConsiderX € L andY e N/ (X,Y # P). Then

cosa (L, N) =lim, , , cosqﬁ(, ﬁ)/)

2.4. Quadrilateral Sine

Letiu, v, w € M x M be three ordered pairs of distinct points. We define the
quadrilateral sineof the tripleiz, v, w as follows:

sing(i, v; w) = |cosqi, w) — CosSqv, w)|.

In a Euclidean space, spp, sing(u, v; w) = 2sin(Z(u, v)/2). This motivates
our definition of the quadrilateral sine in what follows.
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Although the notion of the quadrilateral cosine of two ordered pairs is clearly
very useful and the quadrilateral sine of a triple of ordered pairs is a sensible idea,
we should point out that there are several reasonable notions for quadrilateral sine
of two directionst, ¢, all of which present drawbacks. The question is: What is
the appropriate form in which to choose “test vect@r? We will establish that all
sensible choices would coincide for the particular important case of two directions
parting at a point.

Two reascmgble choices afare:

(1) allw = AB with A, B close to a geodesic segment joining poiftsand Q,
whereP is the tail ofi and Q is the tail ofv;

(2) allw with A, Binthe convex hul{X,Y, P, O} (as defined below), where, Y
are points on a pair of curves tangent to directibrasd¢ that are arbitrarily
close toP and Q.

We remark that even in Aleksandrov spaces of curvature bounded above, the
first case fails to yield that the quadrilateral sine of a pair of directions tangent to
a geodesic equals zero. That is why we choose case (2) to define the quadrilateral
sine of a pair of directions (see Remark 8).

2.5. Quadrilateral Sine of Directions
Let P, QO be a pair of points in a metric spat#1, p). Assume that any paiP, O
of points in M can be joined by a geodesic segment. Denot§[l; Q] the set
of points each of which belongs to a geodesic segment joining the pbiatyd
0. Let A c M. We defineg[.A] as follows:
glA= | dIp ol

P,QcA
DenoteA by G°[.A] andG[g][. . . G[All] by G"[A].
—

ntimes
Theconvex hullof A is defined as

GCLAl = [ 9"l
n=0

In what follows we assume that any pair of sufficiently close point&4rcan be
joined by a geodesic segment.

Let £ and be a pair of curves iM emanating from point® andQ, respec-
tively. ConsiderX € £ (X # P) andY e N (Y # Q) such thatPX = QY = h.
Note that if the point® andQ are sufficiently close to each other then the convex
hull of the set{ P, O, X, Y} is well-defined.

Thequadrilateral sine of £ and NV is defined as

sing(L, )
= lim sup Im sup |sinq(PX, QY; AB)|. (1)
a—0+ n=0,1,2... >0 A,BeG"[P,Q,X,Y]; AB=ah

Let& € Qp(M) and¢ € Qp(M). Thequadrilateral sine of the paig, ¢) is

defined as

sing(€, ¢) = inf sing(L, NV).
£€H’1(E),/\/€l'[’1({)
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3. Quadrilateral Cosine and Sine in a Space of Curvature< K

3.1. Domaimik [1]

For more details, see [1], [2], and [3].

By Sk, we denote a complete simply connected 2-dimensional space of curva-
ture K (i.e., a sphere, a plane, or a Lobachevskii plane of curvaré-or a tri-
angleT = ABC in a metric spacéM, p), denote byl'® = AKBXC*X a triangle
on Sk that has sides of the same lengtt7aor K > 0 one must assume that the
perimeter ofl is no greater than2/v/K).

An 9Rx domain, abbreviated i, is a metric space with the following prop-
erties.

(i) Any two points infigx can be joined by a geodesic segment.
(i) Each triangle imix has nonpositivek-excess, that is, for the anglesg, y
of the triangle
a+pB+y—(ag + Bk +yx) <0,

whereag, Bx, andyg are the corresponding angles in the triarigfe
(i) If K > 0 then the perimeter of each trianglediry is less than 2/vK.

By a space of curvature K in the sense of Aleksandrov we understand a met-
ric space, each point of which is contained in some neighborhood of the original
space, which is ati . domain.

REMARK 5. Another term for afix domain is a CATK) space. However, we
will use Aleksandrov’s original notation [1].

We will need the following basic properties®f, established by Aleksandrov [1].

(&) In andix domain the geodesic segment joining a pair of points is unique.

(b) Between any two geodesic segment® jnstarting from one point there exists
an angle, that is, the limit limy_, p ao(X,Y).

(c) (Angle comparison theorem): The angée$, y of an arbitrary triangld” in
g are not greater than the corresponding anglesBx, yx of the triangle
TX on Sk.

(d) (K-concavity): LetX andY be points on the sides B and AC of the trian-
gleT = ABC in %k, and letX’ andY’ be the points on the corresponding
sides of the triangl@* = AXKBXCX suchthatd®X’ = AX andAXY’ = AY.
ThenXY < X'Y’.

For a pair of pointsd, B € fix we will denote by.AB the (unique) geodesic

segment joiningd and B.

REMARK 6. Another name for property (d) is CAK)-inequality. In fact, in [1]
Aleksandrov called<-concavity a property equivalent to (d).

Letu = P_Q) and 0< ¢t < 1. Denote byt - u the ordered pairP_)P,, whereP, is
a point on the (unique) geodesic segm@ such thatPP, = ¢ - PQ. Define
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(—1) - u to be the ordered pa'@_f’. If -1 <t <O0thenr-u = |t|[(—1)i]. Letv =
—_—> . N N - N —_—> . -
OR. We definez + v to be the ordered palPR . If 7 = PR we definez — u to be

equal to@)e. Observe that, by the definition(i & v) = tu =+ tv. For a vectori
we denote byu| the length ofi, that is, the distance between the poifitand Q.

3.2. Averaging Property

We now establish an averaging property for cosq, which—together with an a pri-
ori upper bound depending only on curvature—allows us to establish control of
differences of cosgs and hence of sings.

LEMMA 2. Letu = P_Q>, V= @)?, andw = 17/1 Then
V]

lit + v

. u
cosquw, u +v) = J—'

— cosquw, i) +
lu+ vl q

cosqw, v).

Proof. The foregoing equation is equivalent to
LR?+ PM? — MR*— PL>  PQ LQ*+ PM?— PL*> — QM?

2-ML - PR PR 2- PO - ML
OR LR?+ QOM? — LQ? — MR?
PR 2. QR ML ’
which is obvious. ]

COROLLARY 3. Leti=PO, w=LM,7= ﬁ? andR # Q. Then
Jid|

W o o - Z
cosqw, u —z) = == Cosqw, u) — q| |q
lu —z| lu —z|
We now express cosq of two segments in terms of averages of cosq of subsegments.
N —> N —> . . .
Letu = PQ andw = L M. Splitthe geodesic segmeR evenly by the points

P=P0<P1<P2<"'<Pm—1<Pm=Q

cosqw, 7).

and the geodesic segmefiM evenly by the points
L=Log<Li<LlLy<---<L,1<L,=M.

DenoteP;,_1F; byu; (i =1,...,m)andL;_1L; byw; (j =1,...,n). Form =
1 andn = 2, see Figure 2.

COROLLARY 4.

- 1 .
cosqw, u) = — Z cosqwj, u;).
mn

i=1,..,m; j=1,..,n
In particular,

1 m
cosqw, ii) = — Z cosq(w, ii;).
miz

The following form of averaging is an immediate generalization of Remark 1.
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0 M

W)

- L
u
Wi
P L
Figure 2
CoRrROLLARY 5. Letwq, wo, .. ., w, formaclosed polygon and Iétbe arbitrary.

Then

n
|w;| cosqit, w;) = 0.
i=1

3.3. A Priori Bound for the Quadrilateral Cosine

In contrast to the general case, cG5d) is uniformly bounded in amiy do-
main, with a bound depending on the curvature. These bounds are sharp, thus
establishing that our results are involved with curvature.

We first mention an elementary formula for a limiting value of cosq in a smooth
Ngx domain.

LemMma 6. LetdistinctP, Q, X,Y be given. Lef, be the unique point on the ge-
odesic segmerRX’ at distancex from P. Let O, be the unique point on geodesic
segmenQ) at distancey from Q. Letz(x, y) = P, Q, so that

2 2 2 2
hx.y) = cosc(P—>Px, @;) _ z(x, 0)° +z(0, y)* — z(x, ¥)c — z(0, 0) '

2xy
Then, ifz(x, y) € C? in a neighborhood of0, 0), we have
. —_— —>
) Iy@OJr cosq PPy, Q0) = —(zy - 2x + 2 - 2xy)|0.0)-

Proof. Letw(x, y) = z%(x, y). Then
[w(x, y) —w(x, 0] = [w(0, y) —w(0,0)]
Xy
_ [y, 0y + wyy (6, 5)%2)] = [wy (0, 0)y + wy, (0. $)(y%/2)]
Xy
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_ wy(xs 0) - wy(ov O) wyy(xv y) - wy)‘(oa )A’)
= —|—y
X 2x

= w,,(0,0) + (W (%, 0) — w,, (0, 0)) + %[wwu, 5) — wyy (0. )]

In a similar way one obtains:
[w(x, y) — w(x, 0)] — [w(0, y) — w(0, 0)]
xy
= wxy(oa 0) + (wxy(oa y) — wxy(ov 0) + Zx_y[wyy()zv y) — wyy(x,\a O)]

For the bracketed terms we choose the more convenient estimate. Thusywhere
y we choose the first bracket, wherg2x < 1/2 andw,, (x, ) — wyy(0, y) —

0 uniformly inx andy by the continuity ofw,, at (0, 0); similarly, w,,(0, y) —
Wyy(0,0) — 0 uniformly. Recall that 0< y < y, and so on. Of course, where
y > x, we choose the second estimate. Thus,

|h(x, )+ 2y - 2x + 2 Zxy)]0,0)]

3 ,
<= max w;ii(s’, t)y —wii(s, 1), (2
=< 20ss,s’sx,osz,t’sy,z‘,j:lzl ij ( ) (s, 0l (2)

wherew; denotesh?w/dx? and so on. Therefore,

. 10%(z%(x, y))
|Im h s == — ) * x * Lxy . D
x,y—0 (x, ) 2 ax dy @ -2tz 2o)loo

We observe that, for thi€? situation, by identifying cosq as a derivative we have
freed ourselves from considering any relationship betweand y as they ap-
proach zero. In this note we are concerned with situations much wors€than
but we need som€? comparisons.

3.3.1. A Priori Bound on a Sphere.In what follows,K = k2 > 0 and
SE={(x,y,2)eR®: x4+ y* + 2 = 1/K = 1/k? andz > 0}.

We consider a domain in the upper hemisphere of radius properly less t2an
so that all distances encountered are less th@nand so all geodesic segments
are unigue.

Let distinctP, O, X, Y be given. We first calculate

. !@ . cosc{PPx, QQ)) —(zyzx + 22xy)|0,0)

as described in Lemma 6. We include a sketch (see Figure 3).
LEmMMA 7.

kz(0, 0)
X Iylin +COSC(PPX’ 0, ) sinkz(0, 0)

Here&, denotesZ QPX and§, isw — ZYQP as sketched.

Siné, sin&, + cos&, COSE,.
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X

2(x,y)

R, z(0,0)
Figure 3

Proof. We prove Lemma 7 for the unit sphere. The adjustment fstrivial. The
second variation formula will yield a calculation; however, direct computation is
particularly neat here.

It is clear that, on a sphere, we may break up the arbitrary geodesic segment
PP, intersectingP”Q into a perpendicular meridiah,, P, and a transversal equa-
torial segmentPP,,, and similarly withQQ, (see Figure 3). Referring to the
definition of the sum of ordered pairs (Section 3.1), we see that

— —_—
PP, = PP, + P, P, and QQ, = 00, + 0,,0,.
By applying twice the averaging property (Lemma 2), we have
— — —_— ——
|PPX| ’ |QQ}‘| COSqPPx’ QQ}*)

= |Px0Px| . |Qony| . COSC(PXOPX’ Q.VOQY)
+ |ﬁ| . |Qon_v| -COSC(@, QonY)
+ ‘Pxopx‘ : ’QQyo’ ’COS({PXOPX’ QQyo)

+ [P 100, - cosd PPy, 00,). ¥

In order to compute the limits of these four terms, we will first establish the fol-
lowing special cases of Lemma 7.

Case (I) PP, andQQ, are both meridians, arld = &, = /2. We have
cosz(x, y) = sinx siny 4 cosx cosy cosz(0, 0),
wherex andy are measured from the equator along the meridians. Hence, because
z(x, y) is bounded away from 0 and/ 2, differentiation yields

+(0,0) = 0,00=0 d 2,00 = ————.
7x(0,0) = z,(0,0) and z,,(0,0) Sinz(0.0)

. —_—> —> ~ .
Hence lim. ,.o cosq PP,, QQ,) = % as claimed.
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Case (Il) If PP, is a meridian an@ 9, is equatoriaté, = /2, &, = 0), then
cosz(x, y) = cosx cogz(0, 0) + y) and bothz,, (0, 0) andz, (0, 0) equal zero,
whence

i o477 07) <
Case (lll) PP, andQQ, are both equatorial, arid = &, = 0. Then
i oosdPF, 00) =1
since cosg= 1 there.

Let P;, O, be unique points on geodesic segméRtsP, andQ,Q, at distances
s andr respectively. By (1),

lim cosc(PxoPg, 0,,0;) = i PXO—Q‘O
s,t—0 x,y—>0 SIanngo

—_— —
By (2) of Lemma 6, the function co@ﬂ’xoPs, Q},OQ,) converges uniformly (rela-
tive tox andy) to its limit ass, + — 0. Therefore

0 PQ z(0,0)
lim cosq P, P;, O, ProQyo  _ . = — )
x,y—0 (( xo P O OQ) —»o sinP,,0,, SINPQ  sinz(0,0)

In a similar way, by invoking[ll) and(2), one can see that

lim cosc(Pxon, QQyO) =

Xy—)

Finally, by (111),
—_— ——>
cosq PP, Q0y,) =1
Observe that
lim ProPx _ SinZXPQ = sin&
PP, R

x—0 X

lim —— PPr = COSLXPQ = cosé
x—0 PPX - - b

and similarly foré,, by the boundedness of curvature. Now we take the limit on
—_—> —> . .
the four terms that summed to cqstP,, Q0 ). This yields

z(0,0)
lim cosc(PPx, QQy) = sing, sméym + COSE, COSEy,
x,y—>0
as claimed in Lemma 7. O

Finally, in the case of two geodesics joiniRg at right angles from the same side,
—> —
note thatPP, and QQ, are parallel under parallel transport but that
k(PQ)
sink(PQ)’
which goes to infinity a&(PQ) — m; hence our curvature dependence for the
bound on cosq is sharp.

. —_— ——
A,  Cosd PP, 00)) =
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Because/(sinz) is nondecreasing, we have the following corollary.

COROLLARY 8.
kz(0, 0)

I|m cosc(PX QY) Snk=(0.0)"

X—PY
We will keep the following useful notation:
2 =2(PX. QF) = suplz(x, y) | P, € PX, Q, € Q).
Recall that:(0, 0) = PQ = | PQ| andz(PX, QY) = XY = |X7|.

LemMma 9. Letz e (0, n/k) andx, y € (0, 7/ 2k]. Then

|cosc(PX QY)} < Sne

Proof. For N > 0, split the geodesic segmer&’ andQ) by points
P=Xog<X1<Xo<---<X,.1<X,=X,
Q=Y0<Y1<Y2<'~<Yn_1<Yn=Y,
so that
PX Y
X, = X;i1X; = — and Yo = j_]_Yj:Q—, i,j=1,2,...,n
n n

By Theorem 6 and Corollary 8, for an> 0 there is am, such that

A

kZ ..
COS((X,'_]_X,,Y 1Y) sin kZ—I—E z,J=1,2,...,n5—1.
By Corollary 4,
cosq PX, OY) Z cosqX; 1X;, ¥; 1Y)
8 i,j=1
- . kz n kzZ n
—_ . = & = ——= &

~ nf A5 \SinkZ sinkz

As ¢ is an arbitrary positive number, we have established Lemma 9. O

3.3.2. General Case.We remark that diaiihix) < =/+/K if K > 0, since oth-
erwise there is a triangle iy of perimeter no less thanmiZ VK.

LemMma 10. Let P, X, Q,Y be a quadruple of points in aftx domain, and let
x = PX andy = QY. Assume thaPQ > 0 and that both

O<x,y<n/2\/f and x+y+PQ<7T/«/?

if K = k? > 0. Then there is a convex quadrang®X'Y’Q’ on S¢ if K > 0, and
on a Euclidean plane iK < 0, such that

cosc(F?(, @)/) < cosc(ﬁ, ﬁ)
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Proof. Lemma 10 is an immediate consequence of a theorem by Reshetnyak [12].
Indeed, consider a closed broken lIREYQP in the domaiig. By the hypoth-

esis of the lemma, the length of the liRYQP is less than 2/k if K > 0. This
allows us to apply the results of [12]. By [12, Thm.] there is a convex dorfain
onS¢ if K > 0, and on a Euclidean plane K < 0, as well as a nonexpanding
map¢: D — Rk that is length-preserving on the bounda® of the domain

D. Properties of the map ensure thadD is a geodesic quadrangX'Y’'Q’,
wherePX = P'X', XY = X'Y’, QY = Q'Y andPQ = P’'Q’. Becausep is a
nonexpanding map,

PY <PY and 00X <Q'X.

Thus,
PY?+ QX2 — XY? - PQ?
cosqﬁ){, _)>’) - +0 Q
2.PX-QY
P/y/2 /X/Z _ X/y/Z _ P 12 NN
< +0 0 =cosqP'X’,Q'Y'"). O
2.pPX". Q/Y/

— = — —
In what follows, byz = Z(PX, QY) we understand(P'X’, Q'Y’) (see Sec-
tion 3.3.1). We will refer toz as themaximal distance of the configuration
{P,X,0,Y}.

Invoking Corollary 4, by Remark 1 and Lemmas 9 and 10 we have the following.

COROLLARY 11. For K = k? > 0,

— —> kz
|cosq PX, OY)| < e

provided that0 < x, y < 7/2k and PQ > 0, where? = 2(5)(, @)’)
Our next corollary follows by virtue of Lemma 10 and Remarks 1 and 2.

CoroLLARY 12. For K <0,
|cosc(ﬁ>(, @)’)\ <1

3.4. Sign of the Curvature and Bounds of the Quadrilateral Cosine

At this point we note that bounds below on the curvature greatersghan0O in
the sense of Aleksandrov guarantee a failure of the bcﬁwst{ﬁ)( @)/)| <1
with very moderate side conditions. We observe that the proof technique does not
require the full hypotheses, but we are not pursuing this line in the present paper
and remark that Riemannian spaces are an easy special case.

Let £, N be a pair of geodesic segments in a metric sgade p) with a com-
mon starting poin € M. On £ andA (respectively) we choose arbitrary points
X andY that are different fromP. Letx = PX, y = PY, andz = XY. Let T*
be a triangleP*X*Y* in S, such thatP*X* = x, P¥Y* = y, andX*Y* = z. Set
Ven(x,y) = LXPFY*.
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An 9 domain, abbreviated by, is a metric space with the following prop-
erties.

(i) Any two points ind} can be joined by a geodesic segment.

(i) (x-convexity): For any two geodesic segmedtand N in 9 emanating
from a common poinP, the angley/ ,/(x, y) is a nonincreasing function of
x andy. Thatis,

Ve (X)) S vEi(x, )
whenx <x,y <y’.
The property ofc-convexity implies:

(A) between any two geodesic segmentsiih starting from one point there is
an angle—that is, the limi&(£, V) = lim, oy, (x,y) exists and is
independent of;

(B) the anglesy, 8, y of an arbitrary trianglel’ in %} of perimeter less than
27 /./k are not less than the corresponding anglgss., y. of the triangle
T* in S, with the same lengths of sides &As

(see [3)]).

LetLy, Lo, L3 be geodesic segments emanating from the common point, and let

L1 andL3 be branches of the same geodesic segment. Then the afigles’,)

andZ(L3, L,) are called thadjacentangles.

(C) The sum of adjacent angles is equairto

A space ofcurvature bounded from beloiw a metric space with intrinsic met-
ric each point of which is contained in some neighborhood of the original space,
which is andi” domain for somer. The notion of a space of curvature bounded
from below is due to Aleksandrov [1].

It is useful to note that an anal@&-convexity) of thekK-concavity described
in (d) of Section 3.1 fofix domains holds fopi domains.

Let (M, p) be a metric space and IBte M. We say that geodesics dozally
extendable at the poinP if there is anr > 0 such that each geodesic segment
PX of length less tham can be extended to a geodesic segnitit of lengthr
in (M, p) for which X is an internal point.

PrROPOSITION 13.  Let (M, p) be anit domain and let? € M. Let geodesics be
locally extendable at the poirit and suppose that there exist trianglegim, p)
with P as a vertex with sides, A, v/2 for sufficiently smalih > 0. Then, in a
neighborhood of the poirnk, there exists a tripl¢ B, C, E} of distinct points such
that PB > 0 and N

cosq PB,CE) > 1.

Proof. (1) In a neighborhood of the poink, construct a triangl& = PBC with
sidesk, A, v/24. Let D be the midpoint of the geodesic segmBat Assume that
PD < +/2x. Extend the geodesic segméPD through the poinD to a geodesic
segmentPE of length+/2; since geodesics are locally extendablePathis is
possible ifa is sufficiently small. Note that, iPD > +/2x, our extension tP&
is not necessary because then
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A 2 2
PD2+@me—A2—<——) <52)—+}
— —> NG A 2
cosq PB, CD) = =
(%) v
Al —
V2
5
> —>1
~2V2
We claim that, for sufficiently small,
O< BE <A

(see Figure 4). LeB = E. ThenPD + DB = PD + DE = PB, sinceP¢ is
a geodesic segment. Howevé!) + DE = /21 > » = PB and so we have
reached a contradiction. HenBe£ E, whenceBE > O.

P

BE <\ CE <\

E

Figure 4

Now consider a Euclidean triangl® = P’D’B’ having the same lengths of
sides as the trianglE = PDB. Extend the segmer’D’ through the poinD’ to
the segmenP’E of length+/24, and denote by the Euclidean trianglé®’B'E.
We claim that

B'E < \.
Indeed/B'P'E < m/2since/B'P'E = ZB'P'D' andi?+ PD?— 132 > 0. Now
observe thaB’E is maximized by the choic®’D’ = (+/2/2)A and SOB'E < A.

Next consider a Euclidean triangl&’ = B’D’E’ having the same lengths of

sides as the trianglBDE. Leta = ZBDP andB = ZBDE. By (B),

a>a and B> B,
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whereq, is the corresponding angle in a triangleSphaving the same lengths of
sides as the trianglBDB. Since the trianglés’D’P’ is nondegenerate,

a, >ag=<LB'D'P’
whena is sufficiently small. Since
B = Bo= £B'D'E/,

we arrive at the inequality
o+ B > ap+ PBo. (4)

By (C), @ + 8 = m and we obtain that
oo+ Bo <.

Thus, the angle
/P'D'E' = oo+ Bo

in the Euclidean quadrang® B’E’'D’ composed of the trianglds andT” is less
thans. By rectifying the polygonal line?’D’E’ (preserving all four side lengths),
we obtain a Euclidean triangle” E”B” with

P'E"=PE, B'E’"=BE, P'B"=PB, and /B"P"'E" < /B'P'E.
The last inequality implies that
BE = B'"E" < B'E < A.
In a similar way, we obtain the inequality
O0<CE < A.
(1) We seethat
PE®+ BC? — PC? — BE*  2)* 4 2)* — }* — BE®

cosqPB, CE) =

2PB - CE N 2)-CE
By (1),
2024232 — A2 — BE2 2024232 — 32 — )2 1
> = 1.
2)-CE 2)2
Thus, N
cosqPB,CE) > 1.
This completes the proof. O

REMARK 7. Note thatC& somewhat resembles the result of a half-step in Car-
tan’s ladder construction of a parallel translaté@. We note also that, whenever
geodesics are not bi-point unique, it is easy to redtimeq > 1. Indeed, suppose
that a pair of distinct point® and Q can be joined by a pair of distinct geodesic
segmentC and £'. We letC andC’ denote the midpoints of the geodesic seg-
mentsC and//, respectively. Without loss of generality, one can assumeihat
C’. Then

— —>.  CC'?+ PQ? — PQ?%4 — PQ?/4 cc'?

cosq PC, C'Q) =1+2

2(PQ2/4) po? ~ t
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We do not bother with this common pathology, which occurs even locally in Alek-
sandrov spaces of positive curvature.

ProrosiTION 14. A Riemannian spacéM, g) is of nonpaositive sectional cur-
vature if and only if each poin@ € M has a neighborhood such that, for each
quadruple{A, B, C, D} of distinct points in this neighborhood, the absolute value
of the quadrilateral cosine is bounded hythat is,

AC? 4+ BD? — AC? — BD? -1
2AB - CD =

Proof. (1) It is known [1] that a Riemannian spa¢M, g) of nonpositive curva-
ture is an Aleksandrov space of curvaturd® (see also [3, Cor. 7.1]). Thus, each
point Q € M has a neighborhood that is 8ip domain. Then Corollary 12 implies
that locally the absolute value of the quadrilateral cosine is bounded by 1.

(1) Assume that there exists a poiAte M and a 2-dimensional sectien C
M p such that the sectional curvatukg (P) > 0. We cannot apply Proposition 13
directly because we do not assume that the sectional curvateisfstrictly
positive at the poinf for each 2-dimensional section M . However, we will
show that a minor modification of arguments of Proposition 13 yields the desired
contradiction. It is obvious that there are unit vect&rs € M p such that, for
sufficiently smallx > 0,

SpafiX.Y} =0, dist(exp, AX, exps AY) = v/2x.

Let B = exp, A X andC = expy, AY. Then, as in the proof of Proposition 13, we
define the point® andE.
LetZ = exp;l(D). Itis well known that the angle between bivectdrs Y and
X A Z converges to 0 as — 0. Thus, without loss of generality we can assume
thatKx,., > ¢ > 0 for all sufficiently small..
Let
X' = expH(C), 7' = exp(E),

and letX” andZ” be vectors iM , that are results of the parallel translation of the
vectorsX’ andZ’ (respectively) along the geodesic segnif. Consider bivec-
torsXAZ,X'AZ,andX” A Z”. Define the angle between bivectdfs\ Z and
X' A Z' (notation:a(X A Z, X' A Z')) to be the angle between bivectofsh Z
andX” A Z”. We now have (see [9, Lemma 9.8])
/I\imooz(X ANZ,X'NZ) =0,

whence

Kxinz/ (D) > 6/2 >0

for all sufficiently smalli.
In what follows we will keep the notation of the proof of Proposition 13. By

(29) in [4],
B—Bo 1

o — .
%o = lim = :—ngl/\Z'(D) > 0,

lim =
r—0 O A—0 o)
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where o, is the area of the Euclidean triangB’'D’ and 6, is the area of
the Euclidean triangl&s’D’E’. Thus, inequality (4) holds for sufficiently small
A. Then we repeat the remaining part of Proposition 13 to prove the inequality
cosc{?B, CTE)) > 1
The proof of the proposition is complete. O

3.5. An Extremal Property of cosq
In a space whergosq < 1, in particular in artiy domain, if two geodesic seg-
mentsL and N satisfy cosgL, A) = 1 then the convex hull of and is ei-
ther a quadrilateral if£? or a section of a geodesic. This will be proved with the
averaging and comparison techniques. Theorem 15 is yet another version of the
ubiquitous parallelogram law.

THEOREM 15. Let (M, p) be a metric space such that every pair of points can
be joined by a geodesic segment. For every quadruple of p8ints Q0,Y € M
(P#£X,0#7Y), let o

|cosq PX, QY)| < L.
LetA, B, C, D be a quadruple of points im such thatA # B, C # D, and

— —>

cosqAB,CD) = 1.
Then the convex hulfC[A, B, C, D] of the set{A, B, C, D} is either isometric
to a quadrilateral in a Euclidean plan&? or a segment of straight line.

We preface the proof of the theorem by noting that, sicosd < 1, any pair of
points in M can be joined by at most one geodesic segment (see Remark 7). The
proof of the theorem will be done in several steps.

In what follows we assume that the det, B, C, D} cannot be isometrically
embedded intdR, since otherwis&/C[A, B, C, D] is isometric to a segment of
straight line.

3.5.1. Averaging Principle. Let A, B be the endpoints of a geodesic segmeént
and letC, D be the endpoints of the geodesic segni€rin M, such thatd # B
andC # D. Then

— —>

cosqAB,CD)=1 and |cosqd <1
— = Lo . X .
imply cos{AB, CD) = 1 foranyA, B € L (A # B)andC,D e N (C # D)
such thatdB = AA + AB + BB andCD = CC + CD + DD.

Proof. Referrlng to the definition of the sum of ordered pairs (Section 3.1), we see
_)

— — —
thatAB = AA +AB+ BB, CD =CC+CD+ DD By the averaging property
(Lemma 2),

-2 =2 =2
1=cosqAB, CD) = cosqAB, CC + CD + DD)
— =2 CC =2 = CD
=cosqAB,CC)— 3+ cosqAB, CD + DD)—— D
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. . =2
Since|cosq < 1 andCC/CD + CD/CD = 1, it follows that cosr@ﬁ, CD +

DD) = 1. Lemma 2 is used in a similar way to yield cqgo, CD) = 1 and then
= =2
cosqBB, CD) = 1 as claimed. O

3.5.2. An Isometric Embedding ink¥ as a Parallelogram

LEMMA 16. LetAB = CD, cosc(A_>B, C_)D) =1, and [cosd < 1. Then the set
{A, B, C, D} can beisometrically embedded intB? as a parallelogranthat is,
there is a parallelogram’B’C’D’ in E? such that

AB=A'B’, AC=A'C’, BD=B'D,
CD=C'D’, BC=B'C’, AD=AD'.

Proof. Since cos(qﬁ, C_D)) =1,
AD? 4+ BC? — BD? — AC? = 2AB2.
If BD # AC thenBD? + AC? > 2BD - AC, and so
AD? + BC? —2AB? > 2BD - AC,

—_—> —> ..
whence cosiC, BD) > 1, a contradiction. Henc8D = AC.
Now we consider a Euclidean parallelogram having vertites’, C’, D’ with
all distances except possiblyD preserved; thatisAB = A'B’, AC = A'C’, and
BC = B’C’. Since evidently

—_— —_—
cosqﬁ, C_l))) =1=cos(A'B’,C'D’) = cosqA'B’, C'D’)
andBD = AC = A'C' = B'D’, we see thatA’D’ is forced:AD = A'D’. O

3.5.3. Proof of Theorem 15 whetB = CD. Partition evenly the geodesic seg-
mentsAB andCD into n arcs by pointsAg = A, A1,...,A,_1, A, = B, and
Co=C,Cq,...,C,_1, C, = D, respectively. Recall that there is unique geo-
desic segment joining points; andC;. Partition evenly every geodesic segment
A;C; inton arcs by pointsd; o = A;, Aj1, ..., A -1, @ndA;, = C;. Let S,
denote the setA; ; |i,j=0,1,...,n}.

By Lemma 16, the sdtA, B, C, D} can be isometrically embedded i3 as
a parallelogramd’B’C’D’. In a similar way we construct the s&f of pointsA; ;
(i,j =1,2,...,n) in the convex hullP’ of the pointsA’, B’, C’, D’, which di-
vide the complete parallelograf®’ into n? similar parallelograms. Define the
mapf,: S, — S, by

fn(A;,j) = Ai,j-

For a pair of pointsX,Y € S,, setpp(X,Y) = |X — Y.

A. CLamm. The mapf,: (S,, pr) — (S,, p) is an isometry.
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Proof. (1) We first see thap(A; 0, A; ) = p(Ao0, Ao.n) = p(A, C). Indeed, by
the averaging principle co$g o040, Ao.nAix) = 1 andAg oA o = AonAin,
so by Lemma 16 it follows that g o, A; 0, Ain, Ao, €mbed as vertices of a par-
allelogram angb(A; 0, A; ») = p(Ao.0, Ao.») as claimed. Hence, for evety; =
0,1,...,n—1,

P(Aij, Aijv1) = p(Ao,j, Ao, j+1) =

That is, all horizontal distances from edge to edge in Figure 5 are equal. Next,

since Cos@A; ;A; j1, Ak, jAk j+1) = Landp(A; j, Aiaj) = p(Ax ), Ak j+1),
we see by Lemma 16 thai(A; ;, Ax ;) = p(A; j+1, Ak, j+1)- In particular,

p(A,C)

A A,,=D
0 An,[ An,i+1 T An’n_l
/ An—l,n
/Ai+l,i
: A;; A A
A Ay !
Aown= C
Ago=A
0.0 Aot - Ao, Agiv Agn-1
Figure 5
p(A, B)

p(A;j, Air1j) = p(Aio, Aix10) = "

and similarlyp(Aoq, j, As,;) = p(Ao,0, Ar,0) = p(A, B). Hence the polygonal
line with verticesAg x, A1k, - - ., A, IS @ Shortest path and thus a geodesic seg-
ment. That is, all slant vertical geodesic segments from Bagseto A, , pass
through the division points and are of lengthA, B).

Next we see by Lemma 16 that the set of poits ;, A,,.;, Ay.it1, Aoi+1)} €CaN
be embedded as a parallelogram ifitg whence cos@o A, i, Ao,,-+1A,,,,-+1) =
1 and, by the averaging principle, cdsi,; A, A1i+14i4111) = 1 (see Fig-
ure 5). Since clearlylo;A;; = A1i+14i11.:+1, We have by Lemma 16 that
p(Aii, Aiv1i41) = p(Ao,, A1i4+1). In a similar way we see that

cosqAo,0Ao,, A11A1i41) = 1, p(Ao,0, Ao,i) = p(A11, A1i11),




278 I.D.BERG & I. G. NIKOLAEV

and, by Lemma 169 (Ag.0, A1.1) = p(Ao,i, A1i+1). Thus,
p(Aii, Aiyriv1) = p(Ago, Ar1), i=01,...,n—-1
One can likewise see that
P(Ait1i, Ajiv1) = p(Ano, Apr1), i=0,1,...,n—1,

andp(A,0, As—11) = p(A10, Ao1).
We claim that

p(A, D) p(B,C)
p(Ag0, A1) = Y and p(A, 0, Ap_11) = —
Lemma 16 ensures that, foe= 0,1, ...,n — 1, the sef{A; ;, A;1.i, Aitr1it1,

A;i+1) can be embedded intB, as a parallelogram. However, we do not yet
know if this is the Euclidean parallelogra.rfj_l.A;+L,.Aj.JrlJ.HA;J.Jrl inP’.
Invoking the classical parallelogram law yields

n?[p*(Ao.0, A1) + p*(An0, An11)] = n’[p°(Ao.0, A1) + p*(A10. Ao1)]
= 2n?[p*(Ao,0. Ao.1) + p*(Ac0, AL0)].
Hence this law implies that
n?[p?(Ao,0, AvD) + p2(An0, An-10)] = P?(A, D) + p*(B,C).  (5)
By the triangle inequality,

n—1
np(Ago, Ara) = Y p(Aii, Ais1it1) = p(A, D).

i=0
If }’l,O(Ao,o, Al,l) > p(A, D), then invoking (5) Yie|dSn,0(An70, Ap_11) <
p(B, C). This is impossible since, by the triangle inequality(A, 0, An-11) =
Yo p(Airri. Aviv1) = p(B, C). Hence the equalityp (Ag0. A1) = p(A, D)
holds as claimed. Of course our entire argument applies equally well to the cross-
diagonals and sep(A1,0, Ao1) = p(B, C).

We now have partitioned our “metric parallelogram” (i.e., the four points can be

embedded as a Euclidean parallelogram ig4pinto n? identical parallelograms
each similar to the parallelogram with verticésB, C, D, so we have

p(Aij, Aij+1) = pe(A] ;, A} ;1) etseq.

That is, the complete parallelogram formed fY; ;, Ait1,j, Ai j+1, Ait, j+1}

ij/ isometric to the Euclidean parallelogram with verticels;, A§'+1,j’ A;!Hl,

i+1,j+1°
(1) Finally we show that

p(Ai s Ak = pe(A} ;A )y 6,k 1=0,1,....n (6)

by reducing the calculation to a known situation.
The proof is by induction onk — i| 4+ |l — j|. Equation (6) is clearly true
whenlk —i| + |l — j| = 0. Assume (6) holds whejt — i| + | — j| < m. Let
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|k —i| + |l — j| = m. Since (6) is established wheéh—i| < 1and|l — j| < 1,
it remains to prove (6) when eithgr —i| > L or|l — j| > 1.

Indeed, assume without loss of generality thati > 2 andk —i + |l — j| =
m. By the assumption of induction,

P(Aij, Airr ) = pe(Al j Ajpa ) p(Aissjs Axn) = pe(Aiiy ) Al p)s

Ak, A1) = pe(A} ;1 Al_1)), p(Ar-11, Ai j) = pe(Af_1,5 A ),
and

p(Ais1 js Ar-1.1) = pe(Ajq s Af_1)-

See Figure 6.

Figure 6

We established in (1) that
cosqAo jAnj, AoxAni) = 1.

By the averaging principle, cof; ;A1 ;, Ax-1,1Ar;) = 1; moreover,
p(Aij, Aiy1j) = pe(A] ;s Ajya ) = Pe(A s A1) = (A, Ar—1.).

We see by Lemma 16 that the set of poifHs, ;, Aiy1,j, Ak,1, Ax—1,} can be em-
bedded intdE, as a parallelogram. Therefore the parallelogram law holds for the
set{A; j, Ait1,j, Ak, Ak-11} as well as for the seftA] ;, A} ;. A} ;o Af_q )

By invoking the parallelogram law we obtain

p%(Aij, Axp)
= 2[p%(Aij, Ais1,)) + 02(Aiss js ArD)] — p2(Aisa js Ak—1.0)
= Z[szs(A/i,j» Al )+ P125(A/1'+1,j1 YIRS :012~:(A;+1,j’ Aj_1p)
= P (A} j Aj)s
as claimed. The proof of the claim is complete.
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B. LetP be the closure of J.~, S,. EvidentlyP’ coincides with the closure of
U»o S, By invoking Claim A, the isometrieg;, : S, — S, can be extended to
an isometryf: P’ — ‘P. SinceP’ is the convex hull of the sdtA’, B, C’, D’}
in E2, P coincides with the convex hull of the sgt, B, C, D} in M. This com-
pletes the proof of Theorem 15 whdB = CD. O

3.5.4. General Case.Let AB # CD. Without loss of generality, suppose that
AB < CD. We letU andT be a pair of points on the geodesic segnt&Rtsuch
thatAB = CT andAB = UD. By the averaging principle,

cosqAB,CT)=1 and cos§AB, UD) =1

By referring to Section 3.5.37C[A, B, T, C] is isometric to a complete paral-
lelogram A’B'T'C’ and GC[A, B, D, U] is isometric to a complete parallelo-
gram A’'B'D'U’. Let A’B’'D’'C’ be a complete Euclidean trapezoid that is the
union of complete parallelogram&’'B’'D'U" and A’B’T'C’, as shown on Fig-
ure 7. Since we decompose the convex [#d[A, B, C, D] into a union of
complete Euclidean parallelograi§[ A, B, T, C] (isometric toA’B’T’C’) and
GC[A, B, D, U] (isometric toA’B’D'U’) coinciding on the overlap (isometric to
the complete trapezoid’B'T'U’), the convex hullGC[A, B, C, D] is isometric

to the complete Euclidean trapezaldB’'D'C’.

A C’

Figure 7

The proof of Theorem 15 is complete. O

3.6. Stability of the Quadrilateral Cosine
The following important lemma is an analog of [11, Lemma 3].

LeEmMA 17. LetPPy, PP;, and QQ; be geodesic segments in & domain.
LetX € PPy, X' € PP, Y € QQ, be points such that
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(1) each of the setgP, X, X', Y}and{Q, X, X’,Y} consist of distinct pointsand
(2) PX = PX'=xandQY =y.
Denote byt the angleZ P, PP;. Then

— — 2 -2, =3
¢y im y_)Q|coso(PX, QY) — cosq PX', QY)|

A . A . _ 2

- e(kz/(sinkz)) !f K =k >0, @)
£ if K<0,

uniformly with respect t@;. Here z denotes the largest distance in the configu-

rations of the set§P, P1, Q, Q1} and{P, P;, O, 01}.

Proof. The statement of the Lemma 17 is obviou®it= Q. Let P £ Q. Observe
that

/
cosc(ﬁ)(, @)) - cosc(ﬁ, @)/) _ XX cosc(X—)X’, @)/)
X

Clearly,
XX’ €
lim — =2sin- <e¢
x—>0 Xx
Thus, Corollary 11 or 12 yields (7). O

We derive with little effort the following extension of Lemma 17.

LemMma 18. Let P, Q, X, X',Y,Y’ be points in anfixy domain, and let0 <
£, 6 < lsuchthatPQ > 0, XY = h > 0, XX’ = g1h, andYY’' = &h.
Suppose thaPX, PX’ > 0andh < n/2+/K if K > 0. Then necessarily
—
|cosc(P_Q), )—(7) - coqu_Q), X'Y')|

- 2(s1+ €2)(kz,/(sinkzy)) if K =k?> 0,

Tl 2er+62) if K <0,
wherez, = max{z(P_>Q, Y_)Y’) 2(P_>Q, W()}
Proof. By Corollary 5,

—>
0=h cosc(P_Q), W) + eoh coso(P_Q), YY')
— —
+X'Y' cosd PO, Y'X') + e1h cosq PO, X'X).
By the triangle inequality,X'Y’ — h| < (e1+ &2)h. Thus,
X'Y' =h+nh where|n| <e1+ e, (8)
and we have
—
|cosq PO, X¥) — (1+ ) cosq PO, X'Y')|
—_— 7 —>

< e1]cosq PO, X'X)| + e2|cosq PO, YY')|.
By Corollary 11 or 12,
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|cosq PO, XY) — (14 1) Cosc(P_Q), W)\
(e1+ €2)(kz, /(Sinkz,)) if K =k?>0,
{ (e1+€2) if K<0.
The last estimate together with (8) yields the statement of the lemma. O

<

3.7. Stability of the Quadrilateral Sine

LemMma 19. Let P, Q,Y be a triple of distinct points in afiix domain and let
L, L' e I~4&) be fixed, wheré is a direction atP. Then, givem =0,1,2, ...
ande > 0, there exists & > 0 such that, forX € £ and X’ € £ where
0 < XP = X'P = h < §, the Hausdorff distance betweéri[ P, O, X,Y] and
G"[P, Q, X', Y] is finite and is not greater than- &.

Proof. (1) We note that, for every, the seG"[ P, Q, X, Y]is a compact subspace
of Nk, since geodesic segments depend continuously on their ends [1]. Thus,

dy(G"[P, Q, X,Y],G"[P, 0, X",Y]) < +o0.

(I Let K < 0. We introduce the following notation:

(h)y =2 arcsinXX

(04s) = 2h .

Our hypothesis thaf and £’ form angle zero aP implies that
Jllinoao(h) =0.

We claim that, fom =0, 1, . . .,

sup inf p(Z, W) <2h sinaoéh). 9)

ZeG"[P,0,X,Y] WeG"[P,Q,X",Y]

The estimate (9) is obvious when= 0. Suppose that (9) is true when= k.
LetA e G P, Q, X,Y]. By definition, there exist point8, D € GX[P, Q, X,Y]
such thatA € BD. By (9), forn = k there are point®’, D’ € GK[P, 0, X', Y]
such that

ao(h)

BB’, DD’ < 2h sin >

Let A’ € B'D’ and B’A’ = ¢ - B'D’, wheret = BA/BD. The property ofK-
concavity enables us to write the estimate

h
AA < 2h sinaO( )

(see [1] or [3, Prop. 5.3]), which completes the proof of (9). In a similar way one
can prove that, foreach=0, 1, ...,

h
sup inf p(Z, W) <2h sinaoé ).

ZeG"[P,Q,X"Y] WeG"[P,0Q,X,Y]

Thus,
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dy(G"[P, 0, X,Y],G"[P, 0, X',Y]) < 2hsin “Oéh).

Lemma 19 immediately follows from the last inequality.
The case whelk > 0 is treated in a similar way except that, with each suc-
ceeding:, K-concavity gives us a constant greater than 1. 0O 2[ms p.30]

LemMma 20. Let P and Q be points in aig domain. Let € Qp(Mg) and €
Qo (Mk). Then, for everny e T-1(&), and N ell (),

sing&, ¢) = sing(L, NV).
Proof. Let £’ € IT"Y(&). To prove Lemma 20 we need to establish that
sing(L, N) = sing(L', N).

First we show that
sing(L, N) < sing(L, NV). (10)

LetX € £, X' € £, andY € N be the points such th&X = PX' = QY =
h > 0. Clearly the last inequality is a corollary of the following claim: Giwen-
0,n=12,...,ande > 0, there is a > 0 such that for each & » < § and
every pair of distinct pointst, B € G"[P, Q, X,Y] (AB = a - h) there exists a
pair of distinct pointsd’, B’ € G"[ P, Q, X', Y] such that

AB =a-h (11)
and
|sinq(ﬁ)(, ov; ﬁ) — sinq(F?, ov; E’/)| <e. (12)
Observe that
smq(l—)?(, ov; A_>B) — sinq(P—)X’, ov; ﬁ) (13)
= {coso(ﬁ)(, /ﬁ) - cosc(;;’, /ﬁ)}

+ {cosqI_DX/, AB) — cosc(I_DY’, E’/)}
— {cosc(@)/, A_>B) - cosc(@, TB/)}.

We remark that, by Lemma 19, given poiMs B € G"[P, Q, X, Y] there exist
pointsA’, B’ € G"[P, Q, X', Y] such thatAA’, BB’ = o(h). By taking an arc of
the geodesic segmedt B’ we can always achieve thatd’, BB’ = o(h) and (11)
holds.

Inequality (12) then follows easily from Lemmas 19 and 17. Indeed, the first
summand in the right-hand side of (13) can be made lessdf@iif 0 < 1 <
81(¢/3). By Lemma 19, the second and third summands can be made lesg than
if 0 < h < §2(¢/3) by invoking Lemma 18. Thus, we obtain (12) fordh <
min{81(¢/3), 82(¢/3, a)}. O

REMARK 8. Lety be a geodesic segment in &j domain, and let denote the
field of directions tangent tp. By Lemma 20, one can compute s{tiqs), y (¢))
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with the help of the corresponding arcsjaf Since the test ordered paﬁ in
the definition of the quadrilateral sine belongs to the convex hull, in our case

pointsA and B belong toy. An easy computation shows that c();'zQs), ﬁ) =
cosq(y (), ﬁ) = 1. Thus,

sing(y (s), y (1)) = 0.
Therefore, in the definition of the quadrilateral sine we took a test vector from the
convex hull of curve, AV that specify the directions under consideration to en-
sure that the quadrilateral sine of a pair of directions tangent to a geodesic segment
is zero.
The graph of Figure 1 provides an instantaneous example where

cosqy (s), 5?) —cosqy(s"), E)() =2
Indeed, lety(s) be a normal parameterization of the geodesic segriiént
Takes’, s” such thaty (s’) is an interior point of the geodesic segmé&r® and
y(s”) is an interior point of the geodesic segmény. Then we readily see that
cosqy(s’), 0X) = 1 and cosfy (s”), 0X) = —1. Clearly OX is not an admis-
sible vector since, fos > 0, X is not in the convex hull of the set of points
{y(s"), y(s"), y(s" + As), v(s" + As)}.

3.8. Quadrilateral Sine of Sides of a Triangle

The following theorem tells us that, given two geodesics ifighdomain em-
anating from a point, there is a neighborhood of that point such that, given any
segment in that neighborhood, the quadrilateral sine with arbitrary short segments
of the geodesics tested against this segment is bounded above by approximately
theE, value and, moreover, in that neighborhood segments exist on which the ap-
proximation is itself almost attained, again tested against arbitrarily short geodesic
segments.

For a pair of geodesic segmer®® andPR and for

0 <r <min{PQ, PR},

let X, be the point oPQ such thatPX, = r and letY, be the point onPR such

that PY, = r. Let
& =T1(PQ), ¢ =TI(PR).

THEOREM 21. Let7 = QPR be atriangle in arix domain and let
0<h <n=<min{PQ, PR}.

Then(1)
. . . VA
lim lim sup sing(PX,, PY); AB) < 25in2&:8)
n—0 h—0 AP,BP<p 2
and (2), for & # ¢,
/
lim lim lim sup Sinq(P—)X}“ PY,: ﬁ) _ 2sin (9]
n—0 h—0 v—0 AB<v 2

AB subsegmgnt of X,y
(see Figure 3.
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Test vector for
Statement (2)

Y
/ ’
A Test vector for
Statement (1)
Y,

Figure 8

Statement (1) tells us that all test vectors near the vertex yield a sing, subject to
the desired upper bound given by the actual angle. Statement (2) tells us that at
a fixed small distance we can approximate the desired sinq with arbitrarily short
test vectors chosen from the opposite side of the vertex and with arbitrarily short
segments of the vertex configuration.

We emphasize the order of the limits here because—as the segments that de-
fine the angle shorten—the test segments are not being pushed back to the vertex,
which would be a less interesting result.

Note that, by Lemma 20, it suffices to deal with only geodesic segments rather
than curves specifying a direction. Since in @p domain the geodesic seg-
ment joining a pair of points is uniqué, € PO N PR\{P} implies thatPU C
PQ N PR; by referring to the first part of Theorem 21, we readily see that in
this case sing, £) = 2sin<&% = 0. If PQ N PR\{P} = ¢, we can apply the
second part of Theorem 21. Hence Theorem 21 yields the following corollary.

COROLLARY 22.
sinq&, ¢) = 2sin 4@2’ 9 .

REMaRk 9. Corollary 22 remains true if, in the definition of the quadrilateral

sine, we use case (1) rather than case (2) (see Section 2.4). Tha ¥8as not
restricted to any convex hull but was any segment e our entire space.

Theorem 21 is obvious if (¢, £) = 0. Hereafter we assume th4té, ¢) > O.

3.8.1. Proof of Statement (1) By Corollary 3 applied to the quadrilateral sine of
—> —
PX; andPY;,,
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XpYy

. —_— —> —> —_— —>
sing(PX), PYy; AB) = T|cosc{Xth, AB)

: (14)

where O< PA, PB <.

By Corollary ]_’L,|cosc(m, ﬁ)| is bounded above by 1 & < 0 and by
kz/(sinkz) if K > 0. Clearly,z converges to zero and consequeritly (sinkz)
converges to unity ag converges to zero. Thus,

fim Tim |cosqX, Y, AB)| < 1.

n—0 h—0
Now considerXY/h:
Xi¥n _ xPv? _ Zsinzx,g’POYhO_
h h 2
SinceAXSPOYhO converges ta/ (&, ¢) ash — 0, we are done. O

3.8.2. Auxiliary Lemma. Lemma 23 is of independent interest. In it we see that
segments cutting an isosceles triangle into isosceles subtriangles with the same ver-
tex are approximately parallel in the sense that the quadrilateral cosine between
them is approximately 1.

LeEmMma 23. LetT = LPM be atriangle in arfix domain such that LPM >
0.LetQ, X ePLandR,Y e PM.LetPQ = PR =tandPX = PY = h. Then

. — —>
I|m0cosc(QR,XY) =1,

h,t—

(see Figure 3.

Figure 9

Proof. Withoutloss of generality we can assume thati. Let K+ = max{0, K }.

Consider a triangld " = PX"XK"yK" Let T/ = P'Q'R’ be a triangle inSx+

such thatP’Q’ = PQ, P'R' = PR, andZQ'P'R' = /XX "PK"yX" Denote by
X', Y’ points on geodesic segmesQ’ andP’R’ such thatPX = P’X’ and
PY = P'Y’, and soX'Y’ = XY. We claim that

X'R'<XR and Y'Q' <YO. (15)
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Indeed, byk *-concavity,
LRETPEIXKT > /XKTPETY KT — /X'PY

SinceP’X’ = PX"XX" andP'R’ = PX"RX", the foregoing inequality yields the
first of inequalities (15). The second inequality of (15) is proved in a similar way.
— —> g . .
By (15), cosqQR, XY) > (Q'R'/QR) cosq Q'R’, X'Y"), which together with
Corollaries 11 and 12 yields

Q/R/
OR

Cosc(Q—’R)’, W) < cosq OR, XY)

_ [ k/Gsinkd) it K =k2 >0,

_{1 if K <O. (16)

Observe that

_ /X0p0y?0 . Z0OPORO
Q'R' =2PQ smT and OR = 2PQ st—

for K < 0. A similar computation yields that, fak > 0,
Q'R = 2PQ(sin(£X°P°Y%/2) + 0()).
SinceZ(§,¢) > 0,
/XOpOy?°
im ————— =
h,t—0 ZQOPORO
and consequently

. /R/
lim Q_
h,t—0 QR

=1

—_—> —> . .
LetK < 0.Then cos:(]Q/R’, X’Y’) = 1 (parallel segments in Euclidean space).
Thus, forK < 0, we have established Lemma 23.
To complete the proof of Lemma 23 f& > 0, we need to show that

lim cos Q'R", X'Y') =1 17)
h,t—0 ’ ’

By the Gauss—Bonnet theorem, for an anglef a sufficiently small spherical
triangle7 we have

a—ag= 0((T)),

whereo (7)) is the area of a Euclidean triangle with the same edge lengtfis as
Recall that we denot@Q by . Then

Q'Y'? = h? + 1% — 2ht cosZQ'P'R' + O(h?t?);
R'X'? = h? + 1?2 — 2ht cosZQ'P'R’ + O(h*t?).
Thus,



288 I.D.BERG & I. G. NIKOLAEV

cosc(Q—’R)’, W)

_ h?+1%—2h1 c0SLQ'P'R’ + h? 4 12 — 2ht cOSLQ'P'R’

20'R'-X'Y’

2(t — h)? 4+ O(h°t?)
20'R'-X'Y’
., ZQ'P'R’ ., ZQ'P'R’

gnesit 225 R L o) Sir? QT + O(ht)
B 20'R' - XY’ - Sin4Qg,Pg,Rg, - sin LXPYYS
2 2
which immediately yields (17). O

3.8.3. Proof of Statement (2).To prove Statement (2) we need to replace vec-
tor QR in Lemma 23 with a tangent vector aloaR of sufficiently small length.
Corollary 4 allows us to make this transition. For brevity introduce the following
. - — o —_—> —_—>
notation:u = PX, v= PY, w = QR.
By Lemma 23, given an > 0 there exist, u > 0 such thatif 0< PQ, PR <
§,and O< h <v < PQ then

cosqv —u,w) >1—¢/2.
N —_—>
Let Q'R be a subsegment of the segm&iR . In what follows,w; = Q’'R’. By
Corollary 11 we can assume that for the same choia@ ahdR,
cosqv — i, w;) < 1+e;
in particular,
cosqu — i, w) < 1l+e.

Letn > 5be anatural number suchthatOh' = QR/n < h. Splitthe geodesic
segmenQR by points

O=Ap<A1<Ary<--- <A, <A 1=R

into geodesic segment$; A; .1 (i =0, ..., n) of length”’, and consider vectors
N —_—
w; = A;A;;1. By Corollary 4,
1 n—l
cosqi — ii, W) = - Zcosqﬁ — 0, ;).
o

From this it is clear that there is at least one orderedgisuch that
cosqu — i, w;y) > 1—e. 18)

We have thus established that, givensan 0, there exist, u > 0 and an or-
dered pain, of length less than such that, if 0< PQ, PR < §,and 0< h <
v < PO,

1-—¢<cosqv—i,w,) <1l+e.

The last bound and (14) immediately yield the statement of the theorem. O
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Remark 10. Infact, the proof of Theorem 21, by usigg in (18), will show that
all of the w; except for a set of proportion ordefe will satisfy (18); this yields a
sort of convergence in measure and in integral.
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