Analytic Varieties with Boundaries in Totally Real Tori

Miran ČErne

1. Introduction

Let ∂D be the unit circle in \mathbf{C} and let $\pi_{2}: \mathbf{C}^{2} \rightarrow \mathbf{C}$ be the projection $\pi_{2}(z, w)=$ w. Let T_{1} and T_{2} be disjoint maximal real smooth tori in $\partial D \times \mathbf{C}$ such that, for each $\xi \in \partial D$ and $j=1,2$, the fiber

$$
T_{j, \xi}:=\pi_{2}\left(T_{j} \cap(\{\xi\} \times \mathbf{C})\right)
$$

of T_{j} over ξ is a smooth Jordan curve in C. Also, let V be a two-sheeted analytic variety over D with boundary in $T_{1} \cup T_{2}$; that is, there exist p and q holomorphic functions on D, continuous up to the boundary ∂D, such that

$$
V=\left\{(z, w) \in \bar{D} \times \mathbf{C} ; w^{2}-p(z) w+q(z)=0\right\}
$$

and such that, for every boundary point $\xi \in \partial D$, each curve $T_{1, \xi}$ and $T_{2, \xi}$ contains exactly one root of the equation $w^{2}-p(\xi) w+q(\xi)=0$.

In this paper we consider the question of when it is possible to perturb variety V along $T_{1} \cup T_{2}$. More precisely, we are interested in geometric conditions on $T_{1} \cup T_{2}$ and V such that it is possible to parameterize all nearby two-sheeted varieties over D with boundaries in $T_{1} \cup T_{2}$. The method we apply is the method of partial indices, which has been successfully used in problems of perturbing analytic discs along maximal real boundaries by several authors $[4 ; 6 ; 7 ; 8 ; 9]$. The geometric conditions we obtain are expressed in terms of the winding numbers of the normals to the fibers $T_{j, \xi}(j=1,2)$ along the roots of the equation $w^{2}-p(\xi) w+q(\xi)=0$ $(\xi \in \partial D)$. A typical result is the following.

Theorem. Let V be an irreducible two-sheeted analytic variety over D with boundary in the disjoint union $T_{1} \cup T_{2}$ of two maximal real tori fibered over ∂D. Let α_{1} and α_{2} be the complex functions on ∂D representing the boundary roots of the variety V such that, for every $\xi \in \partial D$, we have $\alpha_{j}(\xi) \in T_{j, \xi}(j=1,2)$; let $\Delta=\alpha_{1}-\alpha_{2}$. Also, let $\nu_{1}(\xi)$ and $\nu_{2}(\xi)$ be normals to the fibers $T_{1, \xi}$ and $T_{2, \xi}$ at the points $\alpha_{1}(\xi)$ and $\alpha_{2}(\xi)$, respectively. If $W\left(v_{1}\right)+W\left(\nu_{2}\right) \geq-1$, then the family of two-sheeted analytic varieties over D with boundaries in $T_{1} \cup T_{2}$ that are close to V is a C^{1} submanifold of the space of two-sheeted analytic varieties over D of dimension $2\left(W\left(\nu_{1}\right)+W\left(\nu_{2}\right)+W(\Delta)\right)+2$.

See Section 3 for more details. Here, $W(\gamma)$ denotes the winding number of a nonzero continuous complex function γ on ∂D.

The method we apply also allows small perturbations \tilde{T}_{1} and \tilde{T}_{2} of the tori T_{1} and T_{2} (respectively) and hence our results also prove the existence of two-sheeted analytic varieties over D with boundaries in the perturbed union $\tilde{T}_{1} \cup \tilde{T}_{2}$. Recall that, for a single maximal real torus T over ∂D, it is a well-known result of Forstnerič [7] that the existence of a holomorphic function f from the disc algebra $A(D)$ such that for each $\xi \in \partial D$ the value $f(\xi)$ lies in the interior of the bounded component of $\mathbf{C} \backslash T_{\xi}$ implies the existence of a holomorphic function $a \in A(D)$ such that $a(\xi) \in T_{\xi}$ for each $\xi \in \partial D$. Actually Forstnerič proves much more. In fact, the whole polynomial hull of T over D is given as the union of the graphs of the analytic discs $\tilde{a} \in A(D)$ such that $\tilde{a}(\xi) \in T_{\xi}$ for each $\xi \in \partial D$; see [7] for more details. See also $[1 ; 2 ; 3 ; 13 ; 14 ; 15]$ for results related to the question on the polynomial hull of a compact fibration over ∂D.

Acknowledgment. The author wishes to thank Prof. Franc Forstnerič and Prof. Josip Globevnik for stimulating discussions.

2. Partial Indices

We will just recall some of the facts related to the partial indices of a closed C^{α} $(0<\alpha<1)$ path ϕ in a C^{2} maximal real manifold T in \mathbf{C}^{n}. One may also consider a C^{2} maximal real fibration $\left\{T_{\xi}\right\}_{\xi \in \partial D}$ over ∂D. In the latter case each fiber T_{ξ} is a maximal real submanifold of \mathbf{C}^{n} and $\phi(\xi) \in T_{\xi}$ for every $\xi \in \partial D$. More details on partial indices can be found in [8; 9] and [16; 17]; see also [11].

For each $\xi \in \partial D$ let $A(\xi)$ denote a matrix whose columns span the tangent space of T (or of the fiber T_{ξ}) at the point $\phi\left(\xi\right.$). Then there exist n integers k_{1}, \ldots, k_{n} called the partial indices of the closed path ϕ in T, uniquely determined up to their order, and a holomorphic matrix function $\Phi \in\left(A^{\alpha}(D)\right)^{n \times n}$ such that $\Phi: \bar{D} \rightarrow$ $G L(n, \mathbf{C})$ and such that, on ∂D,

$$
B(\xi):=A(\xi) \overline{A(\xi)^{-1}}=\Phi(\xi)\left(\begin{array}{cccc}
\xi^{k_{1}} & 0 & \ldots & 0 \\
0 & \xi^{k_{2}} & \ldots & \ldots \\
\ldots & \cdots & \ldots & \ldots \\
0 & \ldots & 0 & \xi^{k_{n}}
\end{array}\right) \overline{\Phi(\xi)^{-1}} ;
$$

that is, the holomorphic j th column $v_{j}(\xi)$ of the matrix function $\Phi(\xi)$ solves the equation

$$
B(\xi) \overline{v_{j}(\xi)}=\xi^{k_{j}} v_{j}(\xi)
$$

on ∂D. If the tangent bundle of T is trivial (orientable) along $\phi(\partial D)$, one may choose $A(\xi)$ to be C^{α} on ∂D. However, any choice of a matrix $A(\xi)$ whose columns span the tangent space of T (or of the fiber T_{ξ}) at the point $\phi(\xi)$ will result in the same matrix function $B(\xi)$.

The sum $k_{1}+\cdots+k_{n}=k=W(\operatorname{det}(B))$ is called the total index of the closed path ϕ in T. The total index is even if T is trivial along $\phi(\partial D)$ and odd otherwise. In the case all partial indices are greater than or equal to -1 , we call the curve
ϕ regular. It is known from results of Globevnik [8; 9] and Oh [11] that, in this case, for every maximal real manifold \tilde{T} close to T the family of small $\left(A^{\alpha}(D)\right)^{n}$ analytic perturbations of ϕ along \tilde{T} is a C^{1} submanifold of the space $\left(A^{\alpha}(D)\right)^{n}$ of dimension $n+k$. Also, these manifolds depend smoothly on \tilde{T}. See $[8 ; 9 ; 11]$ for more details.

3. Two-Sheeted Varieties over D with Boundaries in $\mathrm{T}_{1} \cup \mathrm{~T}_{\mathbf{2}}$

Let T_{1} and T_{2} be disjoint maximal real tori over ∂D such that, for $j=1,2$ and each $\xi \in \partial D$, the fiber

$$
T_{j, \xi}=\pi_{2}\left(T_{j} \cap(\{\xi\} \times \mathbf{C})\right)
$$

is a smooth Jordan curve in C. More precisely, let $S^{1}=\mathbf{R} / \mathbf{Z}$. Then there exist $r_{1}, r_{2} \in C^{2}\left(\partial D \times S^{1}\right)$ such that the mapping

$$
(\xi, t) \in \partial D \times S^{1} \mapsto\left(\xi, r_{j}(\xi, t)\right) \in T_{j}
$$

is a parameterization of $T_{j}(j=1,2)$. Also, for each $j=1,2$ and each $\xi \in \partial D$, the mapping

$$
t \in S^{1} \mapsto r_{j}(\xi, t)
$$

is a C^{2} parameterization of the fiber $T_{j, \xi}$. In particular $\frac{\partial}{\partial t} r_{j}(\xi, t) \neq 0$ for any $j=$ $1,2, \xi \in \partial D$, and $t \in S^{1}$.

Given T_{1}, T_{2} and their parameterizations r_{1}, r_{2}, we define $\Sigma\left(T_{1}, T_{2}\right)$, a 3-torus in $\partial D \times \mathbf{C}^{2} \subseteq \mathbf{C}^{3}$, as the set of all points $\left(\xi, w_{1}, w_{2}\right) \in \partial D \times \mathbf{C}^{2}$ such that

$$
w_{1}=r_{1}(\xi, t)+r_{2}(\xi, s) \quad \text { and } \quad w_{2}=\frac{1}{2}\left(r_{1}(\xi, t)-r_{2}(\xi, s)\right)^{2}
$$

for some $s, t \in S^{1}$.
Proposition 1. Let $\pi_{3}: \mathbf{C}^{3} \rightarrow \mathbf{C}^{2}$ be the projection $\pi_{3}\left(z, w_{1}, w_{2}\right)=\left(w_{1}, w_{2}\right)$. If $T_{1} \cap T_{2}=\emptyset$, then $\Sigma\left(T_{1}, T_{2}\right)$ is a maximal real 3-torus in \mathbf{C}^{3} and every fiber $\Sigma\left(T_{1}, T_{2}\right)_{\xi}=\pi_{3}\left(\Sigma\left(T_{1}, T_{2}\right) \cap\left(\{\xi\} \times \mathbf{C}^{2}\right)\right), \xi \in \partial D$, is a maximal real 2-torus in \mathbf{C}^{2}.

Proof. Every pair of complex numbers w_{1} and w_{2} uniquely determines an unordered pair of complex numbers α_{1}, α_{2} such that

$$
w_{1}=\alpha_{1}+\alpha_{2} \quad \text { and } \quad w_{2}=\frac{1}{2}\left(\alpha_{1}-\alpha_{2}\right)^{2}
$$

Because T_{1} and T_{2} are disjoint, $\Sigma\left(T_{1}, T_{2}\right)$ is a 3-torus parameterized by the mapping

$$
(\xi, t, s) \in \partial D \times S^{1} \times S^{1} \mapsto\left(\xi, r_{1}(\xi, t)+r_{2}(\xi, s), \frac{1}{2}\left(r_{1}(\xi, t)-r_{2}(\xi, s)\right)^{2}\right)
$$

Let $D(\xi, t, s):=r_{1}(\xi, t)-r_{2}(\xi, s)$. For each $\xi \in \partial D$, the tangent space to the fiber $\Sigma\left(T_{1}, T_{2}\right)_{\xi}$ at the point $\left(r_{1}(\xi, t)+r_{2}(\xi, s), \frac{1}{2} D(\xi, t, s)^{2}\right)$ is the \mathbf{R}-linear span of the columns of the matrix

$$
A=\left(\begin{array}{cc}
\frac{\partial}{\partial \partial} r_{1}(\xi, t) & \frac{\partial}{\partial s} r_{2}(\xi, s) \tag{1}\\
D(\xi, t, s) \frac{\partial}{\partial t} r_{1}(\xi, t) & -D(\xi, t, s) \frac{\partial}{\partial s} r_{2}(\xi, s)
\end{array}\right)
$$

Since T_{1} and T_{2} are disjoint, the determinant

$$
\operatorname{det}(A)=-2 D(\xi, t, s) \frac{\partial}{\partial t} r_{1}(\xi, t) \frac{\partial}{\partial s} r_{2}(\xi, s)
$$

is nonzero and $\Sigma\left(T_{1}, T_{2}\right)_{\xi}$ is a maximal real 2-torus in \mathbf{C}^{2}. Also, $\Sigma\left(T_{1}, T_{2}\right)$ is a maximal real 3-torus in \mathbf{C}^{3}.

Let α_{1} and α_{2} be two C^{α} complex functions on ∂D such that, for every $\xi \in \partial D$,

$$
\alpha_{1}(\xi) \in T_{1, \xi} \quad \text { and } \quad \alpha_{2}(\xi) \in T_{2, \xi}
$$

To a pair of such closed curves in \mathbf{C} we associate the closed curve

$$
\begin{equation*}
\xi \mapsto\left(\alpha_{1}(\xi)+\alpha_{2}(\xi), \frac{1}{2}\left(\alpha_{1}(\xi)-\alpha_{2}(\xi)\right)^{2}\right) \tag{2}
\end{equation*}
$$

in \mathbf{C}^{2} such that, for each $\xi \in \partial D$, the point $\left(\alpha_{1}(\xi)+\alpha_{2}(\xi), \frac{1}{2}\left(\alpha_{1}(\xi)-\alpha_{2}(\xi)\right)^{2}\right)$ lies in the maximal real torus $\Sigma\left(T_{1}, T_{2}\right)_{\xi}$. To each curve in a maximal real fibration in \mathbf{C}^{2} over ∂D one can associate two partial indices, hence one can define the partial indices of a pair of C^{α} closed curves α_{1} in T_{1} and α_{2} in T_{2} as the partial indices of the curve (2) in the maximal real fibration $\left\{\Sigma\left(T_{1}, T_{2}\right)_{\xi}\right\}_{\xi \in \partial D}$.

Let $v_{j}(\xi):=-i \frac{\partial}{\partial t} r_{j}(\xi, t)$, evaluated at the point $r_{j}(\xi, t)=\alpha_{j}(\xi)$, denote a normal to the curve $T_{j, \xi}$ at the point $\alpha_{j}(\xi)(j=1,2)$, and let $\Delta(\xi):=\alpha_{1}(\xi)-\alpha_{2}(\xi)$. Then the matrix (1) along the curve (2) can be written in the form

$$
A(\xi)=i\left(\begin{array}{cc}
1 & 1 \\
\Delta(\xi) & -\Delta(\xi)
\end{array}\right)\left(\begin{array}{cc}
v_{1}(\xi) & 0 \\
0 & v_{2}(\xi)
\end{array}\right)
$$

and the corresponding matrix $B(\xi):=A(\xi) \overline{A(\xi)^{-1}}$ is

$$
B(\xi)=-\frac{1}{2 \overline{\Delta(\xi)}}\left(\begin{array}{cc}
1 & 1 \\
\Delta(\xi) & -\Delta(\xi)
\end{array}\right)\left(\begin{array}{cc}
\tau_{1}(\xi) & 0 \\
0 & \tau_{2}(\xi)
\end{array}\right)\left(\begin{array}{cc}
\overline{\Delta(\xi)} & 1 \\
\Delta(\xi) & -1
\end{array}\right)
$$

where

$$
\tau_{j}(\xi)=\frac{v_{j}(\xi)^{2}}{\left|v_{j}(\xi)\right|^{2}}
$$

for $j=1,2$.
If $l \in \mathbf{Z}$ is a partial index of the curves α_{1} and α_{2} then there exist C^{α} functions a and b on \bar{D}, holomorphic on D and with no common zeros on \bar{D}, such that on ∂D we have

$$
B(\xi)\binom{\overline{a(\xi)}}{\overline{b(\xi)}}=\xi^{l}\binom{a(\xi)}{b(\xi)}
$$

Therefore, on ∂D the following two equations hold:

$$
\begin{align*}
& \tau_{1} \Delta \overline{(\Delta a+b)}=-\xi^{l} \bar{\Delta}(\Delta a+b) \tag{3}\\
& \tau_{2} \Delta \overline{(\Delta a-b)}=-\xi^{l} \bar{\Delta}(\Delta a-b) \tag{4}
\end{align*}
$$

We know that the total index is given as the winding number of the determinant

$$
\operatorname{det}(B)=\Delta \bar{\Delta}^{-1} \tau_{1} \tau_{2}
$$

Hence the total index is

$$
k=2 W(\Delta)+W\left(\tau_{1}\right)+W\left(\tau_{2}\right)=2\left(W(\Delta)+W\left(v_{1}\right)+W\left(\nu_{2}\right)\right) .
$$

We assume from now on that α_{1} and α_{2} represent the boundary values of some two-sheeted analytic variety V over D with boundary in $T_{1} \cup T_{2}$. That is, we assume there exist C^{α} functions p, q on \bar{D}, holomorphic on D, such that V is given by

$$
w^{2}-p(z) w+q(z)=0
$$

and such that

$$
p(\xi)=\alpha_{1}(\xi)+\alpha_{2}(\xi), \quad q(\xi)=\alpha_{1}(\xi) \alpha_{2}(\xi)
$$

for every $\xi \in \partial D$ (p and q are actually in $C^{2-0}(\bar{D})$ according to [5]). This condition also implies that, for every symmetric polynomial P of two variables, the function $\xi \mapsto P\left(\alpha_{1}(\xi), \alpha_{2}(\xi)\right)$ on ∂D has a holomorphic extension into D. In particular this implies that

$$
W(\Delta)=\frac{1}{2} W\left(\Delta^{2}\right) \geq 0
$$

since, as is well known, the winding number of a disc algebra function, which is nonzero on ∂D, is a nonnegative integer.

Multiplying equations (3) and (4) yields

$$
\begin{equation*}
\tau_{1} \tau_{2} \Delta^{2} \overline{\left(\Delta^{2} a^{2}-b^{2}\right)}=\xi^{2 l} \overline{\Delta^{2}}\left(\Delta^{2} a^{2}-b^{2}\right) \tag{5}
\end{equation*}
$$

on ∂D. We denote

$$
W\left(v_{1}\right)=n_{1}, \quad W\left(v_{2}\right)=n_{2}, \quad W(\Delta)=n_{12} .
$$

Thus there exist real functions u_{1}, u_{2}, u_{12}, and v_{12} on ∂D such that

$$
\begin{equation*}
\tau_{1}(\xi)=\xi^{2 n_{1}} e^{2 i u_{1}(\xi)}, \quad \tau_{2}(\xi)=\xi^{2 n_{2}} e^{2 i u_{2}(\xi)} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta(\xi)=\xi^{n_{12}} e^{v_{12}(\xi)+i u_{12}(\xi)} \tag{7}
\end{equation*}
$$

Substituting (6) and (7) into (5), we have

$$
e^{2 i u(\xi)} \overline{\left(\Delta^{2} a^{2}-b^{2}\right)(\xi)}=\xi^{2\left(l-2 n_{12}-n_{1}-n_{2}\right)}\left(\Delta^{2} a^{2}-b^{2}\right)(\xi)
$$

where $u=u_{1}+u_{2}+2 u_{12}$. Let $H u$ denote the unique harmonic conjugate of u for which $(H u)(0)=0$, and let $K:=e^{-i(u+i H u)}$. Then K has a holomorphic extension into D with no zeros on \bar{D} and is such that, on ∂D,

$$
e^{2 i u}=K^{-1} \bar{K}
$$

Therefore,

$$
\begin{equation*}
\overline{K\left(\Delta^{2} a^{2}-b^{2}\right)}=\xi^{2\left(l-n_{12}\right)-k} K\left(\Delta^{2} a^{2}-b^{2}\right) \tag{8}
\end{equation*}
$$

on ∂D. Because α_{1} and α_{2} are the boundary roots of a two-sheeted variety V over D, the function $K\left(\Delta^{2} a^{2}-b^{2}\right)$ has a holomorphic extension into D.

Let us assume for a moment that

$$
\begin{equation*}
2\left(l-n_{12}\right)-k>0 \tag{9}
\end{equation*}
$$

Then the left-hand side of (8) is an antiholomorphic function on D and the righthand side of (8) is a holomorphic function on D with a zero at 0 . This is only possible if

$$
\left(\Delta^{2} a^{2}-b^{2}\right)=0
$$

on \bar{D}. Observe that Δ^{2} is a well-defined function on \bar{D}. If a had a zero on \bar{D} then b would have a zero at the same point, which is impossible. Thus a has no zeros on \bar{D} and $\Delta^{2}=b^{2} / a^{2}$ on \bar{D}. Hence the variety V is reducible. We may assume $\Delta=b / a$. Then equation (3) implies that

$$
\tau_{1} \frac{b}{a} \overline{2 b}=-\xi^{l} \overline{\left(\frac{b}{a}\right)} 2 b
$$

on ∂D and hence

$$
l=W\left(\tau_{1}\right)=2 W\left(\nu_{1}\right)=2 n_{1} .
$$

The other partial index is

$$
k-l=2\left(W\left(v_{2}\right)+W(\Delta)\right)=2 n_{2}+2 n_{12} .
$$

Using the value of l in the inequality (9), we see that this case can only happen if $n_{1}-n_{2}>2 n_{12}$.

In case the inequality (9) does not hold for any of the partial indices of V (e.g., when V is an irreducible variety), we must have

$$
2\left(l-n_{12}\right)-k \leq 0 \quad \text { or } \quad l \leq k / 2+n_{12}
$$

for both partial indices. Hence we also have

$$
k-l \leq k / 2+n_{12}
$$

Theorem 1. Let V be a two-sheeted analytic variety over D with boundary in the disjoint union $T_{1} \cup T_{2}$ of two maximal real tori fibered over ∂D. Let α_{1} and α_{2} be the complex functions on ∂D representing the boundary roots of the variety V such that, for every $\xi \in \partial D$, we have $\alpha_{j}(\xi) \in T_{j, \xi}(j=1,2)$. Also, let $\nu_{1}(\xi)$ and $\nu_{2}(\xi)$ be normals to the fibers $T_{1, \xi}$ and $T_{2, \xi}$ at the points $\alpha_{1}(\xi)$ and $\alpha_{2}(\xi)$, respectively.
(1) If V is reducible and $\left|W\left(\nu_{1}\right)-W\left(v_{2}\right)\right| \geq W(\Delta)$, then the partial indices of V are $2 \max \left\{W\left(v_{1}\right), W\left(v_{2}\right)\right\}$ and $2 W(\Delta)+2 \min \left\{W\left(v_{1}\right), W\left(v_{2}\right)\right\}$.
(2) In the cases
(a) V is reducible and $\left|W\left(v_{1}\right)-W\left(v_{2}\right)\right|<W(\Delta)$ or
(b) V is irreducible,
the partial indices are bounded by

$$
W\left(v_{1}\right)+W\left(v_{2}\right) \leq k_{1}, k_{2} \leq W\left(v_{1}\right)+W\left(v_{2}\right)+2 W(\Delta) .
$$

In either case, the total index is $k=2\left(W\left(\nu_{1}\right)+W\left(\nu_{2}\right)+W(\Delta)\right)$.

Proof. The only part of the theorem we still have to check is the first case. We may assume $W\left(\nu_{1}\right)-W\left(\nu_{2}\right) \geq W(\Delta)$. Using the notation from (6) and (7), let

$$
K_{1}:=e^{i\left(\left(u_{1}+u_{12}\right)+i H\left(u_{1}+u_{12}\right)\right)}, \quad K_{2}:=e^{i\left(\left(u_{2}+u_{12}\right)+i H\left(u_{2}+u_{12}\right)\right)}, \quad L:=e^{i\left(u_{1}+i H u_{1}\right)} .
$$

For $l=2 W\left(v_{1}\right)$, a pair of holomorphic functions a and b that solve (3) and (4) is

$$
a:=i L, \quad b:=\Delta a=i \Delta L
$$

Recall that V is reducible and hence Δ has a holomorphic extension into D. Let $N=2\left(W\left(v_{1}\right)-W\left(\nu_{2}\right)\right)$. Since $W\left(v_{1}\right)-W\left(\nu_{2}\right) \geq W(\Delta)$, there exists a polynomial $P(\xi)=\sum_{j=0}^{j=N} c_{j} \xi^{j}$ such that $c_{N-j}=\overline{c_{j}}$ for each $j=0, \ldots, N$ and such that Δ divides $P K_{1}+K_{2}$. Then a pair of holomorphic functions a and b that solve (3) and (4) for $l=2 W(\Delta)+2 W\left(v_{2}\right)$ is

$$
a:=\frac{i}{\Delta}\left(P K_{1}+K_{2}\right), \quad b:=i\left(P K_{1}-K_{2}\right) .
$$

Observe that

$$
\operatorname{det}\left(\begin{array}{cc}
i L & \frac{i}{\Delta}\left(P K_{1}+K_{2}\right) \\
i \Delta L & i\left(P K_{1}-K_{2}\right)
\end{array}\right)=2 L K_{2}
$$

is nonzero on \bar{D}.
Results from [8;9] imply that when both partial indices are greater than or equal to -1 there exist a neighborhood N of (p, q) in $\left(A^{\alpha}(D)\right)^{2}$ and a neighborhood U of $\left(r_{1}, r_{2}\right)$ in $\left(C^{2}\left(\partial D \times S^{1}\right)\right)^{2}$ such that, for each pair $\left(\tilde{r}_{1}, \tilde{r}_{2}\right) \in U$, the set of discs $(\tilde{p}, \tilde{q}) \in N$ such that

$$
\left(\tilde{p}(\xi), \frac{1}{2}\left(\tilde{p}(\xi)^{2}-4 \tilde{q}(\xi)\right)\right) \in \Sigma\left(\tilde{T}_{1}, \tilde{T}_{2}\right)_{\xi}
$$

for every $\xi \in \partial D$ (\tilde{T}_{1} and \tilde{T}_{2} are the 2-tori in \mathbf{C}^{2} defined by the parameterizations \tilde{r}_{1} and \tilde{r}_{2} respectively) is a C^{1} submanifold of N of dimension $2\left(W\left(v_{1}\right)+W\left(v_{2}\right)+\right.$ $W(\Delta))+2$.

Identifying the space of two-sheeted analytic varieties over D with the space of analytic discs $\left(A^{\alpha}(D)\right)^{2}$, we have the following corollary.

Corollary 1. Let V be a two-sheeted variety over D with boundary in $T_{1} \cup T_{2}$.
(1) If V is reducible and $\left|W\left(v_{1}\right)-W\left(v_{2}\right)\right| \geq W(\Delta)$, let $2 \max \left\{W\left(v_{1}\right), W\left(v_{2}\right)\right\} \geq$ 0 and $2 W(\Delta)+2 \min \left\{W\left(\nu_{1}\right), W\left(\nu_{2}\right)\right\} \geq 0$.
(2) If either V is reducible and $\left|W\left(\nu_{1}\right)-W\left(\nu_{2}\right)\right|<W(\Delta)$ or if V is irreducible, let $W\left(\nu_{1}\right)+W\left(\nu_{2}\right) \geq-1$.
Then, for every pair \tilde{T}_{1} and \tilde{T}_{2} of maximal real tori over ∂D close to T_{1} and T_{2}, respectively, the family of two-sheeted analytic varieties over D with boundaries in $\tilde{T}_{1} \cup \tilde{T}_{2}$ that are close to V is a C^{1} submanifold of the space of two-sheeted analytic varieties over D of dimension $2\left(W\left(v_{1}\right)+W\left(v_{2}\right)+W(\Delta)\right)+2$. These manifolds depend smoothly on \tilde{T}_{1} and \tilde{T}_{2}.

There are two major cases of the positions of the tori T_{1} and T_{2} that one may consider. One is the case where T_{2} lies in the unbounded component of $(\partial D \times \mathbf{C}) \backslash T_{1}$
and the other is the case where T_{2} lies in the bounded component of $(\partial D \times \mathbf{C}) \backslash T_{1}$. Of course the roles of T_{1} and T_{2} can be exchanged, but this does not produce any new different cases. We will first consider the second case under the assumption that there exists a function $c \in A^{\alpha}(D)$ such that, for each $\xi \in \partial D$,

$$
\begin{equation*}
c(\xi) \in \operatorname{Int} \widehat{T_{2, \xi}} \subset \subset \operatorname{Int} \widehat{T_{1, \xi}} \tag{10}
\end{equation*}
$$

Here, $\widehat{T_{j, \xi}}$ denotes the closure of the bounded simply connected domain in \mathbf{C} that is bounded by $T_{j, \xi}$; that is, $\widehat{T_{j, \xi}}$ is the polynomial hull of $T_{j, \xi}$ in $\mathbf{C}(j=1,2)$. Condition (10) is biholomorphically equivalent to the case

$$
0 \in \operatorname{Int} \widehat{T_{2, \xi}} \subset \subset \operatorname{Int} \widehat{T_{1, \xi}}
$$

(i.e., $c=0$). In this case we have the following equalities:

$$
W(\Delta)=W\left(\alpha_{1}\right)=W\left(v_{1}\right), \quad W\left(\alpha_{2}\right)=W\left(v_{2}\right)
$$

Because α_{1} and α_{2} are the boundary roots of a two-sheeted analytic variety over D, their sum $\alpha_{1}+\alpha_{2}$ and their product $\alpha_{1} \alpha_{2}$ have holomorphic extensions into D. Thus

$$
\begin{equation*}
0 \leq W\left(\alpha_{1}+\alpha_{2}\right)=W\left(\alpha_{1}\right)=W\left(\nu_{1}\right) \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
0 \leq W\left(\alpha_{1} \alpha_{2}\right)=W\left(\alpha_{1}\right)+W\left(\alpha_{2}\right)=W\left(\nu_{1}\right)+W\left(\nu_{2}\right) . \tag{12}
\end{equation*}
$$

Corollary 2. If the torus T_{2} lies in the bounded component of $(\partial D \times \mathbf{C}) \backslash T_{1}$ and there exists a function $c \in A^{\alpha}(D)$ such that (10) holds, then every two-sheeted analytic variety V over D with boundary in $T_{1} \cup T_{2}$ is regular. Also, $W\left(\nu_{1}\right) \geq 0$ and $W\left(\nu_{1}\right)+W\left(\nu_{2}\right) \geq 0$.

Here (and hereafter), the regularity is meant in the sense of Section 2. That is, both associated partial indices are greater than or equal to -1 , and not in the usual sense of regularity of a variety.

Henceforth we assume that

$$
\begin{equation*}
\widehat{T_{1, \xi}} \cap \widehat{T_{2, \xi}}=\emptyset \tag{13}
\end{equation*}
$$

for every $\xi \in \partial D$. We also assume that there exists a function $c \in A^{\alpha}(D)$ with no zeros on ∂D such that $W(c)$ is an even integer and such that

$$
\begin{equation*}
\gamma_{1}(\xi) \in \operatorname{Int} \widehat{T_{1, \xi}} \quad \text { and } \quad \gamma_{2}(\xi) \in \operatorname{Int} \widehat{T_{2, \xi}} \tag{14}
\end{equation*}
$$

for every $\xi \in \partial D$. Here, γ_{1} and γ_{2} are the square roots of c over ∂D, that is, the C^{α} functions on ∂D such that $\gamma_{1}(\xi)^{2}=\gamma_{2}(\xi)^{2}=c(\xi)$ and $\gamma_{1}(\xi)=-\gamma_{2}(\xi)$ for every $\xi \in \partial D$.

Remarks. (1) It is enough to assume that c is from the disc algebra.
(2) The assumption on the existence of such a function c is biholomorphically equivalent to the assumption that there exists a two-sheeted analytic variety V_{o} over D defined by functions from the disc algebra and with boundary roots γ_{1} and γ_{2} such that, for each $\xi \in \partial D$ we have $\gamma_{j}(\xi) \in \operatorname{Int} \widehat{T_{j, \xi}}(j=1,2)$.
(3) Using a biholomorphism we may even assume that c is a finite Blaschke product.

We write

$$
\begin{equation*}
\alpha_{1}=\gamma_{1}+\tilde{\alpha}_{1} \quad \text { and } \quad \alpha_{2}=\gamma_{2}+\tilde{\alpha}_{2} \tag{15}
\end{equation*}
$$

for some nonzero C^{α} functions $\tilde{\alpha}_{1}$ and $\tilde{\alpha}_{2}$ for whose winding numbers we have

$$
W\left(\tilde{\alpha}_{1}\right)=W\left(v_{1}\right)=n_{1} \quad \text { and } \quad W\left(\tilde{\alpha}_{2}\right)=W\left(v_{2}\right)=n_{2},
$$

respectively. Furthermore, for $j=1,2$ we have

$$
\alpha_{j}^{2}=\gamma_{j}^{2}+\tilde{\alpha}_{j}\left(2 \gamma_{j}+\tilde{\alpha}_{j}\right) .
$$

Because (13) holds, the functions

$$
\xi \mapsto 2 \gamma_{j}(\xi)+\tilde{\alpha}_{j}(\xi) \quad(j=1,2)
$$

are nonzero on ∂D. Condition (13) actually implies much more; given that the winding number is homotopy invariant, we conclude for $j=1$, 2 that

$$
\begin{equation*}
W\left(2 \gamma_{j}+\tilde{\alpha}_{j}\right)=W\left(2 \gamma_{j}\right)=\frac{1}{2} W(c) . \tag{16}
\end{equation*}
$$

Denote $A_{j}:=\tilde{\alpha}_{j}\left(2 \gamma_{j}+\tilde{\alpha}_{j}\right), j=1,2$. Then A_{1} and A_{2} are nonzero C^{α} functions on ∂D such that, for $j=1,2$,

$$
\begin{equation*}
\alpha_{j}^{2}=\gamma_{j}^{2}+A_{j}=c+A_{j} \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
W\left(A_{j}\right)=W\left(v_{j}\right)+\frac{1}{2} W(c) \tag{18}
\end{equation*}
$$

Since α_{1} and α_{2} represent the boundary roots of a two-sheeted analytic variety over D, (17) implies that the functions

$$
\xi \mapsto A_{1}(\xi)+A_{2}(\xi) \quad \text { and } \quad \xi \mapsto A_{1}(\xi) A_{2}(\xi)
$$

have holomorphic extensions into D. Thus

$$
W\left(A_{1} A_{2}\right)=W\left(A_{1}\right)+W\left(A_{2}\right)=W\left(v_{1}\right)+W\left(v_{2}\right)+W(c) \geq 0 .
$$

Also, the homotopy invariance of the winding number implies that

$$
\begin{equation*}
W(\Delta)=W\left(\gamma_{1}-\gamma_{2}\right)=\frac{1}{2} W(c) . \tag{19}
\end{equation*}
$$

Proposition 2. If conditions (13) and (14) hold, then $W\left(v_{1}\right)+W\left(v_{2}\right)+W(c) \geq$ 0 and $W(\Delta)=W(c) / 2$. Also, the partial indices k_{1} and k_{2} of an irreducible twosheeted analytic variety V over D with boundary in $T_{1} \cup T_{2}$ satisfy the following inequalities:

$$
-W(c) \leq W\left(v_{1}\right)+W\left(v_{2}\right) \leq k_{1}, k_{2} \leq W\left(v_{1}\right)+W\left(v_{2}\right)+W(c)
$$

More can be said when the holomorphic function c has a holomorphic square root. Adding and multiplying equations (15), we see that the functions

$$
\tilde{\alpha}_{1}+\tilde{\alpha}_{2} \quad \text { and } \quad \gamma_{1}\left(\tilde{\alpha}_{2}-\tilde{\alpha}_{1}\right)+\tilde{\alpha}_{1} \tilde{\alpha}_{2}
$$

on ∂D have holomorphic extensions into D. Multiplying the first function by γ_{1} (which has a holomorphic extension into D) and adding and subtracting it from the second function, we get that the functions

$$
\tilde{\alpha}_{2}\left(2 \gamma_{1}+\tilde{\alpha}_{1}\right) \quad \text { and } \quad \tilde{\alpha}_{1}\left(-2 \gamma_{1}+\tilde{\alpha}_{2}\right)
$$

holomorphically extend into D. We observe that these two functions have no zeros on ∂D and that condition (13) implies (16). Hence

$$
W\left(\tilde{\alpha}_{2}\left(2 \gamma_{1}+\tilde{\alpha}_{1}\right)\right)=W\left(\tilde{\alpha}_{2}\right)+\frac{1}{2} W(c) \geq 0
$$

and

$$
W\left(\tilde{\alpha}_{1}\left(-2 \gamma_{1}+\tilde{\alpha}_{2}\right)\right)=W\left(\tilde{\alpha}_{1}\right)+\frac{1}{2} W(c) \geq 0 .
$$

Proposition 3. If, in addition to condition (14), the function c has a holomorphic square root, then

$$
W\left(v_{1}\right) \geq-\frac{1}{2} W(c) \quad \text { and } \quad W\left(v_{2}\right) \geq-\frac{1}{2} W(c)
$$

Proposition 4. If $W(c)=0$ then every two-sheeted analytic variety over D with boundary in $T_{1} \cup T_{2}$ is reducible.

Proof. Let V be a two-sheeted analytic variety over D with boundary in $T_{1} \cup T_{2}$. We know from (19) that

$$
W(\Delta)=\frac{1}{2} W(c)=0 .
$$

Therefore, the winding number of the discriminant Δ^{2} of the variety V is 0 and so it has a holomorphic square root. Hence V is reducible.

4. Examples

Example 1. Let $a_{1} \neq a_{2}$ be two positive real numbers and let $T_{1}=\partial D \times a_{1}(\partial D)$ and $T_{2}=\partial D \times a_{2}(\partial D)$. Let $n \in \mathbf{Z}$ be a nonnegative integer and let V be the variety given by

$$
V=\left\{(z, w) \in \bar{D} \times \mathbf{C} ; w^{2}-\left(a_{1}+a_{2}\right) z^{n} w+a_{1} a_{2} z^{2 n}=0\right\}
$$

where V is a variety with boundary in $T_{1} \cup T_{2}$. The winding numbers of the corresponding normals are $W\left(\nu_{1}\right)=W\left(\nu_{2}\right)=n$ and $W(\Delta)=n$. Also, a short calculation shows that the partial indices are $2 n$ and $4 n$. Thus the total index is $6 n$ and, for each pair of maximal real tori close to $T_{1} \cup T_{2}$, there exists a $(6 n+2)$-parameter family of two-sheeted analytic varieties over D close to V. Each reducible twosheeted analytic variety over D close to V with boundary in $T_{1} \cup T_{2}$ is given by an equation of the form

$$
\left(w-a_{1} e^{i \varphi} B_{1}(z) \cdots B_{n}(z)\right)\left(w-a_{2} e^{i \psi} C_{1}(z) \cdots C_{n}(z)\right)=0
$$

where $\varphi, \psi \in \mathbf{R}$ and B_{1}, \ldots, B_{n} and $C_{1} \ldots, C_{n}$ are automorphisms of the unit disc D close to the identity with the leading factor equal to 1 . Hence the family of reducible two-sheeted analytic varieties over D with boundary in $T_{1} \cup T_{2}$ is a submanifold of the codimension $2 n=(6 n+2)-(1+1+2 n+2 n)$ of the manifold of
all two-sheeted analytic varieties over D with boundaries in $T_{1} \cup T_{2}$ that are close to V. Thus, most of the two-sheeted varieties over D with boundaries in $T_{1} \cup T_{2}$ and close to V are irreducible.

Example 2. Let $c \in A^{2}(D)$ be such that it has no zeros on ∂D and its winding number $W(c)$ is an even integer. Let $a>0$ be a positive constant such that $a<$ $\min _{\partial D}|c(z)|$, and let

$$
T_{1} \cup T_{2}=\left\{(\xi, w) \in \partial D \times \mathbf{C} ;\left|w^{2}-c(\xi)\right|=a\right\}
$$

Let B be a finite Blaschke product, and let variety V with boundary in $T_{1} \cup T_{2}$ be given by the equation

$$
w^{2}=c(z)+a B(z)
$$

The winding numbers of the normals to the fibers of $T_{1} \cup T_{2}$ along the boundary of V are then $W\left(\nu_{1}\right)=W\left(\nu_{2}\right)=W(B)-\frac{1}{2} W(c)$ and $W(\Delta)=\frac{1}{2} W(c)$. The partial indices are $2 W(B)-W(c)$ and $2 W(B)$, and the total index is $4 W(B)-W(c)$.

Example 3. Let $T_{1}=\left\{(\xi, w) \in \partial D \times \mathbf{C} ;|w|=\frac{1}{2}\right\}$ and $T_{2}=\{(\xi, w) \in \partial D \times \mathbf{C}$; $|w|=1\}$. Let p be a disc algebra function such that

$$
p(\partial D) \subseteq\left\{(x, y) \in \mathbf{R}^{2}=\mathbf{C} ; \frac{4}{9} x^{2}+4 y^{2}=1\right\}
$$

and let V be given by the equation

$$
\begin{equation*}
w^{2}-p(z) w+\frac{1}{2}=0 \tag{20}
\end{equation*}
$$

The solutions of the equation (20) over ∂D are

$$
\alpha_{1}=\frac{4}{3}\left(p-\frac{1}{2} \bar{p}\right) \quad \text { and } \quad \alpha_{2}=\frac{1}{2} \overline{\alpha_{1}} .
$$

Also,

$$
\begin{aligned}
\alpha_{1} \overline{\alpha_{1}} & =\frac{16}{9}\left(p-\frac{1}{2} \bar{p}\right)\left(\bar{p}-\frac{1}{2} p\right) \\
& =\frac{4}{9}(\operatorname{Re} p)^{2}+4(\operatorname{Im} p)^{2}=1
\end{aligned}
$$

Hence V is a two-sheeted analytic variety over D with boundary in $T_{1} \cup T_{2}$. The winding numbers of the corresponding normals to the fibers are

$$
W\left(v_{1}\right)=W(p) \quad \text { and } \quad W\left(v_{2}\right)=-W(p)
$$

Thus, one of the winding numbers of the normals to the fibers can be an arbitrary negative integer-that is, there is no lower bound as in Proposition 3. Recall that Corollary 2 implies that every two-sheeted analytic variety over D with boundary in $T_{1} \cup T_{2}$ is regular and that it is always the case that $W\left(\nu_{1}\right)+W\left(\nu_{2}\right) \geq 0$.

Example 4. Let $T_{1} \cup T_{2}=\left\{(\xi, w) \in \partial D \times \mathbf{C} ;\left|w^{2}-\xi^{2}\right|=\frac{1}{2}\right\}$. Let $V=$ $\left\{(z, w) \in D \times \mathbf{C} ; w^{2}=z^{2}+\frac{1}{2}\right\}$ be a variety with boundary in $T_{1} \cup T_{2}$. As shown in Example 2, the winding numbers of the corresponding normals are both -1 and the partial indices are 0 and -2 (variety V is not regular!). On the other hand, if we just slightly perturb one of the tori closer to its center (i.e., for $\frac{1}{2}>\varepsilon>0$
let \tilde{T}_{1} be the component of $T_{1} \cup T_{2}$ closer to the curve $\xi \mapsto(\xi, \xi)$ and let \tilde{T}_{2} be the component of $\left\{(\xi, w) \in \partial D \times \mathbf{C} ;\left|w^{2}-\xi^{2}\right|=\frac{1}{2}-\varepsilon\right\}$ closer to the curve $\xi \mapsto(\xi,-\xi))$, then there is no two-sheeted analytic variety over D with boundary in $\tilde{T}_{1} \cup \tilde{T}_{2}$ close to V. Indeed, let \tilde{V} be a two-sheeted analytic variety over D with boundary in $\tilde{T}_{1} \cup \tilde{T}_{2}$. Then, on ∂D, we have

$$
\tilde{\alpha}_{1}^{2}(\xi)=\xi^{2}+\tilde{A}_{1}(\xi) \quad \text { and } \quad \tilde{\alpha}_{2}^{2}(\xi)=\xi^{2}+\tilde{A}_{2}(\xi)
$$

where \tilde{A}_{1} and \tilde{A}_{2} are C^{α} functions on ∂D such that $\left|\tilde{A}_{1}(\xi)\right|=\frac{1}{2}$ and $\left|\tilde{A}_{2}(\xi)\right|=$ $\frac{1}{2}-\varepsilon$ for every $\xi \in \partial D$. Hence

$$
\begin{aligned}
W\left(\tilde{A}_{1}\right) & =W\left(\tilde{A}_{1}-\tilde{A}_{2}\right)=W\left(\tilde{\alpha}_{1}^{2}-\tilde{\alpha}_{2}^{2}\right) \\
& =W\left(\tilde{\alpha}_{1}-\tilde{\alpha}_{2}\right)+W\left(\tilde{\alpha}_{1}+\tilde{\alpha}_{2}\right) \geq 1+0=1
\end{aligned}
$$

On the other hand, we know from (18) that $W\left(\tilde{A}_{1}\right)=W\left(\tilde{v}_{1}\right)+1$ and thus

$$
\begin{equation*}
W\left(\tilde{v}_{1}\right) \geq 0 \tag{21}
\end{equation*}
$$

that is, at least one of the winding numbers of the normals to the fibers of $\tilde{T}_{1} \cup \tilde{T}_{2}$ along the boundary roots of \tilde{V} is greater than or equal to 0 . Hence whatever $\frac{1}{2}>$ $\varepsilon>0$ we choose, none of the varieties \tilde{V} can be uniformly close to V. Observe also that the inequality (21), together with Proposition 3, shows that every two-sheeted analytic variety \tilde{V} over D with boundary in $\tilde{T}_{1} \cup \tilde{T}_{2}$ is regular.

Example 5. Let T be a maximal real torus in $\partial D \times \mathbf{C}$ such that, for each $\xi \in$ ∂D, the fiber $T_{\xi}=\pi_{2}(T \cap(\{\xi\} \times \mathbf{C}))$ of T over ξ is a disjoint union of two Jordan curves J_{ξ}^{1} and J_{ξ}^{2} in \mathbf{C}. Let V be a two-sheeted variety over D with boundary in T-that is, there exist functions p and q from $A^{\alpha}(D)$ such that

$$
V=\left\{(z, w) \in \bar{D} \times \mathbf{C} ; w^{2}-p(z) w+q(z)=0\right\}
$$

and such that, for every $\xi \in \partial D$, each curve J_{ξ}^{1} and J_{ξ}^{2} contains exactly one root of the equation $w^{2}-p(\xi) w+q(\xi)=0$. Similarly as before, one defines a 3dimensional maximal real manifold $\Sigma(T) \subseteq \partial D \times \mathbf{C}^{2}$ whose each fiber $\Sigma(T)_{\xi}=$ $\pi_{3}\left(\Sigma(T) \cap\left(\{\xi\} \times \mathbf{C}^{2}\right)\right)$ is a maximal real 2-torus in \mathbf{C}^{2} as well as an analytic disc

$$
\begin{equation*}
z \mapsto\left(p(z), \frac{1}{2}\left(p(z)^{2}-4 q(z)\right)\right) \tag{22}
\end{equation*}
$$

with boundary in the maximal real fibration $\left\{\Sigma(T)_{\xi}\right\}_{\xi \in \partial D}$. One can again define the partial indices of a two-sheeted variety V over D with boundary in T as the partial indices of the disc (22) with boundary in $\left\{\Sigma(T)_{\xi}\right\}_{\xi \in \partial D}$.

Let $F: \mathbf{C}^{2} \rightarrow \mathbf{C}^{2}$ be defined as $F(z, w):=\left(z^{2}, w\right)$. Then the preimage $F^{-1}(T)=T_{1}^{o} \cup T_{2}^{o}$ is the union of two disjoint maximal real tori over ∂D. Also, $V^{o}:=F^{-1}(V)$ is a two-sheeted variety over D with boundary in $T_{1}^{o} \cup T_{2}^{o}$. Let $k_{1} \geq k_{2}$ be the partial indices of the variety V with boundary in T and let $k_{1}^{o} \geq k_{2}^{o}$ be the partial indices of V^{o} with boundary in $T_{1}^{o} \cup T_{2}^{o}$. Then the form of the map F implies that

$$
k_{1}^{o}=2 k_{1} \quad \text { and } \quad k_{2}^{o}=2 k_{2}
$$

and one can easily prove statements similar to those before. For example, if there exists a function $c \in A^{\alpha}(D)$ with no zeros on ∂D such that $W(c)$ is an odd integer and such that, for every $\xi \in \partial D$,

$$
\sqrt{c(\xi)} \in \operatorname{Int} \widehat{J_{\xi}^{1}} \quad \text { and } \quad-\sqrt{c(\xi)} \in \operatorname{Int} \widehat{J_{\xi}^{2}}
$$

then

$$
k_{1} \geq-W(c) \quad \text { and } \quad k_{2} \geq-W(c)
$$

These inequalities imply that when $W(c)=1$-for example, if $c(\xi)=\xi$, which is (modulo a biholomorphism) a canonical case for $W(c)=1$-then every twosheeted variety over D with boundary in T is regular. Together with the area bounds, which are not too hard to obtain, we may apply Gromov's compactness theorem [10; 12, Thm. 4.2.1, p. 247] to obtain the existence of a two-sheeted analytic variety V over D with boundary in T. This, however, is nothing new! The result of Forstnerič [7] implies that there exists an analytic function $a \in A^{\alpha}(D)$ such that $a(\xi) \in T_{1, \xi}^{o}$ for every $\xi \in \partial D$. Let $\Gamma(a)$ be the graph of a. Then $V=$ $F(\Gamma(a))$ is a two-sheeted variety over D with boundary in T.

References

[1] H. Alexander, Hulls of deformations in \mathbf{C}^{n}, Trans. Amer. Math. Soc. 266 (1981), 243-257.
[2] H. Alexander and J. Wermer, Polynomial hulls with convex fibers, Math. Ann. 271 (1985), 99-109.
[3] E. Bedford, Stability of the polynomial hull of T^{2}, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 8 (1981), 311-315.
[4] M. Černe, Stationary discs of fibrations over the circle, Internat. J. Math. 6 (1995), 805-823.
[5] E. M. Chirka, Regularity of boundaries of analytic sets, Mat. Sb. (N.S.) 117 (1982), 291-334 (Russian); transl. in Math. USSR-Sb. 45 (1983), 291-336.
[6] F. Forstnerič, Analytic discs with boundaries in a maximal real submanifold of \mathbf{C}^{2}, Ann. Inst. Fourier (Grenoble) 37 (1987), 1-44.
[7] ——, Polynomial hulls of sets fibered over the circle, Indiana Univ. Math. J. 37 (1988), 869-889.
[8] J. Globevnik, Perturbation by analytic discs along maximal real submanifolds of \mathbf{C}^{n}, Math. Z. 217 (1994), 287-316.
[9] -, Perturbing analytic discs attached to maximal real submanifolds of \mathbf{C}^{n}, Indag. Math. (N.S.) 7 (1996), 37-46.
[10] M. Gromov, Pseudo-holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), 307-347.
[11] Y.-G. Oh, The Fredholm regularity and realization of the Riemann-Hilbert problem and application to the perturbation theory of analytic discs, preprint.
[12] P. Pansu, Compactness, Holomorphic curves in symplectic geometry (M. Audin, J. Lafontaine, eds.), Progr. Math., 117, pp. 233-249, Birkhäuser, Boston, 1994.
[13] Z. Slodkowski, An analytic set-valued selection and its application to the corona theorem, to polynomial hulls and joint spectra, Trans. Amer. Math. Soc. 294 (1986), 367-377.
[14] , Polynomial hulls in \mathbf{C}^{2} and quasicircles, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 16 (1989), 367-391.
[15] - Polynomial hulls with convex fibers and complex geodesics, J. Funct. Anal. 94 (1990), 156-176.
[16] N. P. Vekua, Systems of singular integral equations, Nordhoff, Groningen, 1967.
[17] ——, Systems of singular integral equations, 2nd ed. (Russian), Nauka, Moscow, 1970.

Department of Mathematics
University of Ljubljana
Jadranska 19, 1111 Ljubljana
Slovenia
miran.cerne@uni-lj.si

