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1. Introduction

This paper summarizes some of the findings of the co-authors in their investi-
gation of setsE in the extended complex planêC that exhibit a high degree of
symmetry with respect to the action of the quasiconformal group. Our focus is
exclusively on compact subsetsE of Ĉ. A situation roughly dual to this one, the
case of quasiconformally homogeneous domains, was studied in [GP] and [Sa].

We begin by establishing some convenient notation and terminology. The sym-
bol T stands for the group of sense-preserving homeomorphisms ofĈ to itself;Q
signifies the subgroup ofT that comprises all the quasiconformal self-mappings
of Ĉ; for 1 ≤ K < ∞, QK denotes the family of mappings inQ that areK-
quasiconformal. (N.B. We observe accepted convention in requiring as part of
the definition of a plane quasiconformal mapping that it be sense-preserving, al-
though orientation will not be a serious concern in what follows.) The familyQ1,

be it noted, is nothing other than the classical Möbius group, the group of linear
fractional transformations of̂C. By contrast, whenK > 1 the familyQK is not
closed under composition and so does not constitute a group. For each nonempty
subsetE of Ĉ we write

T (E) = { f ∈ T : f(E) = E }, Q(E) = Q∩ T (E), QK(E) = QK ∩ T (E).
ThusT = T (Ĉ), Q = Q(Ĉ) andQK = QK(Ĉ).

A nonempty subsetE of Ĉ is said to bequasiconformally homogeneous(resp.,
K-quasiconformally homogeneous) if the action onE of the groupQ(E) (resp., the
familyQK(E)) is transitive: for each pair of pointsa andb ofE there exists a map-
pingf inQ(E) (resp., inQK(E)) such thatf(a) = b.SinceQK(E) is not a group
whenK > 1, this definition does entail a slight departure from the standard mean-
ing of “action.” The expression “conformally homogeneous” will be employed as
a preferred synonym for “1-quasiconformally homogeneous.” We define thein-
dex of quasiconformal homogeneityK(E) of a quasiconformally homogeneous
setE in Ĉ by
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K(E) = inf {K : E is K-quasiconformally homogeneous}.
Then 1≤ K(E) ≤ ∞. We stress thatK(E) is assigned meaning only for setsE
that are assumed from the outset to be quasiconformally homogeneous. We also
point out that the definition ofK(E) leaves open the possibility ofK(E) being fi-
nite yetE not beingK-quasiconformally homogeneous forK = K(E). For want
of a better name we label a nonempty setE in Ĉ topologically homogeneouswhen
the groupT (E) acts transitively onE.We alert the reader to the fact that this defi-
nition is at variance with the common usage of the term “homogeneous” in topol-
ogy, where homogeneity for a plane setE usually makes reference to the action
on E of its full internal homeomorphism group, not merely to the action onE

of T (E).
We useS(z0, r) andB(z0, r) to denote the circle and open disk inC, respec-

tively, that are centered atz0 and have radiusr, abbreviatingS(0,1) to S and
B(0,1) toB. We remind the reader that a Jordan curveJ in Ĉ is termed aquasi-
circle (resp.,K-quasicircle) under the condition thatJ = f(S) for somef from
Q (resp., fromQK). In particular,J is a 1-quasicircle if and only ifJ is a cir-
cle in Ĉ, meaning thatJ is either a true Euclidean circle inC or a set of the type
J = L ∪ {∞}, whereL is a Euclidean line inC. Similarly, a domainD in Ĉ is
designated aquasidisk(resp.,K-quasidisk) providedD = f(B) for somef from
Q (resp.,QK). ObviouslyD is a quasidisk precisely when∂D is a quasicircle,
an analogous statement expressing the relation ofK-quasidisk toK-quasicircle.
A 1-quasidisk is therefore anopen disk inĈ: under the umbrella of this term are
included open Euclidean disks inC, open Euclidean half-planes inC, and the
complements in̂C of closed Euclidean disks inC.

LetE be aK-quasicircle or aK-quasidisk inĈ.With the aid of elementary prop-
erties of Möbius transformations, it is a simple matter to check thatK(E) ≤ K2.

Indeed, ifE is aK-quasicircle then the familyQK2(E) contains a group whose ac-
tion onE is triply transitive. The purpose of this paper is to explore implications in
the opposite direction, that is, to determine features that are imposed upon a com-
pact subsetE of Ĉ by virtue of homogeneity with respect to the action ofQ(E)
or QK(E). Our point of departure is a beautiful theorem discovered by Erkama
[E] (see also [BE]):a Jordan curveJ in Ĉ is quasiconformally homogeneous if
and only ifJ is a quasicircle.In order to place the discussion of quasiconformally
homogeneous compacta into context, we briefly review the situation for the well-
understood counterparts of such sets in the topological and conformal categories.

Acknowledgment. The authors would like to thank Pertti Mattila for a number
of constructive and illuminating suggestions.

2. The Topological and Conformal Cases

The topologically homogeneous compacta in the extended complex plane are com-
pletely classified by the following theorem.
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Theorem 2.1. A compact subsetE of Ĉ is topologically homogeneous if and
only if one of the following is true: (i) E = Ĉ; (ii) E is a finite set of points;
(iii) E is the union of a finite collection of Jordan curves that constitute the bound-
ary components of a domain in̂C; (iv) E is a Cantor set.

It has long been known that any subsetE of Ĉ that falls into one of the categories
listed in this theorem is topologically homogeneous. The fact that this list is actu-
ally exhaustive follows without difficulty from the Baire category theorem and a
result of Burgess [Bu, Thm. 3], which identifies Jordan curves as the only continua
E in Ĉ with the property thatT (E) acts transitively onE.

The expected analog of the Burgess theorem in the setting of conformal homo-
geneity is common knowledge to mathematicians conversant with Lie groups and
their homogeneous spaces—for instance, it is a straightforward consequence of
the classification of Lie subgroups of the Möbius group, say as found in [G]—but
this pretty result remains surprisingly obscure among geometric function theorists.

Theorem 2.2. A continuumE in Ĉ is conformally homogeneous if and only if
E is a circle inĈ.

By combining Theorems 2.1 and 2.2 with Theorem 9.18 in [Sp], one arrives easily
at a partial classification of the conformally homogeneous compact subsets ofĈ.

Theorem 2.3. If a compact setE in Ĉ is conformally homogeneous, then one of
the following is true: (i) E = Ĉ; (ii) E is a finite set of points; (iii) E is a circle
in Ĉ; (iv) E is the disjoint union of two circles in̂C.

Not all finite subsets of̂Care homogeneous with respect to the action of the Möbius
group, of course, so elaboration on case (ii) of Theorem 2.3 is necessary if the
classification of conformally homogeneous compacta inĈ is to be completed. (It
is not hard to check that any set of type (i), (iii), or (iv) in Theorem 2.3 is confor-
mally homogeneous.) A bit of notation and terminology will facilitate the state-
ment of the desired result, the proof of which is a straightforward application of
the ideas discussed in [B2, pp. 84–86]. For each positive integern, Un indicates
the set of complexnth-roots of unity. A regular polyhedronP inscribed in the unit
sphereS2 in R3 is said to bein standard positionprovided that(0,0,1) is a ver-
tex ofP and that some vertex ofP adjacent to(0,0,1) corresponds under stereo-
graphic projection from(0,0,1) to a point of the positive real axis in the complex
plane.

Theorem 2.4. LetE be a subset of̂C of finite cardinalityn ≥ 1. ThenE is con-
formally homogeneous if and only ifE is Möbius equivalent to a subsetE0 of Ĉ
that belongs to one of the following categories: (i) n ≤ 3 andE0 is a subset of
{0,1,∞}; (ii) n = 4 andE0 = {0,1,∞, λ} for some real numberλ different
from 0 and 1; (iii) n ≥ 5 andE0 = Un; (iv) n ≥ 6 is even andE0 = Um ∪ cUm,
wherem = n/2 andc is a nonzero complex number such thatcm 6= 1; (v) n = 6,
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8, 12, or 20 andE0 is the set of points that correspond under stereographic pro-
jection to then vertices of a regular polyhedron inscribed in standard position in
the sphereS2.

3. The Quasiconformal Case

We open the discussion with the observation that any quasiconformally homo-
geneous compact subset ofĈ automatically has a finite index of quasiconformal
homogeneity.

Theorem 3.1. If a compact setE in Ĉ is quasiconformally homogeneous, then
it must be the case thatK(E) <∞.

Proof. Theorem 2.1 delineates the possible topological structures thatE can ex-
hibit. Since the present theorem is plainly true whenE = Ĉ or E is a finite set
of points, we need only concern ourselves with alternatives (iii) and (iv) in Theo-
rem 2.1. We assume, as we may, thatE lies in the finite plane. Moreover, in the
situation whereE is a union of Jordan curves, we are free to suppose that∞ lies
in the domain whose boundary components are provided by the curves in question
and, ifE is itself a Jordan curve, that the origin belongs to the bounded component
of Ec, the complement ofE in Ĉ. WhenE is a Jordan curve, we useF to sig-
nify the group of mappings inQ(E) that leave the set{0,∞} invariant; in all other
cases, we takeF to mean the subgroup ofQ(E) consisting of those mappings that
fix the point∞. In each instance,F acts transitively onE, a fact readily confirmed
with the aid of [N, Lemma 1.14]. Forn = 1,2, . . . we defineFn = { f ∈ F :
K(f ) ≤ n }, whereK(f ) designates the maximal dilatation of a quasiconformal
mappingf.

Now fix a pointz0 of E and letEn = Fn(z0), the orbit ofz0 under the action
ofFn. ThenE =⋃∞n=1En and, in conjunction with well-known compactness and
convergence properties of quasiconformal mappings (see [V1]), the normaliza-
tions imposed on members ofF ensure that each of the setsEn is closed. By the
Baire category theorem, at least one of these sets, sayEN, has an interior point
w0 in the relative topology ofE. Fix an open diskU = B(w0, r) such thatU ∩E
is contained inEN. The collection of setsf(U) with f in Q(E) is an open cov-
ering ofE, so we can find a finite number of mappingsf1, f2, . . . , fp in Q(E)
such thatf1(U), f2(U), . . . , fp(U) coverE. It follows that any pointz of E can
be expressed asz = fj B f(z0) for somej and somef in FN, from which we in-
fer thatK(E) ≤ K2N 2 with K = maxK(fj ).

The kind of restriction imposed on a compact set as a result of quasiconformal ho-
mogeneity is typified by the following theorem, wherein the notationH-dim(E)
indicates the Hausdorff dimension of a subsetE of Ĉ with respect to the chordal
metric. Because Möbius transformations are bi-Lipschitz mappings in the chordal
metric,H-dim(E) is a Möbius invariant. Of course, ifE lies in the finite plane
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thenH-dim(E) coincides with the usual Hausdorff dimension ofE relative to the
Euclidean metric.

Theorem 3.2. If a compact proper subsetE of Ĉ isK-quasiconformally homo-
geneous, thenH-dim(E) ≤ d < 2, whered depends only onK.

Proof. We may assume thatE is a set in the finite plane. We first show thatE is
locally α-porous at each of its points, whereα = (1/2)exp(−2πK). (Recall: if
0< α ≤ 1/2 then a subsetA of C is locally α-porous at the pointz of A provided
there exists a numberρ = ρ(z) > 0 such that, for eachr in the interval(0, ρ], the
setB(z, r) \ A contains some open disk of radiusαr.)

Let z0 be a point ofE for which Rez0 = max{Rez : z ∈ E }. (The setE ob-
viously satisfies the stated porosity requirement atz0—in fact,E is locally (1/2)-
porous atz0, and one can takeρ(z0) to be any positive number.) Consider an arbi-
trary pointz of E. By assumption, the familyQK(E) includes a mappingf such
thatf(z0) = z. It is known that the linear dilatationHf of aK-quasiconformal
self-mappingf of Ĉ is bounded above byH = eπK (see [LV, Thm. II.9.2]). We
remind the reader that, forw different from∞ andf −1(∞), Hf (w) is defined by

Hf (w) = lim sup
r→0

Lf (w, r)

lf (w, r)
,

in which

Lf (w, r) = max
|h|=r
|f(w + h)− f(w)|, lf (w, r) = min

|h|=r
|f(w + h)− f(w)|

for 0 < r < |w − f −1(∞)|. Takeτ > 0 small enough thatf(∞) does not lie
in the closure ofB(z,4τ). The proof of the theorem in [LV] just cited actually
demonstrates that

Lf (w, s)

lf (w, s)
≤ H

whenever|w − z0| ≤ σ and 0< s ≤ σ, with σ = (1/2)dist(z0, f
−1[S(z, τ )]).

We now chooseρ = ρ(z) in (0, τ ) so that the distance fromz0 to the Jordan curve
f −1[S(z, ρ)] is smaller thanσ.

Let 0 < r ≤ ρ and letw0 = z0 + (s/2), wheres is the distance fromz0 to
f −1[S(z, r)]. Then 0< s ≤ σ. The setA = f [S(w0, s/2)] containsz = f(z0)

as well as some point off [S(z0, s)], soA has diameterd(A) no smaller than
lf (z0, s). But

r

lf (z0, s)
= Lf (z0, s)

lf (z0, s)
≤ H,

from which we conclude that

Lf (w0, s/2) ≥ d(A)
2
≥ lf (z0, s)

2
≥ r

2H
.

Since|w0 − z0| ≤ σ, this leads to
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lf (w0, s/2) ≥ Lf (w0, s/2)

H
≥ r

2H 2
,

ensuring thatB(z, r) \ E contains the diskB[f(w0), r/(2H 2)]. As r in (0, ρ]
was arbitrary, this confirms the localα-porosity ofE at z for α = 1/(2H 2) =
(1/2)exp(−2πK).

Finally, a simple geometric argument (see e.g. [S, p. 353]) reveals thatH-
dim(E) ≤ d < 2, whered depends only onα—hence, depends only onK.

The next result dramatizes the extent to which information is refined through
passage from the realm of topological homogeneity to that of quasiconformal
homogeneity.

Theorem 3.3. If a compact subsetE of Ĉ is quasiconformally homogeneous,
then one of the following is true: (i) E = Ĉ; (ii) E is a finite set of points; (iii) E
is the union of a finite collection of quasicircles that constitute the boundary com-
ponents of a domain in̂C; (iv) E is a Cantor set withH-dim(E) ≤ d < 2, where
d depends only onK(E).

Proof. Assume thatE is described by neither (i) nor (ii). On the basis of The-
orem 2.1 we can assert that eitherE is the union of finitely many Jordan curves
which are the boundary components of a domain inĈ orE is a Cantor set. In the
former case, each component ofE is quasiconformally homogeneous and, in view
of the main result in [E], is thus a quasicircle. Theorem 3.2 justifies the statement
dealing with the Cantor set alternative.

Again it is a straightforward matter to confirm that any setE of type (i), (ii), or
(iii) is quasiconformally homogeneous. Sets of type (iv) are a different matter en-
tirely: that quasiconformally homogeneous Cantor sets exist inĈ is by no means
self-evident. To show that category (iv) is not vacuous, we shall construct such
a Cantor set whose Hausdorff dimension is any prescribed number in [0,2). To
do this we employ a standard procedure for constructing self-similar Cantor sets,
into which we introduce an element of quasiconformal “mixing.” We refer to the
mechanism that underlies the mixing process as “conformal exchange.” To be pre-
cise, consider a domainG in Ĉ and disjoint subdomainsD1 andD2 ofG.We call
a quasiconformal self-mappingσ of Ĉ aconformal exchange ofD1 andD2 rela-
tive toG provided thatσ fixes each point ofGc while mappingD1 conformally
ontoD2 andD2 conformally ontoD1. If σ is such a mapping andf is a Möbius
transformation, thenf B σ B f −1 is clearly a conformal exchange ofD ′1= f(D1)

andD ′2 = f(D2) relative toG′ = f(G). In conjunction with this observation, the
following elementary lemma will provide all of the exchange maps that we require
for this paper.

Lemma 3.4. LetG be a quasidisk in̂C that is symmetric with respect to both the
real and imaginary axes and has for its intersection with the former the interval
I = (−1,1). ThenG1 = { z ∈G : Im z > 0 } andG2 = { z ∈G : Im z < 0 } are
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Jordan domains andG = G1∪ I ∪G2. If D1 is a subdomain ofG1 that is sym-
metric with respect to the imaginary axis and is relatively compact inG1∪I and if
D2 = { z̄ : z∈D1 }, then there exists a quasiconformal self-mappingσ of Ĉ such
that σ(z) = z for everyz in Gc and σ(z) = −z for everyz in D1∪ D2. In par-
ticular, σ mapsD1 conformally ontoD2 and vice versa, soσ effects a conformal
exchange ofD1 andD2 relative toG.

Proof. Let g1 be the unique homeomorphism ofḠ1 onto the closure of the half-
diskG′1 = { z ∈ B : Im z > 0 } that mapsG1 conformally toG′1 and fixes the
points−1, 0, and 1. Extendg1 by reflection to a homeomorphismg of Ḡ ontoB̄.
Theng mapsG conformally ontoB. Moreover, the normalization ofg1 and the
symmetry assumptions ensure thatg(−z) = −g(z) for everyz in Ḡ. Fix a quasi-
conformal extensionh of g to Ĉ.Next, noting thatg(D̄1∪ D̄2) is a compact subset
of B, choose a quasiconformal mappingσ0 of Ĉ such thatσ0(z) = z for eachz
in Bc andσ0(z) = −z whenever|z| ≤ r = max{ |z| : z ∈ g(D̄1∪ D̄2) }. (For ex-
ample, takeσ0(z) = zeiπϕ(|z|), whereϕ : R → [0,1] is aC∞-function such that
ϕ(t) = 1 whent ≤ r, ϕ(t) = 0 whent ≥ 1, andϕ ′(t) < 0 whenr < t < 1.)
Thenσ = h−1Bσ0Bh is a mapping that fulfills all the stipulated requirements.

The Cantor set Es. Fix a numbers satisfying 0< s < 1/2. Write

Q = { z∈C : |Rez| ≤ 1, |Im z| ≤ 1},
and for 1≤ k ≤ 4 denote byQk = Qk(s) the closed square of side-length 2s in
thekth quadrantHk of the complex plane that is concentric with and has the same
orientation as the squareQ ∩ Hk. If ck is the center ofQk, thenQk is the image
ofQ under the similarity transformationgk(z) = 2sz+ ck. Forn ≥ 1 and for 1≤
k1, k2, . . . , kn ≤ 4, we setQk1,k2,. . . ,kn = gk1 B gk2 B · · · B gkn(Q) and letEs,n sig-
nify the union of the 4n disjoint closed squares of side-length(2s)n thus obtained.
ThenEs =

⋂∞
n=1Es,n is a Cantor set whose Hausdorff dimension is given by

H-dim(Es) =
2 log 1

2

logs

(see e.g. [B1]), which ranges over the interval(0,2) ass varies over(0,1/2). By
allowing the size of the squares that arise in this process to shrink at a more rapid
rate, one can construct even “smaller” Cantor setsE, sets withH-dim(E) = 0
or even with cap(E) = 0, where “cap” indicates either logarithmic or conformal
capacity. (In the plane, the collections of null sets for the two capacities are iden-
tical.) In particular, we denote byE0 the Cantor set obtained fors = 1/4 when
the 4n squares that make upE1/4,n are replaced by squares that have the same cen-
ters and orientation as before but with side-length 2−8n−1

instead of 2−n.Denoting
the union of these squares byE0,n, we haveE0 =

⋂∞
n=1E0,n. It is not difficult

to verify thatE0 has conformal capacity zero (which implies thatH-dim(E0) =
0 as well). Each pointz of Es can be identified by a unique “address”ω(z) =
(k1, k2, . . . ), an infinite sequence from the set{1,2,3,4}, wherekj is the number
of the square in the initial configurationEs,1 that corresponds to the square into
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which z falls when passing fromEs,n−1 toEs,n. We useωn(z) as an abbreviation
for the “partial address”(k1, k2, . . . , kn) of z.

Example 3.5. For eachs in [0,1/2), the Cantor setEs is quasiconformally ho-
mogeneous and, when0 < s < 1/2, isK-quasiconformally homogeneous forK
depending only ons.

Proof. The argument is a variation on the proof of [GV, Thm. 5]. We initially con-
siders in (0,1/2) and fix for 1≤ l < k ≤ 4 a quasidiskGkl inQ that containsQk

andQl, as indicated in Figure 1. (The situation whenQk andQl are horizontally
aligned is the obvious analog of the one for the case of vertical alignment.)

Figure 1

Because the configuration ofQk, Ql, andGkl has two orthogonal lines of sym-
metry, it is the image under a similarity transformationh of a configuration meet-
ing the hypotheses of Lemma 3.4. If we fix a mappingσ that satisfies the con-
clusion of Lemma 3.4 for said configuration, thenσkl = h B σ B h−1 furnishes a
conformal exchange of the interiors ofQk andQl relative toGkl. We setσkl =
σlk for 1≤ k < l ≤ 4, takeσkk = id for 1≤ k ≤ 4, and define

K = Ks = max{K(σkl) : 1≤ k, l ≤ 4 }.
Now let a andb be points ofEs, say with addressesω(a) = (k1, k2, . . . ) and

ω(b) = (l1, l2, . . . ).We recursively define a sequence〈fn〉 of mappings fromQK
by f1= σk1l1 and

fn+1= fn B gk1 B gk2 B · · · B gkn B σkn+1ln+1 B (gk1 B gk2 B · · · B gkn)−1

for n ≥ 1. Thenfn mapsEs,n onto itself, transforming the interior of the square
Qn = Qωn(a) conformally to the interior ofQ′n = Qωn(b), andfn+1 = fn in Qc

n.

SinceK(f1) = K(σk1l1) ≤ K and
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K(fn+1) ≤ max{K(fn),K(σkn+1ln+1)} ≤ max{K(fn),K},
it follows by induction thatfn belongs toQK for eachn. The sequence〈fn〉 is
drawn from the normal family{ f ∈QK : f(z) = z for eachz ∈Qc } and plainly
converges pointwise onEc

s , a dense subset of̂C. Standard convergence theorems
for quasiconformal mappings thus ensure thatfn → f uniformly onĈ (with re-
spect to the chordal metric), wheref is a member ofQK. Becausefm(Es,n) =
Es,n andfm(Qn) = Q′n wheneverm ≥ n, we conclude thatf preservesEs,n
for eachn, mappingQn toQ′n, from which we then infer thatf(Es) = Es and
f(a) = b. But a andb were arbitrary points ofEs, soK(Es) ≤ K.

Finally, the cases = 0 does not really demand a separate discussion. Indeed,
our construction is such that the mappingfn introduced to treat a pair of pointsa
andb fromE1/4 leaves invariant the subsetE0,n of E1/4,n and maps the square in
E0,n which containsa to the one which containsb,whenevera andb are elements
ofE0. Thus, in this situation, the limit mappingf actually belongs toQK(E0) for
K = K1/4.

A second example shows that the existence of aK-quasiconformally homogeneous
Cantor set forK > 1 does not place any restriction onK.

Example 3.6. For eachK > 1 there exists aK-quasiconformally homogeneous
linear Cantor setE in the complex plane.

Proof. In this instance we tailor a Cantor set to fit a prescribed conformal ex-
change. Fort > 0 the mappingft : B → B defined byft (z) = z|z|2πit for z 6= 0
andft (0) = 0 isKt -quasiconformal, whereKt satisfies

Kt − 1

Kt + 1
= 2πt√

1+ 4π2t 2
.

In particular,Kt increases from 1 to∞ ast increases from 0 to∞.GivenK > 1,
let t > 0 be such thatKt = K, setr = e−1/(2t), and defineσ : Ĉ→ Ĉ by σ(z) =
z if |z| ≥ 1, by σ(z) = ft (z) if r < |z| < 1, and byσ(z) = −z if |z| ≤ r. Thenσ
is aK-quasiconformal self-mapping of̂C. Moreover,σ provides a conformal ex-
change of the open disksD1= B(z0, ρ) andD2 = B(−z0, ρ) relative toB,where
z0 = (r+ r 2)/2 andρ = (r− r 2)/2. If Cantor’s “middle interval” construction is
performed, beginning withE0 = [−r, r] and obtainingEn+1 fromEn by remov-
ing from each componentC ofEn the open middle interval with lengthr times that
of C, thenE = ⋂∞n=1En is a self-similar Cantor set whose construction meshes
with the mappingσ in such a way as to guarantee thatE isK-quasiconformally
homogeneous.

Taking t = 1/ log 9 in Example 3.6 leads to a Cantor set that is the image under
a similarity transformation of Cantor’s classical “middle third” setC. SinceKt
is approximately 34.65 for this value oft, Example 3.6 yields the explicit bound
K(C) ≤ 35 for the granddaddy of all Cantor sets. It is worth mentioning that the
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Cantor sets exhibited in Examples 3.5 and 3.6 are actually homogeneous with re-
spect to families of uniformly bi-Lipschitz self-mappings ofC, as closer scrutiny
of their constructions would reveal. There are no conformally homogeneous Can-
tor sets inĈ, of course, linear or otherwise. It is still not known whether Cantor
setsE exist for whichK(E) = 1, but it is clear that the specific method used to
generate the examples here cannot produce such a set, since all the mappings that
arise in this construction fix the point∞. An easy normal family argument re-
veals that a Cantor setE in Ĉ on which the familyQK(E ∪ {z0}) acts transitively
for eachK > K(E), wherez0 is a point ofEc, must beK-quasiconformally ho-
mogeneous forK = K(E). Cantor setsE in Ĉ that arise as the limit sets of cer-
tain Kleinian groups (finitely generated Schottky groups, for example) also have
K(E) < ∞—indeed, exhibit a considerably stronger form of quasiconformal
homogeneity than the one under discussion here. Details will appear in [MNP].

The fact that a quasiconformally homogeneous Cantor setE is linear has some
noteworthy implications forE, as the following result illustrates.

Theorem 3.7. If a quasiconformally homogeneous Cantor setE lies on a cir-
cle in Ĉ thenH-dim(E) ≤ d < 1, whered depends only onK(E). Furthermore,
H-dim(E)→ 0 asK(E)→ 1.

Proof. We may assume thatE lies inR and that 0 is the smallest element ofE.We
show thatE is locallyα-porous at each of its points for someα in (0,1/2] that de-
pends only onK = 2K(E),where porosity is now taken to mean porosity with re-
spect to the real line—open intervals replace the open disks of the 2-dimensional
porosity condition encountered in the proof of Theorem 3.2. Fixing a pointx0 of
E,we choose a mappingf inQK(E) that mapsx0 to the origin. Setc = f −1(∞)
andρ = (1/2)dist(c, E) > 0. Let 0 < α < 1/2 be such thatE is not locally
α-porous atx0 with ρ(x0) = ρ.We shall derive a positive lower bound forα that
depends only onK.

BecauseE fails to be locallyα-porous atx0 with ρ(x0) = ρ, there exists an
r in (0, ρ] such that the interval(x0 − r, x0 + r) contains no open subinterval of
length 2αr that is disjoint fromE. It follows that we can select finite sets of points
a1 < a2 < · · · < ap = x0 in E ∩ (x0 − r, x0] andx0 = bq < · · · < b2 < b1 in
E ∩ [x0, x0 + r) with p ≥ 2, q ≥ 2, and

aj+1− aj < 2αr, bk − bk+1 < 2αr

for j = 1,2, . . . , p− 1 andk = 1,2, . . . , q − 1. Except forap andbq, the points
aj andbk are mapped byf into (0,∞). We are free to suppose thatf(a1) <

f(b1), the opposite case being handled similarly. Becausef(bq) = f(x0) = 0<
f(a1), it follows thatf(a1) must lie in at least one of the open intervalsIk in R
whose endpoints aref(bk) andf(bk+1). Fix such ak and assume that

|f(a1)− f(bk+1)| ≤ |f(a1)− f(bk)|
(again, the other case has an analogous treatment). Then
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|f(a1)− f(bk+1)|
|f(bk)− f(bk+1)| ≤

1

2
,

while |a1− bk+1|
|bk − bk+1| ≥

|a1− x0|
2αr

>
r − 2αr

2αr
= 1− 2α

2α
.

Now the restriction off to the diskB(x0, r) is anη
K

-quasisymmetric embedding
of B(x0, r) into the complex plane, where the homeomorphismη

K
: [0,∞) →

[0,∞) depends entirely onK (see [V2, Thm. 2.4]). This implies thatf −1 is
η∗-quasisymmetric in the domainf [B(x0, r)], with η∗(t) = [η−1

K
(t−1)]−1 for t >

0 [TV1, Thm. 2.2]. In particular,

1− 2α

2α
<
|a1− bk+1|
|bk − bk+1| ≤ η

∗
( |f(a1)− f(bk+1)|
|f(bk)− f(bk+1)|

)
≤ η∗

(
1

2

)
,

which leads to the inequality

α >
1

2+ 2η∗(1/2)
.

We conclude thatE is locally α-porous atx0 for α = [2 + 2η∗(1/2)]−1 and
ρ(x0) = ρ. Sincex0 was an arbitrary point ofE, [S, Thm. 3.8.1] guarantees that
H-dim(E) ≤ d, where

d = log 2

log

(
2− 2α

1− 2α

) < 1

is a number that depends solely onK(E).
To prove the final assertion we shall demonstrate that, whenE isK-quasicon-

formally homogeneous withK sufficiently close to 1, the preceding argument can
be reworked to show thatE satisfies a localα-porosity condition withα as close to
1/2 as desired. The key idea here is supplied by [TV2, Thm. 2.6], which implies
that for eachK ≥ 1 there exists a homeomorphismη

K
: [0,∞) → [0,∞) en-

dowed with the following two properties: everyK-quasiconformal self-mapping
of the finite complex plane isη

K
-quasisymmetric, and

lim
K→1

η
K
(t) = η1(t) = t

uniformly on compact subsets of(0,∞). (For explicit bounds onη
K
(t) the reader

is referred to [VVW, p. 125].) Suppose thatα in (0,1/2) is specified. Fixε in
(0,1) such that

(1+ ε)2
1− ε < 2− 2α

and then fixK0 for which
η
K
(t) ≤ (1+ ε)t

whenever 1≤ K ≤ K0 and(1+ε)(1−2α)/[2(1−ε)] ≤ t ≤ (1+ε)/[(2−2α)×
(1− ε)].
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We return to the argument in the first part of this proof, now assuming thatE

isK-quasiconformally homogeneous with 1< K ≤ K0. In the present situation
we claim thatE is locallyα-porous at each of its points. Supposing this not to be
the case, we consider a pointx0 of E at which the localα-porosity condition fails.
Proceeding as before, we select a mappingf fromQK(E) for whichf(x0) = 0.
Next, letg be a Möbius transformation such thatg(x0) = x0, g

′(x0) = 1, and
g(c) = ∞, where againc = f −1(∞). We can chooser > 0 such thatc does not
lie in B(x0, r) and such that

1− ε ≤ |g(z)− g(w)||z− w| ≤ 1+ ε

for each pair of distinct pointsz andw in B(x0, r). Because the localα-porosity
condition is assumed not to hold atx0, we may further require ofr that(x0 − r,
x0 + r) \ E include no open interval of length 2αr. We can thus choose pointsa
andb in (x0 − r, x0 + r) ∩ E for whicha < x0 < b and

x0 − a > r − 2αr, b − x0 > r − 2αr.

Thenf(a) > 0 andf(b) > 0. We furnish details for the casef(b) < f(a); the
other case is similar. We have

|f(a)− f(b)|
|f(a)− f(x0)| =

f(a)− f(b)
f(a)

< 1,

while

|a − b|
|a − x0| =

b − a
x0 − a = 1+ b − x0

x0 − a > 1+ r − 2αr

r
= 2− 2α.

It follows that
1− 2α

2
<
|a − x0|
|a − b| <

1

2− 2α
.

Now h = f B g−1 is aK-quasiconformal mapping ofC onto itself, so by the
selections ofK0, a, andb we have

1<
|f(a)− f(x0)|
|f(a)− f(b)| =

|h[g(a)] − h[g(x0)]|
|h[g(a)] − h[g(b)]| ≤ ηK

( |g(a)− g(x0)|
|g(a)− g(b)|

)
≤ η

K

(
(1+ ε)|a − x0|
(1− ε)|a − b|

)
≤ (1+ ε)

2

(1− ε) ·
|a − x0|
|a − b| <

(1+ ε)2
(1− ε)(2− 2α)

.

As (1+ ε)2(1− ε)−1 < 2− 2α, this leads to

1<
(1+ ε)2

(1− ε)(2− 2α)
< 1,

a clear contradiction. Accordingly,E must be locallyα-porous at each of its
points. IfEn signifies the set of allx in E at whichE is locally α-porous with
ρ(x) = 1/n, then [S, Thm. 3.8.1] implies that
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H-dim(E) ≤ sup
n

H-dim(En) ≤ log 2

log

(
2− 2α

1− 2α

)
whenever 1≤ K(E) < K0. Sinceα in (0,1/2) was arbitrary, we haveH-
dim(E)→ 0 asK(E)→ 1.

(N.B. There do exist linear Cantor setsE in C havingH-dim(E) < 1 that are
not quasiconformally homogeneous. As a simple example we citeE = E′ ∪ E′′,
whereE′ is a Cantor subset of(−∞,0) for whichH-dim(E′) = 0 andE′′ is a
Cantor set in(0,∞) with the feature that 0< H-dim(E′′ ∩ U) < 1 for every
open setU in C with U ∩ E′′ 6= ∅. Properties of quasiconformal mappings—see
[GV]—imply that no memberf ofQ(E) can move a point ofE′ to a point ofE′′.)

It would ultimately be nice to characterize the quasiconformally homogeneous
Cantor setsE in Ĉ. Indeed, a characterization of the linear Cantor sets of this type
would already be a welcome development. The outlook for finding one is not en-
couraging: recent work on the bi-Lipschitz equivalence of Cantor sets by Falconer
and Marsh[FM] (see [CP] as well) suggests that, even in the linear case, any
characterization is likely to be quite subtle, involving delicate algebraic invariants.

A result of Astala [A] leads to the following generalization of Theorem 3.7.

Corollary 3.8. If a quasiconformally homogeneous Cantor setE lies on aK-
quasicircle inĈ, thenH-dim(E) ≤ d < 2K/(K + 1), whered depends only on
K(E) andK. Moreover,H-dim(E)→ 0 when bothK(E)→ 1 andK → 1.

Proof. Suppose thatE is a subset off(S) for a mappingf from the familyQK.
ThenE′ = f −1(E) is a quasiconformally homogeneous Cantor subset ofS for
which the estimateK(E′) ≤ K2K(E) holds. By Theorem 3.7,H-dim(E′) ≤
d ′ < 1, whered ′ depends only onK(E′)—hence, only onK(E) andK—and
H-dim(E′)→ 0 when bothK(E)→ 1 andK → 1. Corollary 1.3 in [A] implies
that

H-dim(E) ≤ 2KH-dim(E′)
2+ (K − 1)H-dim(E′)

≤ d = 2Kd ′

2+ (K − 1)d ′
<

2K

K + 1
.

The numberd depends only onK(E) andK. The foregoing inequality also shows
thatH-dim(E)→ 0 asK(E)→ 1 andK → 1.

We close this paper by remarking that the options in Theorem 3.3 become consid-
erably more limited whenQK(E) contains a group that acts transitively onE.

Theorem 3.9. If E is a compact subset of̂C such thatQK(E) contains a group
0 that acts transitively onE, then one of the following is true: (i) E = Ĉ; (ii) E
is a finite set of points; (iii) E is aK2+√2-quasicircle; (iv) E is the disjoint union
of twoK2+√2-quasicircles.

Proof. It follows from a well-known result of Sullivan and Tukia (see [Su; T])
that0 = g B 0 ′ B g−1, where0 ′ is a group of Möbius transformations andg is a
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member ofQK ′ for K ′ = K(2+√2)/2. ThusE′ = g(E) is a conformally homoge-
neous compact set, and the indicated classification is an immediate consequence
of Theorem 2.3.
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