Orbits of Hyponormal Operators

PAuL S. BOURDON

1. Introduction

We show that orbits of hyponormal operators display simple growth patterns. We
then use our orbital-growth observations to prove that hyponormal operators are
never supercyclic, which generalizes a result due to Hilden and Wallen [6, p. 564]
and answers a question raised by Kitai [7, p. 4.5]. We also establish that every
hyponormal operator is “power regular,” which means that if 7" is a hyponormal
operator on the Hilbert space H, then lim,,||T"h||}/* exists for every h € H. That
every normal operator is power regular follows from results in [2] (see also [5]).

Interest in the behavior of orbits of bounded linear operators on Hilbert space
derives from the invariant subspace (subset) problem for Hilbert space opera-
tors, which is to determine whether every bounded linear operator on a separable,
infinite-dimensional Hilbert space H must leave invariant some proper, nonzero,
closed subspace (subset) of H. Consider, for example, the following simple propo-
sition, well known to operator theorists.

PROPOSITION.  Suppose that the linear operator T is a contraction on the Hilbert
space H such that

(a) thereis anonzero vector h in H whose orbitunderT (T"h :n=0,1,2,...)
has limit 0, and
(b) there is a vector g € H whose orbit under T is bounded away from 0.

Then there is a proper, nonzero, closed subspace M of H that is invariant for T.

Proof. Let M be the closed linear spanof {T"h : n =0, 1,2, ...}. That M is in-
variant for 7' and is nonzero is clear. We now argue by contradiction that g is not
in M so that M is properly contained in H.

Suppose that g is in M ; thus, there must be a sequence ( p,) of polynomials such
that (p,(T)h) converges to g. Let ¢ > 0 be such that ||T"g|| > & for all nonnega-
tive n (here, || - || denotes the norm induced by the inner product on H). Choose
the positive integer j large enough so that || p;(T)h — g|| < &/2. We then have,
for every nonnegative integer k,
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e/2 > || pi(THh —g||
> lipj (T)(Tkh) — Tkgll (T is a contraction)
> | T*gll — Il p;(T)(T*h)|
> e — || p(THT*);

letting £ — oo, we obtain the contradiction /2 > ¢. O

Our argument showing that hyponormal operators are never supercyclic involves
a variation on the theme of the proof of the preceding proposition. We remark
that the proposition above may be stated more generally: H may be replaced by
a Banach space X and the hypothesis that 7' be a contraction may be replaced by
“T is power bounded” (which means ||7"|| < C for some constant C and every
positive integer n).

Recall that a bounded linear operator 7' on the Hilbert space H is hyponormal
provided that

\Thll = | T*h|

for every h € H, where, as usual, we have used 7* to denote the Hilbert-space ad-
joint of T. Normal and subnormal operators are hyponormal; the backward shift
plus twice the forward shift acting on £2 is an example of a hyponormal operator
that is not subnormal [4, p. 145]. We show in the next section that orbits of hy-
ponormal operators either strictly decrease in norm, increase in norm, or strictly
decrease up to a point and increase thereafter. We also observe thatif 7: H — H
is hyponormal and 4 € H is not in the kernel of T, then the sequence

( I7"+h|| )
IT"A]l
is increasing.

Using our observations about orbits, we show in the third section of this paper
that hyponormal operators are never supercyclic. Supercyclicity is one of three
types of cyclicity studied by operator theorists; the other two are hypercyclic-
ity and cyclicity. A bounded linear operator T on the Hilbert space H is hyper-
cyclic if there is a vector & in H whose orbit under T, Orb(7', h) ;= {T"h : n =
0,1,2,...}, is dense in H, in which case # is called a hypercyclic vector for 7.
If for some & € H the set of scalar multiples of elements in Orb(7', &) is dense
in H, then T is supercyclic and h is a supercyclic vector for T'. Finally, if the lin-
ear span of Orb(7’, h) is dense in H for some k € H, then T is cyclic with cyclic
vector h. Hypercyclicity and supercyclicity are infinite-dimensional phenomena;
that is, if 1 < dimension H < oo, then T: H — H cannot be supercyclic (and
hence cannot be hypercyclic) [6, p. 564]. Observe that every operator on a one-
dimensional Hilbert space is supercyclic. We wish to ignore this trivial situation;
hence, throughout the remainder of this paper we assume that the dimension of H
exceeds 1.

It is easy to check that hypercyclic and supercyclic operators must have dense
range and that the closure of the range of a cyclic operator has codimension at
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most 1. Twice the backward shift on £2 is an example of a hypercyclic operator
[10]. The backward shift itself is thus supercyclic, but it is not hypercyclic be-
cause all of its orbits are bounded. Finally, the forward shift is an example of a
cyclic operator that is not supercyclic (because, for example, its range is not dense
in £2).

The notion of supercyclicity was introduced by Hilden and Wallen in [6], which
contains a proof (p. 564) that normal operators are never supercyclic. Kitai [7]
shows that hyponormals are never hypercyclic and raises the question [7, p. 4.5] of
whether a hyponormal operator can be supercyclic, which we settle in the negative
(Theorem 3.1 below).

In the final section of this paper we show that every hyponormal operator is
power regular. Following Atzmon [2], we call a bounded linear operator 7 on a
complex Hilbert (or Banach) space X power regular provided lim,,_, o || T"x || /"
exists for every x € X. That normal operators are power regular follows from re-
sults in [2]. The backward shift on £2 is an example of an operator that is not
power regular (see [2, p. 3107]). The notion of power regularity is also connected
with the invariant-subspace problem. For example, in Theorem 4.4 we show that
if T is a hyponormal on H and lim,_, o ||T"A||'/" < ||T |, then h is not cyclic for
T'; that is, the closed invariant subspace generated by 4 will be properly contained
in H.

It is not known whether hyponormal operators must have nontrivial invariant
subspaces; that subnormal operators do have nontrivial invariant subspaces was
established in the late 1970s by S. Brown [3].

2. Elementary Orbital Estimates

Our first proposition is simple and well known. It appears, for example, as the first
line of the proof of Proposition 4.7 in [4, Chap. 3].

PROPOSITION 2.1.  Suppose that the operator T mapping the Hilbert space H to
itself is hyponormal. Then, for every f € H and nonnegative integer n,

WT"FII> < W™ AT 1)l (2.2)

Proof. Let f € H be arbitrary and let n > 1. We have
IT"f1? = (T"f, T"f)
= (T*T"f, T""'f)
< |\T*T"fF T £
< WT™H T =10,
where we have used hyponormality to obtain the final inequality. ]
Observe that the preceding proposition shows that if Tf is nonzero for a hyponor-

mal 7, then all elements in Orb(7, ) must be nonzero. Hence, if Tf is nonzero,
Proposition 2.1 shows that
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17"+
I £1

Because this sequence is clearly bounded above by || T ||, we have the following.

the sequence ( ) is increasing. 2.3)

COROLLARY 2.4. Suppose that T is hyponormal on the Hilbert space H and that
f is not in the kernel of T. Then the sequence

111
() >

converges.

We show in Section 4 that whenever f is cyclic for T, the sequence (2.5) con-
verges to ||T'||. (More generally, we show that the sequence will converge to the
norm of the restriction of T to the invariant subspace for T generated by f.)

PROPOSITION 2.6. Suppose that f € H is such that |Tf| = | f| for the hypo-
normal operator T: H — H. Then (|T"f ) is an increasing sequence.

Progof. For each nonnegative integer n, set a, = |T"f]|. If f = 0, then the se-
quence (a,) is constant (each term zero) so that the proposition holds. Suppose
that f is nonzero. Then, applying the hypothesis of the proposition, we have a; >
ag > 0. Now, observe that if a, > a,_; > 0 for some n > 1 then

2
An+l1 — Qp = (@) —a by (2.2)
ap-1
_ an (an - an—l)
an—1
> 0.
Thus, by induction, the proposition holds. £l

Note that Proposition 2.6 shows the following: An orbit of a hyponormal opera-
tor either strictly decreases in norm, increases in norm, or strictly decreases up to
a point and increases thereafter. Clearly, then, no hyponormal operator can have
a dense orbit; that is, no hyponormal can be hypercyclic. Thus Proposition 2.6
yields a different proof of Kitai’s result [7, Cor. 4.5] (as well as a different proof
of the weaker result [9, Thm. 2.10]).

We remark that all three possible growth patterns for orbits of a hyponormal op-
erator may occur in the collection of orbits of a single such operator. Suppose that
T is hyponormal and has eigenvalues A; and A, such that [A;| < 1 and |A;] > 1.
Let e; and e, be norm-1 eigenvectors for T corresponding respectively to A; and A,
(it is not difficult to verify that e; and e; must be orthogonal; see e.g. [4, Prop. 4.4,
p. 140]). Then the orbit of e, strictly decreases in norm, the orbit of e, (strictly)
increases, and—by choosing the positive number B large enough so that g2 +1 >
B?|A1]? + |A2|>—one may easily verify that the orbital norms of Be; + e, strictly
decrease up to a point and then increase (to infinity) thereafter.
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3. Hyponormal Operators Are Never Supercyclic

Recall that an operator T on a complex Hilbert space H is supercyclic if there is
a vector h € H such that

{cT"h:ceCandn=0,1,2,...}

is dense in H. As noted in Section 1, it is easy to verify that a supercyclic opera-
tor must have dense range. Because all powers of a dense-range operator will map
dense sets to dense sets, if £ is a supercyclic vector for T and c is a nonzero scalar,
then ¢T"h will also be supercyclic for T for every nonnegative integer n. Thus,
the collection of supercyclic vectors for a given supercyclic operator 7 on H will
always be dense in H.

THEOREM 3.1. Suppose that T is hyponormal on the Hilbert space H. Then T
cannot be supercyclic.

Proof. Suppose that T is supercyclic. Set A = T/|IT| so that A is hyponor-
mal, supercyclic, and has norm 1. We claim that A cannot be an isometry. If it
were, it would have to be onto because supercyclic operators have dense range;
thus “isometry” here means “unitary” and the Hilden—Wallen result [6, p. 564]
shows that A cannot be supercyclic. (For a different proof that isometries cannot
be supercyclic—one that applies in a Banach-space setting—see [1].) Thus we
may assume that there is a vector g in H such that [|[Ag|| < |lg]l. Let @ be a scalar
of modulus > 1 such that

lleAgll < llgll-

Now set S = o A so that S is supercyclic, hyponormal, has norm > 1, and satisfies

1Sl < ligll-
Because || S| > 1 and the set of supercyclic vectors for S is dense in H, there is

a supercyclic f € H such that |Sf|| > || f|l. Because f is supercyclic, there is a
subsequence (n;) of the sequence of nonnegative integers and a sequence (c;) of
scalars such that

(c;S"f) — g.

By continuity, we have
(c;S"tfy — Sg.

However, because S is hyponormal and ||Sf|| > || fl|, Proposition 2.6 tells us
IS™*1f|l = {187 f || for every j; thus

ISgll = li}I,nIleS""“fll
> lim||c; S™ f|
J

= |lgll,
a contradiction. O
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Observe that the proof of Theorem 3.1 establishes the following.

COROLLARY 3.2. Suppose that T is a bounded linear operator on the Hilbert
space H such that either

(a) there is an open set of vectors with orbits under T increasing in norm and
there is a vector g in H with ||Tg| < llgll, or

(b) there is an open set of vectors with orbits decreasing in norm and there is a
vector f € H with \[Tf|| > || fll;

then T is not supercyclic.

4. Hyponormal Operators Are Power Regular

Recall that T: H — H is power regular provided that lim||T"h||!/* exists for
every h € H. That every hyponormal operator is power regular follows quickly
from Corollary 2.4.

THEOREM 4.1. Every hyponormal operator is power regular.

Proof. Suppose that T is hyponormal on H and that 7 € H. We need to show that

the sequence
TR (4.2)

converges. If A is in the kernel of T then clearly (4.2) converges to 0. Hence we
assume that Th # 0 and set a, = ||T"h| for every nonnegative integer n. By
Corollary 2.4, the sequence (a,/a,—1) converges to a positive real number s. We
have

lim(|T"A|Y™) = lim(a,)"/"
n n

"4 1/n
- lima(l)/"(l—[ ——"—)

k=1 ¥k—1
=s. O

The proof of the preceding theorem shows that if 2 is not in the kernel of the
hyponormal operator 7', then

+1
e m e TR
11'1'n||T h)| _hpfn_——"T"h" .

We now identify the common value of these two limits as the norm of the restriction
of T to the closed invariant subspace for T generated by 4.

“4.3)

THEOREM 4.4. Suppose that T is hyponormal on H, that h € H, and that M is
the closure of { p(T)h : p is a polynomial }. Then

lim | T"A)Y" = || T ||, @.5)
n—oQ

where T |y denotes the restriction of T to M.
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Proof. If either h = 0 or ||T ||| = 0, the equality (4.5) clearly holds. Thus we
assume that both 4 # 0 and ||T ||| # 0. Let S = T'|u and let € be a positive
number less than || S]|. Since 4 is cyclic for S, there is a polynomial p such that
the point y := p(S)h/|| p(S)h|| on the unit sphere of M satisfies

ISyl > ISH — &.

Because the restriction of a hyponormal operator to one of its invariant subspaces
is still hyponormal (see e.g. [4, Prop. 4.4, p. 140]), S: M — M is hyponormal and
we may apply (4.3) and (2.3) to obtain

- . lSm Ly
S = o
= 20— 1yl > isi e
Now observe that, for each nonnegative n,
iy e = | RS
I p(SHA

< lpOIM™ | p(S)A|| /™| SR || .
Hence,
lim]|S”A )" > lim||S™y||V/* > ||S]| — e,

Since & € (0, ||S|)) is arbitrary and lim,||S™%||}/" is obviously less than or equal
to ||S[l, we have lim,||S"k(|"/" = ||S||; that is, lim,||T"k||'/"* = ||T |y, as
desired. U

For a bounded linear operator 7 on H and an h € H, we let r,(T) denote the spec-
tral radius of the restriction of T to the closure of { p(T)h : p is a polynomial }.
Because the norm of a hyponormal operator equals its spectral radius [11], Theo-
rem 4.4 shows that if T: H — H is hyponormal and if & € H, then (||T"h|['/")
converges to r, (T"). This behavior is consistent with that of the power regular oper-
ators discussed by Atzmon in [2]: For T belonging to any of the classes of power
regular operators described in [2], lim,||T"A)|}/" always equals r;,(T). Atzmon
asks [2, Prob. 2] whether every power regular T has this property.

Observe that Theorem 4.4 shows that if 4 is cyclic for T: H — H then
lim,||T"h||* = ||T||; thus, whenever lim,||T"k||}/" is strictly less than |T||
for some nonzero &, T will have a nontrivial, closed invariant subspace. The next
proposition improves the preceding observation. Recall that a closed subspace
of H is said to be hyperinvariant for T provided that it is invariant under every
operator in the commutant {7’} of 7.

PROPOSITION 4.6. Suppose that T is a hyponormal operator on H and that

Um||T"R | < | T}

for some nonzero h € H. Then T has a nontrivial hyperinvariant subspace.
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Proof. Let M be the closure of { Ak : A € {T} }. Clearly, M is hyperinvariant for
T and is nonzero. Suppose M = H. Then one can choose A € {T} to play the
same role that p(S) played in the proof of Theorem 4.4 and easily check that the
proof remains valid with this substitution, yielding lim,||T*A||Y" = | T|. |

REMARKS. (1) As the reader may have noticed, the only property of hyponor-
mal operators that we have used to obtain our results is the property presented in
Proposition 2.1: If 7: H — H is hyponormal, then

WZT"F12 < IT"HFINT Al (F e H; n=1,2,3,...). 4.7)

In other words, all the results following Proposition 2.1 remain valid if the hy-
pothesis that T’ be hyponormal is replaced with the hypothesis that T satisfy (4.7).
The following two observations show that the class of operators satisfying (4.7)
is larger than the class of hyponormal operators: If T satisfies (4.7), then so does
T* for every positive integer k; a power of a hyponormal operator need not be
hyponormal (see e.g. [4, p. 145]).

(2) After receiving a preprint of this paper, Aharon Atzmon kindly pointed out
to the author that one may obtain Theorems 4.1 and 4.4 by combining {2, Thm.
3.1], which states that any decomposable operator is power regular, with [8, Thm.
4.3, p. 78], which states that every hyponormal operator is the restriction of a gen-
eralized scalar operator to one of its invariant subspaces. Because generalized
scalar operators are decomposable and restrictions of power regular operators to
their invariant subspaces clearly remain power regular, hyponormal operators are
power regular.

(3) The author wishes to thank Shamim Ansari, Joel Shapiro, Angela Matney,
and the referee for helpful comments and suggestions concerning the material
presented in this paper.

ADDED IN PrOOF. The author has recently learned of connections between the
results in Section 4 of this paper and results due to J. Stampfli that appear in A
local spectral theory for operators V: Spectral subspaces for hyponormal opera-
tors (Trans. Amer. Math. Soc. 217 (1976), 285-296). Stampfli, using the meth-
ods of local spectral theory, shows that the hyponormal operator 7: H — H has
a nontrivial invariant subspace whenever the spectrum of 7 differs from the local
spectrum of T at some nonzero element 2 € H. Thus, the existence of a nontrivial
invariant subspace for an operator ¢ satisfying the hypotheses of Proposition 4.6
follows from Stampfli’s work.
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