Apostol Algebras and Decomposition
in Douglas Algebras

OsAaMU HAToORI & KEIJI [ZUCHI

1. Introduction

Let A be a function algebra. That is, A is a uniformly closed subalgebra of the
space of continuous functions on a compact Hausdorff space €2 that separates the
points in €2 and contains constant functions. We denote by M (A) and dA the max-
imal ideal space and the Shilov boundary of A, respectively. We identify a func-
tion in A with its Gelfand transform on M (A). For a point x in M (A), there exists
a probability measure p, on dA such that

f fdu, = f(x) forevery f € A.
A

The measure pw, is called a representing measure for the point x. We denotz by
supp . the closed support set for w,. There is a function algebra A and a point x
in M (A) that admits at least two representing measures. A representing measure
Iy is called a Jensen measure if

log| £(x)| < /aAlongIde, fea

It is known that for each x € M (A) there exists a Jensen measure in the set of rep-
resenting measures for x. A closed subset E of dA is called a peak set for A if
there exists 2 € A suchthath = 1 on E and || < 1 on 0A\ E. A nonempty inter-
section of peak sets is called a weak peak set. For f € A and a subset E of M{A),
let f(E) = {f(x); x € E}. [4] is a nice reference for function algebras.

For f in A, there corresponds the multiplication operator 7y on A defined by
Trg = fg for g € A. For a function f in A, the operator T is called decompos-
able if, for every pair of open sets U and V covering the complex plane, there exist
Ty -invariant closed linear subspaces Ay and Ay of A such that

O'(TflAU) Cc U, O'(TflAv) CcV, and Ay + Ay =A,

where o(7T') denotes the spectrum of the operator 7. We denote by Dec(A) the set
of all functions f in A such that 7 is decomposable. Dec(A) is called an Apestol
algebra. The subalgebra Dec(A) dates back to classical work of Apostol [1].
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On the other hand, Neumann [14] and Inoue and Takahasi [8] proved that any
commutative Banach algebra 2 contains a greatest regular closed subalgebra,
denoted by Reg(2(). Moreover, Neumann [13] showed for a semisimple 2( that
f € Dec() if and only if f is hull-kernel continuous on M (A) and Reg(2) C
Dec(21). By this fact, Dec(%l) is a closed subalgebra of 2. Since function algebras
are semisimple commutative Banach algebras, these results hold for them.

Itis an interesting problem to identify Dec(A) and Reg(A) respectively for every
function algebra A. For a function f in A, we say that f has natural spectrum if

f(M(A)) = f(3A).

Note that the definition of natural spectrum is analogous to the standard definition
of that in abstract harmonic analysis. Let

Ns(A) = {f € A; f has natural spectrum}.
Since 0A is hull-kernel dense in M (A), we have Dec(A) C Ns(A). Hence
AN A CReg(A) C Dec(A) C Ns(A),

where A is the set of complex conjugates of functions in A.

In Section 2, we prove that a function f € Dec(A) is constant on the support set
for every Jensen measure. In the rest of this paper, Ag denotes a function algebra
that satisfies

(#) each point in M (Ag) has a unique representing measure on dAy.

Under this assumption, every representing measure is a Jensen measure. Let
Cos(Ag) = {f € Ag; f|supp u, is constant for every x € M (Ap)}.

Then Cos(Ay) is a closed subalgebra of Ay, and by the aforementioned result we
have Dec(Ag) C Cos(Ap). For each f € Cos(Ayp), we have f(x) € f(supp uy)
for every x € M(Ayp). For a function f in Ag, we say that f has full range on
support sets if

o f(x) € f(suppuy) forevery x € M(Aop).
Let
Frs(Ag) = {f € Ao; f has full range on support sets}.
Then we have (see Corollary 2.2)
AgN Ay C Reg(Ag) C Dec(Ag) C Cos(Ag) C Frs(Ag) C Ns(Ag).

When supp u, = 0A¢ for every x € M(Ag) \ 9Ap, we have Frs(Ag) = Ns(Ap).
The class Frs(Ag) is fairly large and contains unfamiliar functions. But for the
study of function algebras Ay, the classes Ns(Ag) and Frs(Ag) are interesting
enough in their own rights. For instance, if A is the disk algebra then Cos(.A) co-
incides with the set of all constant functions. We also see that Ns(A) coincides
with Frs(4) and contains no nonconstant polynomials. On the other hand, there
exists a function f in A such that f(e?), 0 < 6 < 2m, gives a Peano curve
that is contained in Ns(A); see [15; 16] for the existence of such an f. Generally,
Ns(Ag) # Frs(Ao) and Ns(Ap) and Frs(Ag) are not closed under addition. So we
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are interested in what the sums Ns(A() + Ns(Ag) and Frs(Ag) + Frs(Ag) are. We
study these questions for certain function algebras A on the unit circle.

Let L™ be the Banach algebra of essentially bounded measurable functions on
the unit circle. For a function f in L*°, we denote by || f || the essential supre-
mum norm. We denote by H* the Banach algebra of boundary functions on 0D
of bounded analytic functions on the open unit disk D. Then H* C L*. By the
corona theorem [2], D C M(H®) and D is dense in M(H®). A closed subal-
gebra B with H*® C B C L* is called a Douglas algebra. We can consider
that M (L) C M(B) C M(H*) and M (L") is the Shilov boundary of every
Douglas algebra B. It is known that every Douglas algebra satisfies condition (#).
Sarason (see [18]) showed that H* + C is a Douglas algebraand M(H* 4 C) =
M(H®) \ D, where C is the space of continuous functions on dD. Let QCp =
BN B. When B = H® + C, we write QC = QCpw.c in short. Let QA =
QC N H®. Then QA satisfies (#). References [5; 6; 18] are nice for H° and
Douglas algebras.

Let B be a Douglas algebra. In Section 3, we prove that B = Ns(QA) + Ns(B)
and QA = Ns(QA) + Ns(QA). In Section 4, we show B = Frs(H*) + Frs(B).
Also in Section 2, we prove that Reg(B) = Dec(B) = QCp. We do not know
whether A = Ns(A) + Ns(A) for the disk algebra A.

2. Apostol Algebras of Function Algebras
In this section, we prove the following theorem.

THEOREM 2.1. Let A be a function algebra and f € Dec(A). Let 1, be a Jensen
measure for a point x in M (A). Then f is constant on supp .

Proof. Let f € Dec(A). To prove our assertion, suppose not. Then there exists
a Jensen measure u, such that f|supp ., is not constant. Then we may assume
without loss of generality that there are two points a and b in supp ., such that
Re f(a) = 1and Re f(b) = —1. Let U = {Rez < 1/2}and V = {Rez >
—1/2}. Since the multiplication operator 7 is decomposable on A, there are Ty -
invariant closed subspaces Ay and Ay such that o(T¢|Ay) C U, o(Ty|Ay) C 'V,
and Ay + Ay = A. Let K = f~Y (U and L = f~1(V°). Then K (resp. L) is a
compact neighborhood of a (resp. b), hence

He(K)>0 and pu,(L) > 0. 2.1)

Let xo € K. Since f(xo) € U and o(Tf|Ay) C U, the operator T¢|Ay — f(x0)1
is invertible on Ay, where I denotes the identity operator on Ay. For every i €
Ay, we have

(Tl Ay — f(xo) ) () (x0) = 0.

Since Tr|Ay — f(xo)I is a surjection, we have h(xp) = O for every h € Ay. It
follows that ‘
Ay C{g € A; g|K =0}. 2.2)

In the same way, we have
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Ay C {g € A; g|L =0}. (2.3)

Since ., is a Jensen measure, we have

loglg(x)] < f loglgldius Vg € A.
0A

Since Ay + Ay = A, there exist functions 1y € Ay and 1y € Ay such that 1 =
ly + 1y. By (2.1), (2.2), and (2.3), we have

logl 1Ly ) = [ togltuldp = ~cx,
dA

log| 1y (x)] sf log|1y| djs = —c0.
04

So 1y(x) = 0 and 1y (x) = 0, which is a contradiction. N

COROLLARY 2.2. Let Ag be a function algebra such that every point in M (Agp)
has a unique representing measure on 0Ag. Then

AgN Ay C Reg(Ag) C Dec(Ag) C Cos(Ag) C Frs(Ag) C Ns(Agp).

Proof. Since Ag N AgisaC *_subalgebra of Ay, Ag N Ag is a regular algebra.
Hence AgN Ay C Reg(Ap); Dec(Ag) C Cos(Ag) follows from Theorem 2.1. [

Let A be the disk algebra. Then
AN A =Reg(A) = Dec(A) = Cos(A) C Ns(A),

and Dec(A) consists of the constant functions. But Ns(.4) contains a nonconstant
function that is not a polynomial.

Next, we study the case of Douglas algebras. For a Douglas algebra B, by the
Chang—Marshall theorem [3; 12] we have that

B ={f € L™; f|suppu, € H®|supp u, for everyx € M(B)}.

It is not difficult to see that there are no nonconstant real functions in H*°|supp .
By this fact, we have the next lemma.

LEMMA 2.3. Let B be a Douglas algebra. Then QCp = Cos(B).
Hence, by Corollary 2.2, we have the following.

COROLLARY 2.4. Let B be a Douglas algebra. Then we have that
QCp = Reg(B) = Dec(B) = Cos(B).

3. B = Ns(QA) + Ns(B) for Douglas Algebras B

Let {z,}, be a sequence in D with ) o> (1 — [z,]) < oo. Then the function b
defined by

m -—
—Zp Z—Zn
b(z) = , eD
@) I—I lzn| 1 — Znz ¢

n=I1
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is called the Blaschke product with zeros {z,},. Thenb € H* and |b| = 1 a.e. on
dD. A function f in H* with | f| = 1 a.e. on dD is called inner. A sequence {z,},
in D is called interpolating if, for every bounded sequence {a,},, there exists f
in H* such that f(z,) = a, for every n. The associated Blaschke product is also
called interpolating. For a subset E of M (H°), we denote by cl E the closure of
E in M (H®).

Let OC = (H® +C)N(H*®+4C) and QA = QC N H*®. Then QC =
QA+ C, M(QA) = M(QC)U D, and 0QA = M(QC) (see [7]). Hence QA
satisfies (#). By Lemma 2.3 we have

QC = {f € L™; f|supp u, is constant for everyx € M(H* + C)}

For f € QA, we note that f € Ns(QA) if and only if f € Ns(H ). For a point z
in D, we have that supp u, = M(QC). Hence Frs(QA) = Ns(QA). For z,w €
D, let p(z,w) = |(z — w)/(1 — zw)|. A sequence {z,}, in D is called sparse if

lim [ToGw 20 =1.
n#k

A Blaschke product b is called sparse if the zeros of b form a sparse sequence.
In this section, we prove the following decomposition of Douglas algebras.

THEOREM 3.1. Let B be a Douglas algebra. Then B = Ns(QA) + Ns(B).

To prove Theorem 3.1, we need some lemmas. For a closed subset E of the com-
plex plane, we denote by dE the topological boundary of E.

LEMMA 3.2. Let A be a function algebra. Then 0f (M (A)) C f(dA) for f € A.
Moreover, if f(3A) is simply connected then f € Ns(A).

Proof. Leta € af (M (A)). Take a sequence of complex numbers {a,}, such that
a, ¢ f(M(A)) and a,, — a. Since a, ¢ f(M(A)), it follows that (f —a,)”' €
A. Then there exists x,, in A such that | f(x,) — a,|”™' > |a — a,|™". Hence
f(x,) = a. Thus a € f(0A).

Suppose that f(dA) is simply connected. Since f(dA) C f(M(A)) and
of (M (A)) C f(dA), we have f(dA) = f(M(A)). Hence f € Ns(A). L

For f € L™, let

N(f) = clU{supp ptx; x € M(H® + C), f|supp ux ¢ H*|supp i}
and

f(x) = f fdu, for x € M(H™).
M(L>®)

Then f is a continuous function on M (H*) [6, p. 93]. If f € B for some Douglas
algebra B, then f = fon M(B).Let Z(f) = {x e M(H*® 4+ C); f(x) = 0}.
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The following lemma was proved in [9, p. 296].

LemMA 3.3.  Let b be a sparse Blaschke product. Then
(i) N (15) is a weak peak set for QA, and
(i) N(b) = cl U{supp ux; x € Z(b)}.

When f has a radial limit at ¢’® € 8D, we denote it by f*(e'®). It is well known
that f has a radial limit at almost every e'? € 3D. For e'? € 9D, let

R,o =cl{re’®; 0 <r < 1}\ {re’; 0 <r < 1).

Letgg(z) = e@+e)/@=¢") Then go(re’®y — Oasr — land|gg| = 1 on M(L).
Hence R,is N M(L>®) = @ for every €' € 3D and

f = f*("®) on R,s ae. 6 € dD.

LEMMA 3.4. Let f € L®. Then there is a countable set {e'%}, in D such that
(i) the radial limit *(e'%") exists for every n,

(i) {f*(e")), is dense in f(M(L*™)), and

(iii) f = f*(e") on | J{supp x; x € R,0.} for every n.

Proof. Let h € L*. If the radial limit #*(e’%) exists at ¢’® € 3D, then
h = h*(e'®) on R,e. (3.1
Moreover, if h € QC then h = h*(e'®) on supp i, for x € R,is, so that
h = h*(e'®) on | J{supp ps; x € R,i}. (3.2)

Next, suppose that # € QC and fh € QC. Let ¢® € 3D such that the radial
limits £*(e??), f*(e?), and (fg)*(e'®) exist and h*(e'®) # 0. Then (3.2) holds
and

fh= (f)*@®) on Jfsupp ps; x € Ryio}. (3.3)

Since h € QC, we have (fh)" = fh on M(H® + C) = M(H*)\ D. Hence,
by (3.1), (fh)*(e'®) = f*(e®)h*(e®). Since h*(e'®) # 0, by (3.2) and (3.3) we
have

f = f*") on U{supp px; x € Ryis}. (3.4

Now we shall prove our assertion. We may assume that f # 0. By Wolff’s the-
orem [21], there exists a function 7 € QA such that fh € QC and h #£ 0. Let I
be the set of ¢’® € 3D at which the radial limits h*(e’?), £*(e'%), and (fh)*(e'?)
exist. Then d8/27(I') = 1 and { f*(e'%); €’ € T'} is dense in f(M (L*®)). Since
h € H® and h # 0, we may assume that 4*(e’?) # 0 for every e’ € I". We can
now apply the second paragraph of the proof. Then, by (3.4), for every ¢ € T
we have

f = f*(€") on J{supp pix; x € Roo}.

Now take a countable set {¢%},, in I" such that { f*(e?%")},, is dense in f(M (L>®)).
We have completed the proof. Ol
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Proof of Theorem 3.1. Let f € B. We shall prove the existence of a function F in
QA such that F €e Ns(QA) and f — F € Ns(B). We may assume that || f|lo = 1.
Then, by Lemma 3.4, there exists a countable set {¢‘®}, in 3D such that f has the
radial limit f*(e’%") at %%,

{f*(e'%)}, is dense in f(M (L™)), (3.5)

and ‘
f = f*(e'%) on | J{supp itx; x € R,io,}. (3.6)

Let {r;}; be a sparse sequence in D consisting of positive numbers. Let {E,}, be
a disjoint partition of {r;}; such that E, is an infinite set for every n. For each n,
let

En = {rn,j}j-

For a sequence (z;}; in D with |z;]| = rj, we have p(z;, zx) = p(rj, rr). Since
{r;j}; is sparse, so is {z;} ;. Hence {rn,je”g"; n, j=1,2,...}is asparse sequence.

Take a dense countable subset {a;}; in {]z] < 1}. Let {c;j}; be a sequence such
that each a; appears in {«;}; infinitely many times. One such example is

aiaiaryayazasayaraszagay ... .
Since {r,, je'%; n, j = 1,2, ...} is sparse, by the theorem of Sundberg and Wolff

[20] there exists a function g in QA such that
g(rn,je"e") =a; forevery n and j.

Let b be the sparse Blaschke product with zeros {r, je'"; n, j = 1,2,...}. Then
Z(b) =clr, e i,n=1,2,... I\ (rn.ie'®;i,n=1,2,...}[6,p.205]. Hence

g(Z®)) = ({oys j = n) = {aude = {lzl < 1}, 3.7)
n=I

where the bar indicates closure in the complex plane. By Lemma 2.3, QA =
{f € H®; f|supp u, is constant for every x € M(H> + C)}. Since g € QA,
g = g(x) on supp u, for x € Z(b). Hence, by (3.7) and Lemma 3.3(i1),

g(N (b)) = {lz] = 1. (3.8)
For each n, let b, be the sparse Blaschke product with zeros {r, je'%; j =
1,2, ...}. In the same way, we have

g(N(bw) = {Iz| = 1. 3.9)
Since Z(b,) C R,ion, N(b,) C cl | {supp ttx; x € R,isx}. Then, by (3.6), we have
f = f*("%) on N(b,). (3.10)

By (3.8) and Lemma 3.3(i), there exists F € QA such that
F=gonN®bB) and |Fle=1; (3.11)

see [4, p. 58].
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Since N(b,) C N(b,), by (3.9) and (3.11) we have
F(M(L®)) = F(N(by)) = {lz| < 1}. (3.12)

By Lemma 3.2, FF € Ns(H®). Since F € QA, it follows that F € Ns(QA).
On the other hand, we have

(f = FYML®) > | J(f = FYNB))
n=1

= U ((f*(eio) + {lz] SI 1}) by (3.10) and (3.12)

n=l1

= fFM(L™) +{lz] =1} by (3.5)
D (f = F)M(L™) by(3.12).

Hence

(f — FYM(L*)) = f(M(L™)) + {lz|] = 1}. (3.13)
Since || flloo = 1, by (3.13) it is easy to see that (f — F)(M (L)) is simply con-
nected. Hence, by Lemma 3.2, f — F € Ns(B). L]

When B = H*, we have the following corollary.
COROLLARY 3.5. H® = Ns(QA) + Ns(H®).
COROLLARY 3.6. QA = Ns(QA) + Ns(QA).

Proof. Let f € QA. By Corollary 3.5, there exists F in Ns(QA) suchthat f — F €
Ns(H®). Since f — F € QA, f — F € Ns(QA). O

4. B = Frs(H*) + Frs(B) for Douglas Algebras B

In this section, we study another decomposition of Douglas algebras. For a point
x in M(H® + C), supp i, is a weak peak set for H* [6, p. 207]. Let

Hgyy,. = {f € L flsupp px € H|supp piy).

Then Hg,,, is a Douglas algebra and

M(Hg,,, ) = M(L*)U{¢ € M(H® + C); supp py C supp fi}.

For a Douglas algebra B and a subset A of L*°, we denote by B[A] the Douglas
algebra generated by B and A. For f € H®, put{|f| < 1} ={¢ €e M(H*® + C);
| f(¢&)] < 1}. We note that H*™ # Ns(QA) + Frs(H*), because

Ns(QA) + Frs(H®) = Frs(H®) # H®.

The following is the main theorem in this section.
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THEOREM 4.1. Let B be a Douglas algebra. Then B = Frs(H*) + Frs(B).
To prove our theorem, we need some lemmas.

LEMMA 4.2 [19]. Let {q,}, be a sequence of inner functions. Then there exists a
Blaschke product b such that b = 0 on 2 {lg.] < 1}.

LEMMA 4.3. Let f € L. For each complex number a in f(M (L)), there exists
apoint x in M(H*® 4+ C)\ M (L*) such that supp ., C {¢ € M(L*>®); f(&) = a}.

Proof. Leta € f(M(L*>)). Put
E={¢ e M(L®); f(&)=al.

Then E is a closed Gs-subset of M (L°°). Hence there exists a function g in L*®
such that
g=1onE and 0<g<1on M(L®)\E. @.1)

Recall that
20 = [ gdug for ¢ e MU) @2)
M(L®)

and that g is a continuous function on M (H*°). By the corona theorem, there exists
a sequence {z,}, in D such that g(z,) — 1. By considering a subsequence, we
may assume that {z,}, is an interpolating sequence. Let x be one of the cluster
points of {z,}, in M(H*). Thenx € M(H*® + C)\ M(L*) and g(x) = 1. By
(4.1) and (4.2), we obtain supp i, C E. O

LEMMA 4.4. Let B be a Douglas algebra with B = L* and f € L*° \ B. Then

(i) M(BIf, f1) = {x € M(B); f|supp u is constant},
(ii) M(BLf, f1) is a closed but not open subset of M(B).

Proof. (i) follows from the Chang—Marshall theorem. Since f ¢ B, M(B[f, f])
is a proper closed subset of M (B). Suppose that M (B[ f, f1) is open. Then, by the
Shilov idempotent theorem (see [4, p. 88]), there exists g € B such that g = 0 on
M(BLf, f1) and g = 1 on M(B) \ M(BL/, f]). Since M(L*®) C M(BL/, f1),
we have g = 0. This is a contradiction. O

LEMMA 4.5.  Let B be a Douglas algebra with B # L, and let b be an inner
Junction with b ¢ B. Then b(M(B)) = {lz] < 1}.

Proof. Suppose not. Then there exists zop € D such that zg ¢ b(M(B)). Then
(b — zo)/(1 — Zob) is an inner function and invertible in B. Hence |(b — z¢)/
(1 — zob)] = 1 on M(B), so that |b| = 1 on M(B). Therefore b € B. Thisis a
contradiction. L]

Proof of Theorem 4.1. When B = L*°, we have Frs(L*>°) = L, so that L® =
Frs(H ) + Frs(L*°). Hence we may assume that B £ L*°. Let f € B. It is suf-
ficient to prove the existence of F in Frs(H*) such that f — F € Frs(B). We
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may assume that || f]lc = 1. When f € QC we may take ' = 0, so that we may
assume f ¢ QC.

Take a dense countable subset of {a,}, in f(M (L*°)). By Lemma 4.3, for each
n there exists x, in M(H* 4+ C) \ M (L) such that

supp px, C {¢ € M(L®); f() = an}. (4.3)
By [7, p. 177] and Lemma 4.2, there exists an inner function I,, such that
I,(x,) = 0. | (4.4)
Put
I'={x € M(H* + C); f|supp u, is not a constant}. 4.5)

Since f ¢ QC,byLemma2.3 wehavel” # @, TNM(L*®) = @, and H®[f, f] D
H® + C. Then, by Lemma 4.4(i), M(H®[f, f1) = M(H>® + C)\T. By [10,
Lemma 2.2], there exists a sequence of inner functions {J,, },, such that H*°[ f, fl=
H®[J,;; n=1,2,...]. Then

oo
I = {7l <1} (4.6)
n=1
By Lemma 4.2, there exists a Blaschke product b; such that
o0
by =0 on | ULl < U {lJ] < 1}.
n=1

Then by (4.4) and (4.6),
by =0 on I'U {x,},. @.7

Applying Lemma 4.2 inductively, we can find a sequence of Blaschke products
{b,}. such that

bur1 =0 on {|b,| < 1}. (4.8)
Let
F = Z}‘ =T (4.9)
Then
FeH® and ||Fle <?2. (4.10)

The following two claims will be proved later.
Claim 1. If |bi(x)| < 1 and x € M(H®), then F(supp ux) = {|z] < 2}.
Claim 2. F € Frs(H®).

For now, we shall continue with the proof of our theorem. We need to prove that
f — F € Frs(B). Let x € M(B). We separate the proof into the following three

cases:
xeEMH®+C)\T; xel'; xeD.

We note that the case x € D happens only when B = H*.
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First, suppose that x € M(H*> + C) \ I". Then, by (4.5),

f = f(x) on supp i,. (4.11)

By Claim 2, there exists y in supp i, such that F(y) = F(x). By (4.11), f(y) =
J(x), sothat (f — F)(y) = (f — F)(x).

Next, suppose that x € I". Since x € M(B) \ M(L*>), we have B|supp u, =
H®|supp pr # L*°. Then, by Lemma 4.4(i),

M (Hupp ., LS, = M(Hgpp y I\ T

In this case, M ( )NT # @ because x € M(

4.4(i1),

). Hence, by Lemma

00 oo
HSUPP Hx HSUPP Mx

cl(M( )NT) # MHS,,, )NT.

YNT)Y\ [M(H;’fppux) N I']. Since

00
HSUPP Mx

Let yo be a point in cl(M (H;f;)p .

M(Hg,, ,)NT C{¢ € M(H*® + C); supp ju; C supp pis},

we have
supp Ly, C Supp fiy. (4.12)
Since x € M (B), yo € M(B). By definition, yo ¢ I'. Hence, by (4.5),
J = f(yo) on supp piy,. (4.13)
By (4.7), by =0 on . Since yg € cl ", we have
bi(y0) =0. (4.14)

Because || flloo < 1, | f(y0) — f(x)] < 2. By (4.14) and Claim 1, there exists a
point o in supp p,, such that

F(&o) = f(yo) — f(x). (4.15)
By (4.12),
Jo € supp pix.
Since x €T, it follows that b{(x) = 0. Then, by (4.8) and (4.9), we have F(x) = 0.

Since gy € supp iy, by (4.13) we have f(¢) = f(yo). Therefore, by (4.15), we
obtain

(f = F)(x) = f(x) = (f = F){o-

Suppose, finally, that x € D. In this case, B = H* and supp u, = M(L*>).
By (4.3), f = a, on supppu,,. By (4.7), bj(x,) = 0. Hence, by Claim 1,
F(supp uy,) = {|z| < 2}. Therefore, for each n,

(f — F)(supp i4x,) = an + {lz|] < 2}. (4.16)
Since {a,}, is dense in f(M (L)),

U@ + tlzl <2)) = F(ML®) + {2l < 2} (4.17)

n=1

Now we have
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(f — F)(supp ux) = (f — F)(M(L™))

S| J@n +{lzl <2} by @.16)

n=1

= f(M(L™)) +{lz| =2} by “.17)
= f(M(B)) +{lz] <2} byLemma3.2and| f|lec = 1

> (f — F)(x) by(4.10).
This completes the proof. L

Now we need to prove our two claims.

Proof of Claim 1. Suppose that |b;(x)| < 1 and x € M (H). First, we prove the
casex ¢ D. Since b, is a Blaschke product, |[b;| = 1 onsupp . Since [bi(x)]| < 1,
b, is not constant on supp . Hence by ¢ Hgy,,, so that, by Lemma 4.5,

bi(M(H,,)) = {1zl < 1. (4.18)
Let
E={¢eMHS,,) @] <1).
Since E = M(Hs?]‘;)pux) \ M(Hs‘ff}’,pux [b1]), by Lemma 4.4(ii) we have cl E # E.

Then, by (4.18),
bi(clE\ E) ={|z| =1}. 4.19)
By (4.8),
b, =0 onclE. , (4.20)

Therefore, by (4.19) and (4.20), for each complex number ¢ with |c| = 1 there

exists £, in M (Hsffl’)p ux) such that
by =c onsuppu,, and by(¢) =0.

Repeating this argument, for each sequence {c,}, of complex numbers with

|c,| = 1 there exists a sequence {¢,}, in M (H;ffl’)p 1) such that

SUpP Uz,,, C SUPP iy, C SUPP fix

and
b, =c, on supp ug,. 4.21)

Take a point yg such that

o0
Yo € () supp pg, C SUpp fix.

n=1

Then we have

S

F(yo)

. 2}2’ f) by (4.9)

n=1

Cn

n—1

by (4.21).

M

1

3
I



Apostol Algebras and Decomposition in Douglas Algebras 447

Since

(o ¢]
[Z Sops leal = 1 for every n} = {lz| =2},
n=1
we have F(supp i) = {|z] < 2}.

Next, suppose that x € D. Then supp u, = M(L*). By (4.7), b1(x,) = 0 and
X, € M(H® + C). By the fact just proved, F(supp uy,) = {|z| < 2}. Hence, by

(4.10), F(supp px) = {lz| = 2}. O
Proof of Claim 2. Let x € M (H®). Suppose that |b;(x)| < 1. Then, by (4.10)

and Claim 1, we have
F(x) € {lz| =2} = F(supp 1x).

Hence we may assume that |p(x)]| = 1.
Suppose that |b,(x)| = 1 for every n. Then b, = b,(x) on supp piy, so that

F = Z bn (x) = F(x) on supp py.

This implies that
F(x) € F(supp fix).

Next, suppose that |5, (x)| < 1 for some n. Then by (4.8), there exists a positive
integer ng such that

[b,(x)|=1 for 1 <n<ny (4.22)
and
b, (x)] <1 for n > ny. (4.23)
By (4.22), b,, = b, (x) on supp p, for 1 < n < ny, so that
no bn no b
> gt = (2 o)) on suppee &n
n=1
By (4.19) and using the same argument as in the proof of Claim 1, we obtain
2. b,
( P )(supp we) = {lzl < (1/2)™7"). (4.25)
n=ng+1

Since || Z;“;noﬂ(bn/Z"”l)lloo = (1/2)"~!, we obtain

P = (2 gt )+ (20 o)

n= n=ng+1

no b
€ (Z )(x)+{|z| < (/2"

2)1

=(Z b + Y 2” )(suppu,x) by (4.24) and (4.25)

n—1 n—1
n=1 2 n=no+1

= F(supp px).
This completes the proof of Claim 2. ]
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Because Frs(H*) C Frs(B), we have the following corollaries.

COROLLARY 4.6. Let B be a Douglas algebra. Then B = Frs(B) + Frs(B).
COROLLARY 4.7. H® = Frs(H) + Frs(H).

REMARK. Frs(H®) is strictly smaller than Ns(H°).

References

[1] C. Apostol, Decomposable multiplication operators, Rev. Roumaine Math. Pures
Appl. 17 (1972), 323-333.

[2] L. Carleson, Interpolations by bounded analytic functions and the corona
problem, Ann. of Math. (2) 76 (1962), 547-559.

[3] S.-Y. Chang, A characterization of Douglas subalgebras, Acta Math. 137 (1976),
81-89.
[4] T. Gamelin, Uniform algebras, Prentice-Hall, Englewood Cliffs, NJ, 1969.
[5] J. Garnett, Bounded analytic functions, Academic Press, New York, 1981.
[6] K. Hoffman, Banach spaces of analytic functions, Prentice-Hall, Englewood
Cliffs, NJ, 1962.

, Bounded analytic functions and Gleason parts, Ann. of Math. (2) 86
(1967), 74—-111.

[8] J. Inoue and S.-E. Takahasi, A note on the largest regular subalgebra of a Banach
algebra, Proc. Amer. Math. Soc. 116 (1992), 961-962.

[9] K. Izuchi, QC-level sets and quotients of Douglas algebras, J. Funct. Anal. 65
(1986), 293-308.

, Countably generated Douglas algebras, Trans. Amer. Math. Soc. 299
(1987), 171-192.

[11] R. Kantrowitz and M. Neumann, On certain Banach algebras of vector-valued
Jfunctions, Function spaces, the second conference (K. Jarosz, ed.), pp. 223-242,
Dekker, New York, 1995.

[12] D. Marshall, Subalgebras of L*° containing H*, Acta Math. 137 (1976), 91-98.

[13] M. M. Neumann, Banach algebras, decomposable convolution operators, and a
spectral mapping property, Function spaces (K. Jarosz, ed.), pp. 307-323,
Dekker, New York, 1992.

, Commutative Banach algebras and decomposable operators, Monatsh.
Math. 113 (1992), 227-243.

[15] G. Piranian, C. J. Titus, and G. S. Young, Conformal mappings and Peano curves,
Michigan Math. J. 1 (1952), 69-72.

[16] R. Salem and A. Zygmund, Lacunary power series and Peano curves, Duke
Math. J. 12 (1945), 569-578.

[17] D. Sarason, Functions of vanishing mean oscillation, Trans. Amer. Math. Soc.
207 (1975), 391-405.

[18] D. Sarason, Function theory on the unit circle, lecture notes, Virgina Polytech.
Inst. and State Univ., Blacksburg, 1978.

[19] C. Sundberg, A note on algebras between L*° and H*, Rocky Mountain J. Math.
11 (1981), 333-335.

[7]

[10]

[14]




Apostol Algebras and Decomposition in Douglas Algebras 449

[20] C. Sundberg and T. Wolff, Interpolating sequences for QAg, Trans. Amer. Math.
Soc. 276 (1983), 551-581.
[21] T. Wolff, Tivo algebras of bounded functions, Duke Math. J. 49 (1982), 321-328.

O. Hatori K. Izuchi

Department of Mathematical Science = Department of Mathematics

Graduate School of Science and Faculty of Science
Technology Niigata University

Niigata University Niigata 950-21

Niigata 950-21 Japan

Japan

izuchi@scux.sc.niigata-u.ac.jp
hatori @math.sc.niigata-u.ac.jp






