Standard Forms of 3-Braid 2-Knots
and their Alexander Polynomials

SE1IcHI KAMADA

By asurface linkwe mean a closed oriented locally flat surfacen 4-spaceR®.

It is called aclosed 2-dimensional braidf degreen if it is contained in a tubu-
lar neighborhooaV(5?) = D? x §2 of a standard 2-sphet® in R* such that the
restriction toF of the projectionD? x $? — §2is a degreen simple branched
covering map fron¥ to S2. Viro [V; cf. K2; CS] proved that every surface link
is ambient isotopic to a closed 2-dimensional braid of degréer somem. The
braid indexof F, denoted by Brai@F'), is the minimum degree among all closed
2-dimensional braids ambient isotopicfo

By definition, Braid F) = 1 if and only if F is an unknotted 2-sphere (i.e., am-
bient isotopic to the standard 2-spherdrif). It is easily seen that Braj@') = 2
if and only if F is an unknotted surface link R* that is a connected surface with
nonnegative genus or a pair of 2-spheres; cf. [K1]. (A surface linknishotted
if it bounds mutually disjoint locally flat 3-balls or handlebodiesifi This con-
dition is equivalent to its being isotoped into a hyperplan®bf see [HK].) In
particular, there exist no 2-knots of braid index 2.

Our interest is 3-braid 2-knots, that is, 2-sphereRfrof braid index 3. The
spun 2-knot of a2, ¢)-type torus knot is a 3-braid 2-knot unlegs= +1. Of
course, there exist infinitely many 3-braid 2-knots which are not spun 2-knots.

Few results on 3-braid 2-knots are known. For example, all 3-braid 2-knots—
and all surface links of braid index 3 or less—are ribbon [K1]. (A surface link
is said to baibbonif it is obtained from a split union of unknotted 2-spheres by
surgery along some 1-handles attached to them.) Thus the 2-twist spun 2-knot of
a trefoil knot is not a 3-braid 2-knot.

The purpose of this paper is to prove that a 3-braid 2-knot can always be de-
formed into a certain kind of configuration, calledst@andard form(Section 1).

In Section 2 we investigate Alexander polynomials of 3-braid 2-knots by use of
standard forms. Our main theorem (Theorem 2.3) regards a strong relationship
between standard forms and the spans of the Alexander polynomialssg@he
means the maximal degree minus the minimal.) Using it, we obtain some results
on Alexander polynomials of 3-braid 2-knots; for instance, nontriviality of them.
Standard forms (and Alexander polynomials) are quite useful for distinguishing
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the knot types (Section 3). As an application, we shall give a complete table of
3-braid 2-knots whose Alexander polynomials have spans less than 10. There are
1+1+2+4+ 347+ 12+ 24+ 45 = 95 knot types up to mirror images. They

are completely classified by standard forms. Moreover, standard forms bring us
plenty of (and a series of ) examples of 2-knots, most of which are not spun 2-knots;
these would be helpful for research on 2-knot theory.

Standard forms (and Alexander polynomials) are also useful for examining
whether or not a 3-braid 2-knot is amphicheiral—that is, ambient isotopic to the
mirror image of itself (Section 3). (Recall that a 3-braid 2-knot is ribbon, so it is
amphicheiral if and only if it is invertible.)

In order to present a ribbon-closed 2-dimensional braid we shall use a nota-
tion due to Rudolph [R1; R2] and Viro [V]. Then the standard forms are defined
in terms of Murasugi’s principal 3-braids, which are used in [Mu] for investiga-
tion of closed 3-braids in 3-spad®®. He proved that 3-braids are decomposed
into principal parts (so-called alternating parts) and torus-like parts, and calcu-
lated Alexander polynomials of them. For further investigation on closed 3-braids
in R3, refer to [B2; BM; T].

For the sake of argument, we treat not only 3-braid 2-knots but also all surface
links F with the Euler characteristig(F) = 2 and BraidF) < 3. Such a sur-
face link is an unknotted 2-knot, a 3-braid 2-knot or a 3-braid surface link that is
a union of a 2-sphere and a torusRA. In the last case, each component is un-
knotted, for its braid index is 1 or 2. We work in the piecewise linear (or smooth)
category.

1. Standard Forms of 3-Braid 2-Knots

First we introduce Rudolph and Viro's notation to present a ribbon-closed 2-
dimensional braid. The 4-spa&¥ is regarded as the union of parallel hyper-
planesR? (1 €R). Letby, . . ., b, bem-braids and

-1 -1
€1, .., €{01, 00 ..., Om_1,0, 1}

whereoy, . . ., 0,1 are standard generators of thebraid groupB,, (cf. [B1]).

Consider a closed 2-dimensionaibraid F satisfying the following conditions.

(1) FNnR3is empty fort € (—oo, —2).

(2) FNR3, consists ofn disks.

(3) Foreachr e (—-2,-1), FN R;" is a trivial closedn-braid. In addition, ift is
near—1, it is a closedn-braid/ represented by;b;*. . . b,b; L.

(4) FNR?isl together witm saddle bands each of which is a half-twisted band
corresponding te; located betweeb; andbl.‘l.

(5) Fort € (=1,0], F N R3%is a closedn-braid represented bylclbl‘l. ..
bncnb,jl.

(6) F is symmetric with respect to the hyperplaRg.

(The case ofn = 3, n = 2, andc; = ¢, = oy Lis illustrated in Figure 1.) We

denote this closed 2-dimensionadbraid by F[b1, c1| . . . |by, culm- If n = 0, let
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Figure 1

F[4],, denote a trivial closed 2-dimensionalbraid, namelym parallel copies
of the standard 2-sphere Rf".

The following theorem was proved by Rudolph [R1; R2]. (The surface link
F[by, ci| .. .|b,, cu]lm is the double of a braided surface in the lower half-space
R* associated with a band representatithic1b; . .,b,,c,,b;l) in the sense
of [R1; R2]. An alternative proof is given in [K1; K2].)

TueoreM 1.1. A surface link is ribbon if and only if it is ambient isotopic to a
closed2-dimensionak-braid F[by, c1] . . . |b,, ¢u]m fOr somem.

Let t be the automorphism @&,, with t(¢;) = 0,,,_; fori = 1,...,m — 1. We
shall denote it by = F’ if two surface linksF and F’ are ambient isotopic.

LemMma 1.2. For F = F[by, c1|...|b,, c,]m, the following statements hald

(1) F = F[by, c2]...|bu, culby, cilm;

(2) F = F[bby, c1|...|bb,,c,]n foranyb € B,;

(3) F=F[bs, cal|...|b},c]|...|bn,calm foranyi e{1,...,n}andb/ € B, and
¢/ efor, o0t ..., om 1,0, With bie;b7t = blcib ™,

(4) F = Flt(by), t(cy)l...|t(by), T(c)]m:

(5) F = Flby,c1|...bi,c; ... |by,calm foranyie{d,...,n}.

Proof. Statements (1)—(4) are easily verified from the definition. Assertion (5)
follows from the fact that a surfaa@ in a 4-ball B3 x [—2, 2], illustrated as in
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t=-2 t=-1
t=-2 t=-1

Figure 2

(a) of Figure 2, is ambient isotopic to a surfa@éas in (b). For letl’ be a triv-

ial 2-braid inB* and letB (resp.B’) be a half-twisted band iB* corresponding
tooy (resp.o; 1. ThenG andG’ are obtained fron” x [—2, 2] by surgery along
1-handlesB x [—1, 1] and B’ x [—1, 1] respectively. Because these 1-handles
have the same core, they are ambient isotopic [Bo; HK]. O

For a 3-braich we denote by(b) the surface linkF[1, o, b, o] 115 (see Fig-
ure 3). Letu be an automorphism d3 with (o;) = o; 1i=102).

LEMMA 1.3.

(1) Every surface linkF” with x(F) = 2 andBraid(F) < 3is ambient isotopic to
F(b) for someb € Bs.

(2) F(b) = F(b™Y).

(3) F(b) = F(b') if bo b =b'o b2

(4) The mirror image of F(b) is equivalent taF' (u(b)).

Proof. (1) Since BraidF) < 3, F is ribbon and hence ambient isotopic to some
F[by, c1]...|b,, c,]3 (Theorem 1.1). Since(F) = 2, we haven = 2. By
Lemma 1.2 it is deformed int&'(b) for someb € Bs. Assertions (2)—(4) are eas-
ily verified by Lemma 1.2. O

For a surface linkF with x(F) = 2 and BraidF) < 3, we denote by (F) the
subset ofB3 consisting of all 3-braid$é with F(b) = F. By Lemma 1.3(1), this
subset is not empty (it actually consists of infinitely many elements).
Thelengthof a 3-braidb is the minimum length of a word expressioniobn
{o1, 07 %, 02,0571 A 3-braid words(1) . . . s(n) is principal if all s(2), ..., s(n)
are either in{o{l, o>} orin {oy, agl}. In other words, the corresponding link
(tangle) diagram is alternating. Avddly principal3-braid word is a principal one
whose initial and terminal letters ase or 02‘1. We call a 3-braich a principal
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Figure 3

(resp.oddly principal) 3-braid if it has a word expression that is principal (resp.
oddly principal). We assume that the empty word is oddly principal and so is the
identity element k& Bs.

LemMma 1.4. Letb be a principal3-braid, and lets(1) . . . s(n) be a word expres-
sion of b. The word expression is principal if and onlyifis the length ofb.

Proof. Every element oBj3 is expressed uniquely in the form
x2nxa1yb1xagyb2 o xakybk

in an alternative group presentation, y | x2 = y3} of Bz with o1 «— y~1x
ando, <— x~1y2 wheren, aq, .. ., ax, by, . . ., by are integers satisfying a cer-
tain condition (cf. [MKS, p. 46]). Using this condition, we obtain the resultl

LemMMA 1.5. Let F be a surface link with¢(F) = 2andBraid(F) < 3. If b €
J(F) has the minimum length amod@F ), then it is oddly principal.

This is our key lemma, which is strengthened as Theorem 2.3 in the next section.
We say that a surface link with x(F) = 2 and BraidF) < 3 is in astandard
formifitis F(b) for someb € J(F) asin Lemma 1.5 (or Theorem 2.3).

Proof of Lemma 1.5Let @ be the length ob. If « = 0 thenb = 1. If o #
0, puth = s(1)...s(a) wheres(i) € {o1,07 5,020, (i = 1,...,a). By
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Lemma 1.3(2)(3) and the minimality of, we see thas (1), s(a) € {o2, 0, ).
The casex = 1 is trivial. Assumex > 2. We assert that i§(1) = o, then
s(D),...,s(a) € {0’1_1,(72}. Suppose that there exists an integewith 1 <
k < a such thats(), .. .,s(k) € {o;}, 02} ands(k + 1) € {o1,0,"}. Putx =
s(D)...stk+1)andy =s(k + 2)...s(x). There are three cases,

(1) x =030,

(2) x = 05%0; @0y%0, .. .oy "oy 01 (n > 1, odd),

(3) x = 05'0, 20520, .. 0y o, Yo, (n > 0, even),

whereay, . . ., a, are positive integers. According to (1)—(3), létbe a 3-braid
expressed by

1) x' = 02—10_{117202—1’

;) =1 _a1—1_—ar _az _—aa —ap-1 __a,—1 -1
(2) x¥' =0, 10’1 102 000, t.. 0, oy 102 ,
-1 _ai—1_—ap a3z _—a ap—1__—ap+
(8) x' =050/ "0, %0120, .oy o, " o
Sincex~to;'x = x'~!o;'x’, by Lemma 1.3 we have’y € J(F). Note that

the length ofx’y is smaller tharx unlessx = o,0,. Hencex = oy01, @ >
3, ands(3) iso1 Or o5 Putz = s(4)...s(a). If s(3) = o1 thenb~to, b =
(oz‘lz)’lal‘l(az‘lz) and hence(o-z‘lz) € J(F). This is a contradiction, for the
length ofo, *z is smaller than. If s(3) = o5 then

b o th = (02012) Yoy Ho2012),

which also yields a contradiction. Thus we have the assertion. For thedase
agl, apply the above argument to the mirrorimdgec (b)) of F(b) (Lemma 1.3).
O

2. Alexander Polynomials

In this section, we investigate Alexander polynomials of 3-braid 2-knots by use of
standard forms.

Let F be a surface link and lgf = R*\ F. A homomorphismH(E; Z) — Z
sending each oriented meridian Bfto 1€ Z determines an infinite cyclic cover-
ing E — E, andH.(E; Z) is aA-module in a natural way where = Z [z, r1].
TheAlexander polynomiabf F is the greatest common divisor of the elements of
its zeroth elementary ideal, which is unique up to multiplication of unita ofin
case the polynomial is zero, we assume the spatiis

Let A € A and letA = (a;;) be an(m, n)-matrix over A. We denote it
by A € L, (2) if there exists a not necessarily strictly increasing function
fi{L...,n} = {1, ...,m}suchthat;; = Aif i = f(j)anda;; = 0 otherwise.

LemMma 2.1. Letb = s(1)...s(n) be an oddly principal3-braid such that
s(D,...,s(n) € {ol‘l, oy} andn > 2. Letu andv be numbers obfl’s and
o,'s appearing inb. Then, for any surface link with F = F(b), Hi(E; Z) has
a squareA-presentation matrix
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1 —t 0 7
t 1 0 0
t Aq
1 0 0
t 0 —t
1 ¢
1 ¢
Az
L 1 ¢ ]

of sizen (= u + v), whereA; € L, 11)xw-2)(—t) and Az € L,_1)x, (—1).

Proof. Let R; (j = 1,2,3) be arectangl¢(x,y,z)eR3 [0<x <1 y=,
0<z<1inR® = {(x,y,2 € R®®| z > 0}. Let ho, hy, ..., hyy1 be
half-twisted bands attached to the= 1 boundary ofR; U R, U Rj3 in this or-
der (from the top) such that each baldcorresponds te (i) if i € {1,...,n}
and too; ! if i € {0,n + 1}. For example, in casé = 0,0, ‘0202, the bands
ho, ..., hs are asin Figure 4. Fadt e (—m, 7], let pg: R'j’r — R*be a map with
po(x,y,2) = (x,y,zC080,zsinh). Put My = UGE(—n,ﬂ] po(R1 U Ry U R3),
Hi = Ugenmpoth) fori e {l,....n}, andH; = Uy, q00(hi) fori e
{0, n + 1}, wheree is a small positive number. Thanis ambient isotopic to the
boundary of a 3-manifoldd = MpU HoU---U H, 1. Letj,, j_: Hi(M;Z) —
Hi(R*\ M; Z) be homomorphisms obtained by sliding 1-cyclea4rin the pos-
itive and negative normal directions &1, respectively. By the Mayer-Vietoris
theorem, we have A-isomorphism

H(E:Z) = Hi(R\M;Z) ®2z A/(j ®t — j- @ D(Hy(M;Z) ®7 A).

LetX beRiUR;UR3UhgU---Uh, 1. Rename bands, ..., h, 1 by Ay, ...,
A,i2, By, ..., B,asinFigure 4 suchthaty, ..., A, o (resp.By, ..., B,) are at-
tached toR; U R, (resp.R, U R3). Define 1-cyclesy, . . ., ay41, b1, . . ., by_1 1IN

3 asfollows: Foreach=1,...,u+1(resp.j =1,...,v—1), the 1-cycleg;
(resp.b;) consists of cores afl; and A1 (resp.B; and B;,1) and two straight
segments inR; U R, (resp.R, U R3) connecting end-points of the cores. As-
signa; (resp.b;) an orientation whose restriction to the coreAf(resp.B;) is
from Ry to R, (resp.R; to R3); see Figure 4. Thelly(X; Z) is a free abelian
group with basigay, . . ., ay11, b1, . . ., by_1}, Where we use the same symbols for
1-cycles and their homology classes. k@, . . ., a,42, B1, . . ., By} be a basis of
Hi(R3\X;Z) such thaty; (i = 1,...,u +2)andB; (j = 1,...,v) are rep-
resented by small loops arourd and B; with Ik(«;,a;) = 1 and IKg;, b;) =

1 respectively, where [k -) is the linking number. Lek,,k_: Hi(Z;Z) —
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Z
ho=A,
h=B,
hy=A,
h;=B,
d.
hs=A;

r ;
Figure 4

Hl(Ri\E; Z) be homomorphisms obtained by sliding 1-cyclegiimn the pos-
itive and negative normal directions &f. By construction, the following state-
ments hold.

(I1) Foreach i =1,...,u+1), «;isinvolved ink(a;) and never irk_ (a;/)
fori’ #i. a, 2 does not appear ik, (a;) for anyi.
(o) Foreachj (j =1,...,v), the term ong; appears as-g; in k.(a;) for a
uniquei = i(j). If j1 < jatheni(j1) <i(j2).
(I3) ky(ay) involves—pB; andk, (a,,1) involves—g,.
(I1) Foreachj (j =1,...,v—1), kt.(b;) = Bj11.
() Foreach i =1,...,u+1), k_(a;) = —a;11.
(IVy) Foreachj (j =1,...,v — 1), the term ong; appears as-g; in k_(b;)
and never irk_(b;) for j' # j. B, is not involved ink_(b;) for any j.
(IV2) Foreach (i =2,...,u+ 1), o; appears itk_(b;) for a uniquej = j(i).
If i1 < iothenj(iy) < j(i2).
(IV3) a1 ande, 4, are not involved irk_(b;) for any ;.

The mapog: Ri — R*induces homomorphisms
pox: HI(X;Z) — Hi(M; Z)
and
po.: Hi(RG\E:;Z) - Hi(R*\M; 2).

We use the same symbols for the imagesiof;, «;, f; under po,. By con-
struction of M, Hy(M; Z) and Hi(R*\ M; Z) are free abelian groups with basis
{(11, cee, Ay, by, ..., bv—l} and{()lz, cee, Oy, ,B]_, e, ,Bv} Notice that
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pox(0r1) = pos(ou42) = 0.
From the commutative diagram
Ky ke
Hy(%;Z) —— Hi(R}\%;2)

ElpO* lPO*

H(M;Z) L5 BRAM; 2),
we see thaHy(E; Z) has the desired -presentation matrix. O

EXAMPLE. Letb = ozaflozoz andF = F(b), with X as in Figure 4. Then

ky(a1) = a1 — B, k_(a1) = —az,
ki(az) =a2—pf2— B3, k_(az) = —as,
ky(b1) = B2, k_(b1) = az — B,
ki(b2) = B, k_(b2) = —Ba,

and
tj+(a1) — j-(a1) = t(=p1) — (—a2),
tjt(az) — j-(az) = t(az — B2 — B3) — 0,
tj+(b1) — j-(b1) = 1B2 — (a2 — B1),
tj+(b2) — j-(b2) = 1f3 — (—B2).

Thus we obtain the presentation matrix

the determinant, which is the Alexander polynomialrofis 1% — 13 + 212 — ¢.
Hence it is not a spun 2-knot.

CoROLLARY 2.2. Let F be a surface link withy(F) = 2 and Braid(F) < 3.
If b e J(F) is oddly principal then the length a4 is the span of the Alexander
polynomial of F plus one.

Proof. If » = 1 thenF is the unknotted surface link? 11 T2 whose Alexan-
der polynomial is zero. 1b = o, or 02‘1, then F is an unknotted 2-knot whose
Alexander polynomial is unity. In case the lengtlof b exceeds unity, by Lem-
mas 1.3(4) and 1.4 we may assume thandb are as in Lemma 2.1. The Alexan-
der polynomial ofF is the determinant of a square matrix of sizeas in the
lemma, whose spanis— 1. O
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Our main theorem is as follows.

THEOREM 2.3. Let F be a surface link withy(F) = 2 and Braid(F) < 3. For
b € J(F), the following three conditions are mutually equivalent.

() b is oddly principal.
(2) b has the minimum length amoug@r ).
(3) The length ofp is the span of the Alexander polynomial Bfplus one.

Proof. Itis a consequence of Lemma 1.5 and Corollary 2.2. O
THEOREM 2.4. Every3-braid 2-knot has a nontrivial Alexander polynomial.

Proof. By Theorem 2.3, a 3-braid 2-knot with a trivial Alexander polynomial is
ambient isotopic taF (o) or F(oz‘l). It is an unknotted 2-knot of braid index 1,
a contradiction. O

THEOREM 2.5. For any3-braid 2-knot, the coefficients of the terms of the Alexan-
der polynomial of maximal and minimal degree até.

Proof. This follows from Lemmas 1.3(4), 1.5, and 2.1. O

THEOREM 2.6. The number of3-braid 2-knot types such that the spans of their
Alexander polynomials are the same is finite.

Proof. Since there are finitely many oddly principal 3-braids with a given length,
the result follows from Theorem 2.3. O

3. Tabulation of 3-Braid 2-Knots

Throughout this sectiorf; denotes a surface link with( F) = 2 and BraidF') <

3. Let «(F) stand for the length ob € J(F) as in Theorem 2.3, which is the
span of the Alexander polynomial @f plus one. We shall denote by] (resp.
[F]*) the knot type—that is, the ambient isotopy class—dfesp. the knot type
modulo mirror images).

For each nonnegative integerlet H, (resp.H.") be the set of knot types (resp.
knot types modulo mirror images) @'s such thatx(F) = «. Both Hy and H§
consist of the class of an unknotted surface link beSiAbl 72. Hy andH; consist
of the class of an unknotted 2-knot.

For each integar > 2, let G, be the power setdfl, 2, . . ., « — 2} and define
amap

¢: Gy > B3

by p(g) = s(1)...s(ae — 2) with s(i) = 01_1 if i € g ands(i) = o, otherwise.
By Theorem 2.3 and Lemma 1.3(4) we have a surjection,
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Gy = Hy — HJ, g [F(o20(8)02)] = [F(o20(8)02)]%;

in other words, ife = a(F) > 2 thenF is ambient isotopic td(o2¢(g)o2) for
someg € G,, or its mirror image.
Forge Gy, letg®®={1,...,a—2\gandg®* ={a—1—j|jeg}.

LemMma 3.1. Foranyg € G, (a > 2), both F(o2¢(g%)02) and F(o2¢(g°P)o2)
are ambient isotopic to the mirror image @f(o2¢(g)o2).

Proof. Note that

P(g°) =toun(p(g) and (g% = ulp(g) ™,

wheret andu are as before. By Lemma 1.3, the mirror imageFgb,¢(g)o»)
is F(o, 1u(p(g))o, ). By Lemma 1.2,

Floz u(e(€)ozh) = FIL 0" | o u(e(g)oz ™ o1
= Flo102, 07 " | o1pu(p(g))oy t oy ']
= FlL oyt | oup(e(g)oyt, op ]
= F[l.oy" | o1uu(p(8))o1. 05 ]
= F[1. 07" | 027 0 ju(p(8))02. 07 ']
= F(g*)

and
Flo3 nlp(@)ozh) = FIL o1t | o5 (e (g)oz o7
= Floyu(e(g)oy o7t | Log ]
= FlL o7t | o21(0(8) Loz, 01
— F(g%). U
CoroLLARY 3.2. If g = g thenF(o2¢(g)o2) is amphicheiral.

Define an equivalence relationon G, by g ~ g ~ g% ~ g% = goPCO We
denote by g]* the equivalence class gfand byG} the quotient set ofi,. By
Lemma 3.1, the surjectioi, — H_ induces a surjection

®,: G, — H;, [g]"+ [Flo20(g)o2)]".

We provide a list ofH for « < 10 in Tables 1-5. (All surface links in the
list are distinguished by their Alexander polynomials except three pairsn8
911; 10,9 and 1Qy; 1044 and 1Q7. For a surface linkF and a positive integef,
let I,(F) be the number of,;-conjugacy classes of transitive representations of
m1(R*\ F) to the symmetric groug, ond letters. Using the computer program
“Knot" by Dr. Kouji Kodama, we have a partial list df(F') as in Table 6, which
shows @ 2 941, 1019 2 1035, and 1Q4 2 10s7. To determine whether or not each
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g Alexander Polynomials
01 —_ TO,l 0
11 —_ Sl,l 1
2 {1 Tr1 1,-1
3 {} S31 1,-11
4, {} Taa 1,-1,1, -1
4, {1} Sa1 1,-1,2 -1
5 {} Ss1 1,-1,1,-1,1
52 {1} S5.2 1,-1,2-21
53 {2} Ts1 1,-2,2,-21

61 {} Tes.1 1,-1,1,-1,1,-1
6, {1} Se.1 1,-1,2,-2,2,-1
63 {2} Se.2 1,-2,2,-32,-1
6, {L2 Ts, 1,-1,2-32-1
65 {13} Ses 1,-2,3-33 -1
66 (1,4} Tes 1,-2,3-32 -1
71 {} S;1 1,-1,1,-1,1,-11
7, {1} S$7.2 1,-1,2 -2,2 -2,1
73 {2} T71 1,-2,2,-33-2,1
74 {3} Sz3  1,-2,3,-33,-21
75 {L2} S7a  1,-1,2,-33-21
7s {1,3} Ty 1,-2,3 -4,4,-3 1
77 {1,4 Sis 1,-2,4,-4,4 -3 1
Tg {1,5} Tzs 1,-2,3-43-2,1
Ty {2,3} Svs 1,-2,3-44-21
To {2,4) S7.7 1,-3 4, -5 4 -3 1

>Z2>»Z2Z2Z>»Z2Z2>» >»2Z2Z2Z2ZZ2Z>» >»Z>» 2> > > > >

Table 1

F is amphicheiral, we use Corollary 3.2 and the fact that the Alexander polyno-
mial of an amphicheiral surface link must be reciprocal; ifdt) = +t"f(t™)
for somen.)

In the first columnx(F) (= «) is given. The subscript indicates the order of
[F]* in H}. In the second column an element G, with &, ([g]*) = [F]* is
given. Using it, one can recover the configuratiorFofFor the third column we
divide H into two families, S} and 7. The symbolS (resp.T) means that
is a 2-knot (resp. a surface link that is a union of a 2-sphere and a torus). The
first subscript indicates and the second the order df* in the subses; (resp.

T.5). In the fourth column, the coefficients of an Alexander polynomial BF*[
are given. (The Alexander polynomial of [* should be considered up teeak
equivalence f(¢) is weakly equivalento g(¢) if f(¢)is+t"g(t) or £t"g(¢t~1) for
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g Alexander Polynomials
8 {} Tg1 1,-11-11-11 -1
8, {1} Se1 1-1,2,-2,2,-2,2,-1
83 {2} Ss2  1,-2,2,-33-32 -1
84 {3 Ssz  1,-2,3-34-32-1

8s {1,2} Ts2 1,-1,2,-33-32-1
8s {1, 3} Sg 4 1,-2,3-45-43 -1
8, {1, 4} Ts3 1,-2,4,-505,-53 -1
8s {1,5} Ss.5 1,-2,4,-55,-43 -1
89 {1, 6} Ts.a 1,-2,3-44-32 -1
810 {2,3} Ts s 1,-2,3 -4,5-4,2 -1
811 {2, 4} Ss.6 1,-34,-6,6,-5,3 -1
812 {2,5} Tss 1,-35 -6,6,-5,3 -1
813 {3, 4} Ts7 1,-2,4,-5,5 —4,2, -1
8.4 {1,2,3) Sg 7 1,-1,2,-34-32 -1
85 {1,2,4} Ss.8 1,-2,3-55-53 -1
86 {1,2,5} Ss.9 1,-2,4,-56,-53 -1
87 (1,26} Sswo 1,-2,3-55-42-1
8 {1,35} Tss 1,-35-7,7,-6,4, -1
89 {136} Ssu1 1,-35-6,7,-53 -1
80 {1,45 Ss12 1,-2,5-6,6,-53 -1

2Z2Z22Z2Z2Z2>»>Z2Z2>Z2Z2Z222Z22Z2>

Table 2

somen.) In the last column, “A’ (resp. “N”) denotes th&t is amphicheiral (resp.
non-amphicheiral).

Since the spun 2-knot of a figure-eight knot has Alexander polynaiyds +1
which is out of the list, we see that it is not a 3-braid 2-knot.

ConNcLUDING REMARKS.  The surjectiond, : G2 — H_ is an injection (i.e. bi-
jection) fora < 10; in other words, the weak equivalence classes of 3-braid 2-
knots whose Alexander polynomials have spans less than 10 are completely clas-
sified by standard forms. Is there an integesuch thatd,, is not injective? For

a < 10, the converse of Corollary 3.2 holds; namely, standard forms determine
amphicheirality of 3-braid 2-knots witla < 10. Is this true for every?
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g Alexander Polynomials
9 {} So1 1-11-11-11-11 A
9, {1} So.2 1,-1,2-2,2-2,2-21 N
9 {2} To1 1,-2,2,-33-33-21 N
9, {3} So3 1,-2,3-34,-43-21 N
9 {4} To2 1,-2,3-4,4-43-21 A
% {1, 2} So.4 1,-1,2,-33-33-21 N
9; {1, 3} Tos 1,-2,3-4,5-54,-31 N
9% {1, 4} So5 1,-2,4,-56,-6,5 -3 1 N
9q {1, 5} To 4 1,-2,4,-6,6,-6,5 -3 1 N
910 {1, 6} So6 1,-2,4,-56,-54,-31 N
91 {1, 7} Tos 1,-2,3-4,4,-4,3 -2,1 A
912 {2,3} So.7 1,-2,3-4,5,-54,-2,1 N
913 {2, 4} Sos 1,-34,-6,7,-7,5 -3 1 N
914 {2, 5} So.9 1,-35-7,8-7,6,-31 N
915 {2, 6} Sa.10 1,-35-7,7,-7,5 -3 1 A
916 {3, 4} So11 1,-2,4,-56-6,4,-21 N
917 {3,5) Toe 1,-35-7,8-7,5-31 A
98 {1.2,3} Sou2 1,-1,2,-34-43-21 N
99 {124 Toy 1,-2,3 -56,—-6,5 -3 1 N
9% {L2,5} Sgi3 1,-2,4,-6,7,-7,6,-3 1 N
91  {1,2,6} Tos 1,-2,4,-6,7,-7,5, -3 1 N
9 {127} Soia 1,-2,3 -56,-54-21 N
9 {134  Sois 1,-2,4,-57-7,5-31 N
94 {1,35 S 1,-35-89-97 -4,1 N
9  {1,36} Soi7 1,-36,-8,10,-9,7,—4,1 N
9% {L37} Sois 1,-35-7,8 -85 -31 N
97 {L4,5) Soio 1,-2,5-7,8,-8,6,-31 N
9s {146} Tyo 1,-36,-9,10,-9,7,—4,1 N
99 {L4,7}  So 1,-36,-89-86-31 A
93 {156} Sou 1,-2,5-7,8-7,5-31 N
91 {234 Towo 1,-2,3-56,-6,4-21 N
93 {2,35} Sox 1,-35-7,9,-86,-31 N
933 {2,836} Ton 1,-36,-89-96 -31 N
94 {245} Tonz 1,-35 -89 -86 -31 N
95 {2,4,6} Sops 1,-4,7,-10,11,-10,7,-4,1 A
9% {345 Sou 1,-2,4,-6,7,-6,4,-2,1 A

Table 3
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g Alexander Polynomials
10, {} T101 1-11-11-11-11-1
10, {1} S101 1,-12-2,2-22-22-1
105 {2} S$102 1,-2,2,-33-33-32-1
104 {3 S$103 1,-2,3 -34,-4,4-32 -1

105 {4} S10.4 1,-2,3 -4,4,-5,4,-32 -1
106 {1, 2} Tho2 1,-1,2,-33-33-32-1
10, {1, 3} S105 1,-2,3 -4,5 -55 -4,3 -1
10g {1, 4} Tho3 1,-2,4-56,-7,6,-523 -1
109 {1, 5} S106 1,-2,4-6,7,-7,7,-5,3 -1
1040 {1, 6} Tho4 1,-2,4-6,7,-7,6,-5,3 -1
1011 {1,7} S10.7 1,-2,4,-56,-6,5 -4,3 -1
104, {1, 8} Thos 1,-2,3 -4,4,-4,4, -3 2, -1
1043 {2,3} Toe 1,-2,4,-505,-54,-32, -1
1014 (2,4} S108 1,-34-6,7,-8,7,-53 -1
1045 {2,5} Tho7 1,-35-7,9,-98,-6,3 -1
1046 {2, 6} S109 1,-35-89-98,-6,3 -1
10,7 {2, 7} Tios 1,-35-7,8,-8,7,-53 -1
10 {3 4} Tho9 1,-2,4,-5,6,-7,6,—4,2, -1
1049 {3, 5} S10,10 1,-35-7,9,-98,-53 -1
104 {3, 6} Tho,10 1,-36,-8,10,-10,8,-6,3 -1
10, {4, 5} T10,11 1,-2,4,-6,7,-7,6, —4,2, -1
10, {1,2,3}  Sio1u1 1,-1,2,-34,-4,4, -3 2, -1
10,3 {1,2,4} Sio12 1,-2,3-56-7,6,-53 -1
10,  {1,2,5}  Siois 1,-2,4,-6,8 -8,8 6,3 —1
10,5 {1,2,6} S04 1,-2,4-7,8-98, -6,3 -1
10,6 {1,2,7}  Siois 1,-2,4,-6,8-8,7,-53 -1
10,; {1,2,8}  Sioie 1,-2,3 -56,-6,5 -4,2 -1
10,5 {1,3 4} Sioir 1,-2,4-57-87,-53 -1
10,9 {1,3 5} Tz 1,-35-8,10,-11,10 7,4, -1
1030 {1,3 6} Sio1s 1,-36,—-912 -12 11 -8,4, -1
10;7 {1,337} Tz 1,-36,-911 -12,10,-7,4, -1
10;; {1,3 8  Sigie 1,-35-7,9-98,-53 -1
1053 {1,4,5}  Sio20 1,-2,5-7,9,-109,-6,3 -1
1032 {1,4,6} Sio22 1,-3,6,-10,12 -13 11, -8,4, -1
1055 {1,4,7} S22 1,-37,-10,13 -13 11, -8,4, -1
1055 {1,4,8}  Sio2s 1,-36,-910-11,9,-6,3 -1

222222222222 Z2Z2Z2>»>Z2Z2>222Z2>»r222Z22222222>r

Table 4



204

SEIICHI KAMADA

g Alexander Polynomials
1037 {1,5, 6} S10,24 1,-2,5-8,10,-10,9, 6,3 -1 N
105 {1,5,7} T4 1,-36,-10,12 -12,10,-7,4,-1 N
1059 {1,6,7} S10,25 1,-2,5-7,9,-97,-53 -1 N
1040 (2,3 4) S10,26 1,-2,3-56,-7,6,-4,2, -1 N
104 {2,3,5} S10,27 1,-35,-7,10,-10,9,-6,3 -1 N
1042 {2,3 6} S10,28 1,-36,-911,-1210,-7,3 -1 N
1043 (2,37} S10,29 1,-36,-9,11 -11,10,-6,3 -1 N
1044 {2,4, 5} S10,30 1,-35 -8,10,-11,9,-6,3 -1 N
1045 {2, 4,6} Tiis 1,-4,7,-11,14 -1412,-8,4 -1 N
1046 {2,4,7) S0 1,—-4,8,-12 14, -1512 -8,4,-1 N
1047 {2,5, 6} S0z 1,-36,-10,12,-12,10,-7,3,-1 N
1048 {3,4,5} S10,33 1,-2,4,-6,8,-8,7,-4,2, -1 N
1049 {3,4,6} S10,34 1,-36,-911 -129,-6,3 -1 N
1050 {1,2,3,4 T 1,-1,2,-34,-54-32-1 N
10s; {1,2,3/5] Siwoss 1,-2,3-57-7,7,-53 -1 N
10, {1,2,36} Ti1r 1,-2,4,-6,8,-9,8 -6,3 -1 N
10ss {1,2,37} Swoss 1,-2,4,-6,8,-9,8 -5,3 -1 N
10s4 {1,2,3,8 Tig1s 1,-2,3-57-76-42 -1 N
1055 {1,2,4,6}  Sioar 1,-35-911 -12 11, -8,4, -1 N
10ss {1,2,4,7} T 1,-36,-9,12 -1311, 8,4, -1 N
10s7 {1,2,4,8  Sioss 1,-35,-8,10,-11,9,-6,3 -1 N
1055  {1,2,5,6} Tig2o 1,-2,5 -8,10,-11,10,-7,3, -1 N
105 {1,2,5,7} Sz 1,-3,6,-10,13 -1312 -8,4,-1 N
100 {1,2,5,8 T2z 1,-36,-912-1210-7,3 -1 N
10s: {1,2,6,7} T2 1,-2,5,-8,10,-11,9,-6,3 -1 N
10, {1,2,6,8}  Sigao 1,-35-911-119,-6,3 -1 N
10z {1,2,7,8) Ti2s 1,-2,4,-6,8,-8,6,-4,2, -1 A
106 {1,347 Swa 1,-37,-10,13-1412 -84,-1 N
10ss {1,348 T2 1,-36,-911-1210,-6,3 -1 N
106 {1,357} Siw042 1,—-4,8,-1316,-17,14 -10,5,-1 N
107 {1,358} Swosas 1,-4,8-1215-1513-8,4,-1 N
10ss {1,3,6,7}  Swas 1,-37,-11,14-1412 -84, -1 N
109 {1,3 6,8 Tz 1,-4,8-1215-1512 -84 -1 A
10,0 {1,458 T 1,-37,-11,13-1311-7,3 -1 A
10, {1,4,6,7} Ty 1,-37,-11,14-1411,-8,4, -1 N
10, {1,5,6,7}  Sious 1,-2,5,-8,10,-10,8,-5,3 -1 N

Table 5
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9 3 7 22 37
9, 3 7 24 47
100 1 2 3 2 8 7 10
10;;, 1 2 3 2 5 7 13
10, 1 2 3 3 9 9 17
10, 1 2 3 3 9 10 17
Table 6
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