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1. Introduction

Let b € BMO(R") and let T be a standard Calder6n—Zygmund singular integral
operator. The commutator [b, T'] generated by b and T is defined by

[6, T1f(x) = b(x)Tf(x) — T(bf)(x).

A celebrated result of Coifman, Rochberg, and Weiss [5] states that the operator
[b, T] is bounded on L?(IR") for 1 < p < 0o. Chanillo [3] considered the similar
question when the Calderén—Zygmund operator is replaced by the fractional inte-
gral operator. The main purpose of this paper is to generalize these results to the
case of Herz spaces. Let us first introduce some notation.

Let By = {x e R" : |x| <2*}and Ay = By\By_1 fork € Z. Let x; = x4, for
k € Z, where xg is the characteristic function of the set E.

DerFINITION 1.1. Letx € R, 0 < p < 00, and 0 < g < 00. The homogeneous
Herz space K;"?(R") is defined by

REP(R™) = { f € L R™\{OD : || fllgeren < 00},
where

0o 1/p

”f"f(q“’”(R”) = l Z 2kap"ka"€q(Rﬂ)} <00
k=00

with the usual modifications made when p = 0o or g = o0.

Obviously, K,(,)’p (R*) = LP(R™) for all 0 < p < oo. It is worth pointing out
that the study involving these spaces has a long history. We refer the reader to [9]
and [11] for details.

In Section 2 we establish the boundedness on the Herz spaces for a large class
of the commutators related to linear operators. In fact, we shall prove thatif [5, T']
is bounded on L7(R™) for some g € (1, 00), then [b, T]is bounded on K;"?{R")
for any o € (—n/q,n(1 — 1/q)) and p € (0, oo] only under certain very weak
local conditions on the size of 7. Similar conclusions are also true for the com-
mutator related to the fractional integral operator. As some special cases, we shall
prove the following theorems in Section 2.
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THEOREM 1.1. Let b € BMO(R") and let T be a standard Calderon—Zygmund
operator. If 1 < q < o0, —n/q < a <n(l —1/q), and 0 < p < 00, then the
commutator [b, T is bounded on Herz spaces K,‘; 'P(R™).

THEOREM 1.2. Let b € BMO(IR") and let I; be the usual fractional integral
operator of order 1 with 0 <1 < n, that is,

I f(x) =p.v./ —L(l)—d

ge |x —y|*=t

fl<qu<n/l,1/q2=1/q1—1/n, —n/q1 +1 <a <n(l —1/g1), and 0 <
p1 < p2 < 00, then [b, ] maps Kg; "' (R™) continuously into Kg,"* (R").

By choosing & = 0 and p = g in Theorem 1.1, we obtain the result in [5]. Simi-
larly, setting @ = 0, p; = qi, and p; = g, yields the result in [3]. Actually, our
results can be regarded as the localization of these previous results.

On the other hand, a well-known result of Stein [22] states that if the operator

IfG) = . [ KG9 f0)dy

is bounded on L4(R") with g € (1, 00), and if K(x, y) satisfies the “standard”
size condition
|K(x, y)] < Clx —y|™

for any x, y € R" and x # y, then T is bounded on quxl" (R”) for |x|* € A, (the
weight function class of Muckenhoupt) or, equivalently, —n < a < n(g — 1).
Note that L . (R") = K /4:9(R™), a special case of general homogeneous Herz
spaces. As a simple corollary of our main theorems in Section 2, we generalize
Stein’s result to the case of the commutators [b, I;] as follows.

THEOREM 1.3. LetO0 <l <n,l1 <qy <n/l,1/g=1/q1 —1l/n, —n+qil <
a <n(q, — 1), and B = q2a/qy. Let b € BMO(R") and let T; be a linear oper-
ator. Suppose that T; maps LY(R") continuously into L% (R") and satisfies the

size condition
T )] < c/ I,
rr |x —yI*~

(1.1)

for f € LY(R") with compact support, and that x ¢ supp f. Then [b, T} maps
Lf; j« (R™) continuously into L;’jl s (R™).

Soria and Weiss [21] gave an elementary proof of Stein’s result and some of its
beautiful generalizations, which include, in addition to the case g = 1, more gen-
eral weights and the possibility of considering maximal functions associated with
a sequence of operators. We also establish some results for commutators related
to linear operators that parallel results of Soria and Weiss for linear operators. To
state our result, we need to introduce the weight function class A(qi, g2).

DEFINITION 1.2 (see [20]). Let w(x) be a nonnegative and locally integrable
function on R". We say that w € A(g1,¢2) withl < g; <ocoand1 < g, < o0 if



Continuity of Commutators on Herz-Type Spaces 257

1/4] /4,
(|B|—1 fB w(x) ™ dx) (|B|—1 fB w(x)? dx) <C (1.2)

holds for any ball B with some positive constant C. Here 1/q; + 1/q; = 1. The
smallest constant C satisfying (1.2) will be called the constant of w in the class

A(q1, 92).

THEOREM 1.4.° Let b € BMO(R") and let {le }jer (I is some index set) be linear
operators such that, for any f € LY(R™) with compact support and for x & supp f,

T F ()l < Co / EASD)

g |x — y[*
with Co independent of j. Let 0 <l <n,1 <q1 <n/l,1/q2 =1/q1 —1/n, and
T f(x) = sup;¢;|[b, T,’]f(x)l. If T}, maps LY(R") continuously into L% (R"),
then Tj%, also maps L‘i}ql (R™) continuously into Lquz (R™) provided that w €
A(q1, q2), and there exists a constant Cy; > 0 such that

sup w(x) < Cy inf w(x) (1.3)

2k=2 <|x|<2k+1 2k=2 <|x| <2k +!

foranyk € Z.

We also note that although some operators (e.g., the Bochner—Riesz operators be-
low the critical index) satisfy (1.1), they are bounded operators on L7(R") only
for some g € (1, 00). For the commutator related to these operators, we have the
following result.

THEOREM 1.5. Letl <g <o00,0<! <n/q,0 < p <00, and b € BMO(R").
Suppose that the linear operator T; satisfies (1.1) and that the commutator [b, T;]
is bounded on LI(R"). Then [b, T;] maps K7 (R") continuously into K;,B "P(R™),
provided thatl —n/q <o <Q0and B =an/(n — lg).

As a corollary of Theorem 1.5, we can obtain the following result for commuta-
tors related to linear operators. This result is similar to that of Lu and Soria [13]
for linear operators.

COROLLARY 1.1. Letl <g<oocandQ <1 < n/q.Let b € BMO(R") and let
T; be a linear operator. Suppose that T; satisfies (1.1) and that the commutator
[b, T;] is bounded on Li(R"). Then [b, T;] also maps L?xl“ (R"™) continuously into
L?xlﬁ (R™), provided thatlqg —n < a < 0and B = an/(n — lq).

As a direct application of Theorem 1.5, Corollary 1.1, and the result of Hu and Lu
[10], we shall obtain the boundedness of the commutator related to the Bochner—
Riesz operator below the critical index on Herz spaces and weighted Lebesgue
spaces. These results are new and have special meanings, since the weighted L?-
boundedness criterion for the commutators related to linear operators obtained by
Alvarez et al. [2] cannot be applied to these cases. To be more precise, let § > 0.
We first define the Bochner—Riesz operator of order 8 for a Schwartz function f by

(B ) (®) = (1 — £ F(&),
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where f is the Fourier transform of £.If n = 2,0 <8 < 1/2,4/(3+28) < q <
4/1-26),1=1/2-6,0<p<o00,l-2/qg <a <0,and B =2a/(2 —1q),
then Theorem 1.5 can be applied to the case of the commutator [b, B?%].Forn > 3,
n—-1)/Cn+2)<é<m—1)/2,2n/(n+14+268) <q <2n/(n—1-26),]l =
n—-1/2-46,0<p<oo,l—n/g<a<0,and 8 =an/(n —lq), Theorem
1.5 is also true for the commutator [b, B®]. In particular, we have the following
boundedness result on the weighted Lebesgue spaces with power weights.

COROLLARY 1.2. Let b € BMO(R"), and let B® be the Bochner—Riesz operator
of order é.

M If0<dd<1/2,4/(3+28) <q <4/(1—-268),1/]2—-8—-2/g <a <0,
and B = 4a /(4 — (1 —28)q), then [b, B®] maps fo|a (R?) continuously into
folf,(Rz).

@ Ifn=3n0-1)/Cn+2)<d<m—-1/2,  m—1)/)2—-86—n/q <
@ <0, and B = 2na/(2n — (n — 1 — 28)q), then [b, B’] maps L, .(R")
continuously into L;’xl s (R™).

In the proofs of our main theorems in Section 2, we borrowed many techniques
developed by Soria and Weiss [21]; see also [11]. The basic philosophy is that
each commutator we are considering can be decomposed into two operators: one
local part, which automatically extends the boundedness properties of [b, T'] on
Lebesgue spaces to weighted Lebesgue spaces (or Herz space); and one second
part, which depends only on the “size" of the operators T and can be controlled
by the commutator related to the Hardy-Littlewood maximal operator or the com-
mutator related to the fractional maximal operator.

DEFINITION 1.3 (see [19; 20]). Let » € BMO(R"). The commutators of the
Hardy-Littlewood maximal function and the fractional Hardy-Littlewood maxi-
mal operator function are defined, respectively, by

My f (x) = sup|B(x,r)| ™" fB( )Ib(x) — bW - | f(Pldy

r>0
and

M} f(x) = sup|B(x, )|~/ fB @ b0 fDl

r>0
where B(x,r) ={yeR":|x—y|<r},1 <A <oo,and1/A+1/) =1.

In the beginning of Section 2, we shall establish the boundedness of M, f and
M} f on Herz spaces, which will be useful in the proofs of our main theorems in
Section 2.

Note that, in Theorems 1.1 and 1.2, for the range of o we respectively have the
restrictions ¢ < n(1 — 1/q) and ¢ < n(1 — 1/q;). It is natural to ask what will
happen if « > n(1 — 1/g) or ¢ > n(1 — 1/g;). The main purpose of Section 3
is to answer this question. In fact, we remark that Theorems 1.1 and 1.2 will be
no longer true in these cases; see also [17] and [1]. For Theorem 1.1, we have the
following counterexample. Let T = H be the one-dimensional Hilbert transform,
andletb = x@p,00)- Letn =1, p=1,anda =1 —-1/g with1 < g < 00.If we
take f(x) = X0,1/2) (x) — X(=1/2,0) (x), then f € K;—l/q’l(R) and, forx > 1,
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V2 dy 1 1
’H = > > —,
I X009 H1F )] fo e e e

Thus,

2k

S Hk(1-1/g) dx \'/4
I X0,00)> H]f”f(;—llq-l(R) > ;2 (fzk—l §x_‘1) = 00.

That is, [ x©,00), H1f €& K,}"l/ q’l(R). Therefore, Theorem 1.1 is not true for the
case ¢ > n(l — 1/q). A slight modification yields a similar example to indicate
that Theorem 1.2 is also false if @ > n(1 — 1/q,).

In recent years, a theory of the Hardy spaces associated with Herz spaces has
been developed (see [4; 6; 8; 14; 15; 16]). In [15], Lu and Yang proved that the

Calder6n—Zygmund operators do map HK, '~ /9"}(R") into K779 (R), al-
though they are not bounded on K n(1-1/9), l(]R".") It seems reasonable to guess that
the commutator related to the Calder6n—Zygmund operator maps HK n(1-1/g), 1(IR")

into K; (1=17g), 1(]R"). Unfortunately, just as with the cases involving the standard
Hardy space H 1 and the Lebesgue space L! (see [17; 18; 1]), this is not true. In
fact, the function in the previous example is a central (1 — 1/g, 1)-atom sup-

ported in (—1/2,1/2) and belongs to the space HK;_I/ "'l(R) by the atomic
decomposition for the space HK;_I/ q’l(R) in [15]; see also [8] and [16]. But
[X0.000, H1f & K;~¢Y(R). However, if we replace HK, ™ /%' (R") by a suitable
atomic space HK;',(,} -1/ q)’l’o(lR") defined as follows, then the commutator [b, T']
does map HK ;’(;"1/ 1.0 RmY into K, (-1/).1 Rrny. see Section 3 for the details
and see also [18] and [1] for the case of the Hardy space Hbl.

DEFINITION 14. letaeR,seNU{0},1<g=<o0,1/g+1/9g'=1,andb e
10C(IR"') A function a(x) on R" is a central (¢, g, 5; b)-atom if

(i) suppa < B(0, r) for some r > 0;
(i) llallzswmy < |B(0,r)|~%/"; and

(iii) / xPa(x)dx = O=] xPa(x)b(x)dx for |B| <s,
n Rn

where B = (B1,..., B,) € (NU {O})" and x# = xP' ... xfr.

DEFRNITION 1.5. Leta e R, 1 < g < o0, 1/g+1/9 = 1,b € LIOC(R”),
0 < p <00, and s € NU {0}. A “temperate” distribution f is said to belong to
HK;,f (R™) (or HK 7" (R™)) if, in the S’(R") sense, it can be written as f =
> o Aja; (or f = Z —oAjaj), where g; is a central (@, g, s; b)-atom sup-
ported on B(0,2/), A; € C, andZ - oo lAjl? < o0 (or Z;:ol)‘ |7 < 00). We
define on HK ob S(R”) (or HK '} S(R")) the quasinorm

00 1/p
||f||HK;':"(R") = inf {( Z I)‘flp) }

YoM =f L\ j=—0c0
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00 1/p
(01‘ "f”HKa':‘S(R") = inf {(Zl)".flp) ]),
B Y Roha=F L\ j=0

where the infimum is taken over all decompositions of f.
Obviously,ifl <g <oo,a >n(1—-1/g),0 < p <o0o,s > [a+nr(l/qg—1)],

and b = 1, then HK "/*(R") = HK,"’(R") and HK"/*(R") = HK;'"(R"),

which are studied by Lu and Yang [16]. In particular, HK:,(ll—l/ D10 Rny —
HA(R") is introduced in [4] and [6]; HK {2 (R") = HK,(R") is dis-
cussedin[14]. f0 < p <l <gqg < oo, =n(l/p—1/q),ands > [n(1/p—1)],
then HK ; P*(R™) and HK ;’ 'P»*(R™) are just the same spaces as those spaces in-
troduced, respectively, in [8] and [15].

In Section 3, we shall establish the boundedness of commutators related to
the (local) Calder6n—Zygmund type operators (see [24, p. 63] for the definitions),
fractional integral operators, and the Bochner—Riesz operators on the above atomic
Herz-type Hardy spaces and Herz spaces.

For nonhomogeneous spaces, we have similar results to all the theorems for ho-
mogeneous spaces. To limit the length of this paper, we omit the details. In addi-
tion, throughout this paper, C, Cy, and C; denote constants that are independent
of the main parameters involved but whose values may differ from line to line.
The expression A ~ B means that there are constants C and Cp such that Cp <
A/B < C. For any power exponent p with 1 < p < oo and nonnegative function
w, we define the conjugate exponent p’ = p/(p — 1) and

1/p
g = ([ 1frucax)

2. Commutators on Herz Spaces

We begin with the boundedness of the commutators of the (fractional) Hardy—
Littlewood maximal functions on Herz spaces, which will be useful in the proofs
of our main theorems in this section and are themselves of independent interest;
see [19] and [20].

THEOREM 2.1. Letl <gqg <00, —n/q <a <n(l—1/q),and 0 < p < 0o. Let
b € BMO(IR") and let M}, be defined as in Definition 1.3. Then My, is bounded on
K, P(R™).

Proof. Set f =372 o fX;j = 272 oo fj- We write

o 1/p
”be"K;"P(R") = { Z zkap”(be)anzq(Rﬂ)}

k=—00

00 k=3 pyl/p
< c{ > 2’“"1’('2 ”(bej)Xk“Lq(R")) }

k=—00 j=—00
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%) k+2 py1/p
+C[ Z 2"“"( Z Il(Mbﬁ)Xklqu(R")) }

k=00 j=k—2
foe) 00 pyl/p
+ C{ Z 2’“””( Z "(bej)Xk"L‘?(lR")) }
k=—o0 j=k13
= D; + D, + Ds.

For D,, by [7, Thm. 2.4, p. 1401] we know that M}, is bounded on L4(R").
Therefore,

00 k+2 py1/p
D; < c[ > 2"“1’( > uﬁ-nmm) } = Clliflggreaey-

Let b; denote the mean value of b on B(0, 27). Observe that if j < k — 3, from
the properties of BMO(R") functions (see [23, Chap. 4]) it follows that

q l/q
| (Mp f;) Xkl Lagr) SCZ"‘"[ fA ( Ib(x)~b(y)l-lﬁ(y)ldy) dx]

Aj

1/q
< Cz—k"”fj"LI(R")(L |b(x) — b;|? dx)
k

1/¢'
+ Czk"(l/q“l’llﬁllm(m( f 1bj — b dY)
Aj

< C|lbllpmo®y 29 0"~ YD(k — j)|| fill Larry-

Therefore, Holder’s inequality gives us that

00 k-3 ) _ pyl/p
D; < C"b"BMO(Rn){ Z ( Z zfallfj”Lq(Rn)z(k—J)(a—n(l—llq))(k - j)) }

k=—00 j=—00
r 00 k-3 .
|2 (X 21t
k=—00 \ j=—00

1/p
x 2Uk=Na—n(1-1/))pf — j)P):I , 0<p<xl1

oo k-3
< ClIbllsmo®r™) 1 njap || £1P _ k—pa—n(-1/g)p/2
I fillLemm

k=—00 N j=—00
( f a2 1
X (k—j)Pz—f“""—“) ] :
j=—c0

| l<p=<oo
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r o0 .
[ > 2Pl il oy
j=—00
0 1/p
x ( Z 2(k—j)(a—n(1—1/q))p(k _j)P)] ,
< . k=j+3
< Cl|bllsmown) - O<pxl1
P > 26 "
zlap"fj"iq . ( 2(k—1)(d—n(1—1/11))P/2):|
(R") i
j=—00 k=j+3
| l<p<o

oo ) 1/p
< C||bliBmo®™) 27°P| fill% g g = C||bllsmo®™ Il f Il g P (rrys
R™) q

j=—00
since @ < n(l — 1/g).
For D3, we first observe that for j > k + 3 and x € Ag,

M, fi(x) < C277 A.lb(x) — b - 1findy

< C27Mb(x) = bi - | fill ey + CZ"""/A lbr — b - 1 f (M| dy.
2

Thus,
I(Ms £) xxll Lamy < ClbllamMo®m2* ™4 fill Larry
+ Cllbllmo 2% "4 — k)| fill Lagrry
< C|1bllemo®m2*~7"1(j — K)Il fill Lacrry
and so
00 00 . i py1/p
Ds; < CIIbIIBMO(R"){ > ( > 2% fillLean (J —k)2-“—""“+"/q>) }
k=00 \ j=k+3
( (o0} o0 .
[ 3 (3 21ty
k=—o0 \ j=k+3

1/p
x (j — k)pz—(j—k)(a+n/q)P)] , 0<px<l

< C||bllBmo®r™) 1 > = jap P —(j—K)(@+n/q)p/2
2 20 2SNy
J

=—00 \j=k+3

oo p/p’q1/p
X ( Z (j- k)P'Q—(j—k)(at+n/q)p’/2) ] ,
j

{ l<p=<o
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[ > YN e

j=—00

j=3 . p
8 ( Z(j _ k)p2~(1—k)(a+n/q)p)] , O0<p<l

< C|Ibllsmo(®r™) 1

k=—00
00 i3 ) i/p
[ Z 2Jap|lf}"Lq(Ru)( Z 2—(]—k)(a+"/61)P/2):|
j=—00 k=—o00
L l<p<oo
1/p
=< C”b"BMO(R"){ > Zjap”f)‘”Lq(R")} = Clbllsmoen 1 f | g2 mrys
_}——-OO
because ¢ > —n/q.

This finishes the proof of Theorem 2.1. ]

THEOREM 2.2. Letl < A <o00,1 < q) < A, /gy = 1/q1 — 1/, —n/q1 +

n/A <a <n(l—1/q),and 0 < p; < py < 0. Let b € BMO(R") and let

M} be defined as in Definition 1.3. Then M} maps Kg;"'(R") continuously into
0‘ P2 (Rn)

Proof. Note that if p; < p, then
K;‘;”‘(R") C K;‘z’PZ(R”). 2.1)

We only need to prove Theorem 2.2 for the case p; = pa.
As in the proof of Theorem 2.1, we can write

oo

1/pi
15 £ ll g my = [ > 25 My £ 112 ey }

k=—00

00 k=3 pyi/p
=< C{ 3 2kap1( > |IXkM3ﬁ||qu(R")) }

k=—00 j=—00

00 k42 riyUUpm
+C{ Z 2kap1( Z ||XkM£ij"L'I2(R”)) }

00 00 riy1/p1
+C{ Z 2kap1( Z HXkMt);Lﬁ“L‘H(R")) }

k=—00 j=k+3
=E; + E, + Es.

For E,, since M. }; maps L?(R") continuously into L?2(R") (see [20, Thm. 3.2,
p.- 544]), we obtain

k42 131/
E; < C{ Z 2’“"”*( > ”flnL‘“(R")) } = Cllf lggm @y

k=—o00 Jj=k—2

Let b; denote the mean value of b on B(0, 27). For E;, note that if j < k — 3
then
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, q 1/q
Xk M fill Loz gy < C27F0/% [ f ( / 1b(x) — b(y)| - lf,-(y)ldy) dx]
Ay A;
, 1/q2
< Cc27kn/x Ilfj||L1(Rn)( |b(x) — bj|? dx)
Ay

| , 1/q
4 ¢ kn/X+n g "f]."qu(Rn)([ |bj — b(y)|% d)’)
Aj

< C||bllsmocrmy (k — j)2U~RmA=1a0) £y ey

Therefore, by the fact that @ < n(1 —1/4;) and an argument similar to the estimate
for D, we obtain

%) =3 _ p1yl/p
E, < C{ Z ( Z 2J°’||f}-||qu(Rn)Z(J“k)("(l‘l/‘fl)‘“)(k _ ])) }

k=—00 \ j=—00

el 1/p1
. ? _
=< C{ Z 2105171“]‘.‘1" LZI(R")} = C”f”K;I'm(R")‘

j=—o0

For E3, observe that for j > k + 3 we have
L q 1/q
I xxMj fill Loz my < C2797/% [/ (f [b(x) —b(Y)| - [ f(W] d}’) dx]
A Aj

1/q2
< Cc2 i "fi"Ll(R")( |b(x) — bi|?? dx)

Ag

o ) 1/q,
+ C27 I )] Ly eny ( fA | — b(y)| dy)
j
< Cllbllsmo®ny (j — k)2%~D"92|| £ || Lay ().
As with the estimate for D3, we similarly obtain

- . . _ piy1/ps
E; < C"b”BMO(Rn){ Z ( Z 25| f; || Ly 2% D@ HIa( j — k)) }

k=—o00 N j=k+3

oo 1/p1
= C”b"BMO(R"){ D 2 ||fj||€1n(Rn)} = Clibllsmo I f Il g2r gy

j=—o0

since > —n/q, = —n/q; +n/A.
This finishes the proof of Theorem 2.2. O

LEMMA 2.1 (see [9]). Leta € Rand 1 < p,q < 0o. Then f € K;'P(R") ifand
only if

<0

f F(x)g(x) dx
Rn
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for every g € K% (R™) and, in this case,

g = s | [ srgmas

. ”g"Kq_/“’PI(R") =< 1 }
Now let us state one of our main theorems in this section as follows.

THEOREM 2.3. Let b € BMO(R") and let T be a linear operator. Suppose that
the commutator [b, T) is bounded on L1 (R"™) for some q € (1, 00). Suppose that
T satisfies the local size condition

77l < Clxt™ [17001dy 22

for f € L\(R™), supp f C Ay, and |x| > 25! with k € Z, and the condition
ITF0] < C27 1 flli gy 2.3)
for f € LY(R™), supp f C Ay and |x| < 2% with k € Z. Then [b, T] is also

bounded on the Herz space K;"P(R"), provided that —n/q < a < n(1 — 1/q)
and 0 < p < o0.

Proof. Write f = Z;'x;-—oo fxi =25« fi- We then have

o0 1/p
I8, T1f l-p ey = { 2. 27lxelb, T1f Hfumn)}

k=—o0

k-3
Xlb, T]( > f,-)

)p }l/p
j=—00 L4(R")

fole) k42 pyl/p
rel 22 (poen( 2 0)],,..) |
LI(R")

< c{ f: zkap(

k=—00

k=—0o0 j=k—2
00 00 pyl/r
+c{ > 2"“P( Xelb, T]( > f,-) ) }
k=—o0 Jj=k+3 La(R")
= F; + F, + F3.

Since [b, T'] is bounded on L4(IR"), we have

00 k42 py1/p
F, < C{ Z 2’“’”( Z "ijILq(R")) } = C||f"1’<§"”(R")'

k=—00 j=k—2

For F;, note that if x € Ay and j < k — 3 then

k-3
l[b, T]( > f,-)(x)

j=—00

k-3
> fj(y)’ dy < CMj f (%).

j=—o0

< Clx|™ f Ib()—b()-
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Therefore, by Theorem 2.1,
Fi = ClIiMp fllger@ry < CLS lgermey-
On F3, note that if x € Az, y € Aj, and j > k + 3, then 2|x| < |y|. Thus,

’[b, T]( > f,-)(x)

j=k+3

<c f 1b(x) — b - [yI™ - 1 F )l dy
2lx| <]yl

= CT, (| f)(x).
Setl < p < oo and
T0g(x) = x| f| b = bDIg)dy.
y|<2|x

Therefore, by Lemma 2.1,

F3 < CIT,(fDlgsr@n =C_ sup  [(T,(fD), &)

<1
& ”K;,"" Prmy=

=C sup |(f], T

<1
I8l gy

S Clfllgzrmey  sup [ Mpgll gt/ gny-
q in (R™)

<1
g":‘c;f’""(mﬂ)‘

Since 1 < ¢’ <00, —n/q’ < —a <n(1 —1/q’), and 0 < p’ < 00, by Theorem
2.1 we have

“Mbg”Kq';‘!;Pl(Rn) S C”g”K‘;%P,(Rn)'
Thus,
F3 = Cllf llgerrey-

This finishes the estimate of F3 for 1 < p < oo.
Now let 0 < p < 1. By (2.3), we first deduced that, when j > k + 3,

| xxlB, T1f5\l Laqmny

1/
< C( |b(x) — be|? - |Tf;(x)]? dx)
Ak

1/9
+ c(/A |T(® —be) ;) 0)|* dx)

< C2%=D"14|| £ | Lawmy 1B || BMO R
. . ) 1/4'
+ C25=Dn1a || £|| Lomry (]B(O, 20! / 1b(y) — bel? d)’)
B(0,2))

< C26=PMa(j — k)||blismo &y I il Larry-
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Similar to the estimate for D3, it follows from this that

> >0 . , pyl/p
F3 < C”b"BMO(R"){ Z ( Z 27| fill Lamy (J _k)z—(J—k)(a+n/q)) }
k=—o00 \ j=k+3
oo

1/p
< Clibllsmo(rr) 2P| il Y g = C||bllsmo® |l f I =P g
R") g

k=—00

since @ > —n/q.
The estimate for F3 with the case p = oo is simple. We leave it to the reader.
This finishes the proof of Theorem 2.3. O

CoOROLLARY 2.1. Let b € BMO(R") and let T be a linear operator. Suppose
that the commutator [b, T] is bounded on L1(R") for some q € (1, 00), and that

Ri62] dy
-y

| x

rr@l < | a4
for f € L\(R™) with compact support and x & supp f. Then [b, T) is bounded on
Herz spaces K5'P(R™), provided that —n/q < a <n(l —1/q) and 0 < p < co.

We remark that (2.4) is satisfied by many operators in harmonic analysis, such as
Calder6n—Zygmund operators, C. Fefferman’s singular multiplier, Ricci—Stein’s
oscillatory singular integral, the Bochner—Riesz operators at the critical index, and
so on (see [21], [9], or [11]). Therefore, Theorem 1.1 is just a special case of
Corollary 2.1.

COROLLARY 2.2. Letl < g <ooand —n < o < n(q — 1). Let b € BMO(R")
andlet T be alinear operator. Then the commutator [b, T is bounded on L?xl“ (R*)
if Ib, T is bounded on LY(R") and if T satisfies one of the following conditions:

(@) (2.2) and (2.3) in Theorem 2.1; or
(b) (2.4) in Corollary 2.1.

Our Corollary 2.2 actually is a generalization of Stein’s result in [22] to linear
commutators; see also [21, Thm. 4, p. 193].

If we take a look at the proof of Theorem 2.3, we easily see that the following
result holds for the maximal commutators.

THEOREM 24. Letl <q <00, —nfq <a <n(l—1/q),and 0 < p < 0.

Given a BMO(R?”) function b and linear operators {1} je; (I is some index set),

the maximal commutator Ty f (x) = sup;¢;|1b, T;] f(x)| is bounded on K: P(R™)

if T, f is bounded on L1(R") and if the T; satisfy one of the following conditicns.

(i) For f € L\(R™), supp f C Ag, and |x| > 2¥" withk € Z, the T; uniformly
satisfy

|75 £ < Colx| ™" fll L1(mnys (2.5)

for f € L\(R™), supp f C Ay, and |x| < 2%72 with k € Z, they uniformly
satisfy
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|T; f(x)] < Co27%|| f l| prcemy- 2.6

Here C is independent of j.
(ii) For f € LY(R™) with compact support and x ¢ supp f,

T £ < Co/ If(y)l

=y 4
with Cy independent of j.

2.7)

COROLLARY 2.3. Letl < q < ooand —n < a < n(q — 1). Assume that b,
{T;}je1, and T} are defined as in Theorem 2.4. Then the maximal commutator T}

is bounded on Lq ixje (R®) if Ty is bounded on LI(R") and if the Tj satisfy one of
(1) and (ii) in Theorem 2.4.

Obviously, the commutators of the truncated operators and the commutators of the
Bochner—Riesz operators satisfy Corollary 2.3.

For Corollary 2.3, we have the following generalization (see also [21, Thm. 1,
p- 189]).

THEOREM 2.5. Let b € BMO(R") and let the linear operators {T;}jcr (I is some
index set) satisfy (2.7). Define T, f as in Theorem 2.4. If T, f is bounded on
Li(R™) for some q € (1, 00) then T} f is also bounded on LL(R™), where w €
A, and w satisfies (1.3).

Proof. Asinthe proof of [21, Thm. 1], we write f; o(x) = f(x)X2r-2<|x|<2t+13(X)
and fr1(x) = f(x) — fr,0(x). Then

T f(x) =) T f)x(x) £ ) T (fr0)®xe(x) + ) Ty (i) () xe(x)

keZ keZ keZ
= Tof(x) + T1 f(x).

If we set my = inf{w(x) : 2872 < |x| < 21}, then w(x) ~ my for every x
satisfying 2¥=2 < |x| < 2%¥*+!, Therefore, by the L7(R")-boundedness of T f, we
have

NTo S 12g gy = D IXkT5 (i) lfg oy < € D mill T (fe,o) facgery

keZ keZ
<C Y mill fiollfam < cZufk 0l%g gry < CUSNGg ny-
keZ

To prove Theorem 2.5, it suffices to prove

"Tlf"qu(R") =< C"f”LgJ(Rn).
Note that
a b —b .
Ty f(x) < Co Z ([ﬂ |b(x) Ix(i)|y|'!fb,1()’)| dy)xk(x)
k=—00

_<_C0] b6(x) — bW - IfOI
n || + |yl
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<Gl ™ [ 1) =500 DIy
Iyl=Ix]

+Cy f! @ =B SO i dy
x|<ly
=L, f(x) + Lo f(x).
Now, L; f(x) < CM}, f(x). Since w € A,(R"), by [7, Thm. 2.4], we have
L1 fllze ey < CIMp flie ey < CIF g wry-

By duality, L, f satisfies the same conclusion.
This finishes the proof of Theorem 2.5. L]

Obviously, Theorem 2.5 is just the case with I = 0 of Theorem 1.4.
Now let us turn to the case with fractional commutators.

THEOREM 2.6. Let b € BMO(R") and 0 < [ < n. Suppose that the linear
operator T; satisfies

1T f)] < Clxl™ 7P Fll rrey (2.8)
when f € L}OC(R"), supp f C Ay, and |x| > 2K with k € Z, and satisfies
1T f ()] < C275D) £l 11 geny (2.9)

when f € L (R™), supp f C Ay, and |x| < 2¥72 with k € Z. Assume also that
l<qr <n/l,1/q2=1/q1 = I/n, —n/q1 +] <a <n(l —1/q1),0 < p; <
p2 < 00, and that [b, T;] maps L?'(R") continuously into L92(R"). Then [b, T;]

maps Kg; 7' (R™) continuously into Kg;P*(R").

Proof. In view of (2.1), we need only show Theorem 2.6 in the case p; = p;. Let
f=22 o fXi= Y52 o fj- Write

00

1/p1
1B, T £ 1l g aemy ={ Z 25P1 || x[b, Th1 f |l{1qz(Rn)}

=—00

0o k-3 piy l/m
sc{ > 2"“1’1( xlb, m( > f,-) ) }
e = /Lo

) k+2 P11y 1/p1
+C{ E 2k°‘P1( Z "Xk[ba Tl]fj"LQz(Rn)) }

k=—o00 j=k—2

(o) = pP1y1/pm
+c{ > 2’“’1’1( xxlb, m( > f,-) ) }
k=—00 j=k+3 L12(R™)

= Gy + G3 + Gs.

For G, using that [b, T;] maps L9(R") continuously into L?2(R"), we obtain

00 k+2 p1y1/p1
Grzcl 3 2 3 ilnan) | < Clf gy

k=—00 j=k-2
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To estimate Gy, observe that when x € Ay, y € A;, and j < k — 3, we then
have 2|y| < |x| and therefore

k-3
[, m( > f,-)(x)

j=—o0

k-3
) L(y)ldy <M f (o),

j=—00

< Clx|-D / 1b(x) — b
2|yl<|x|

by (2.8).
By Theorem 2.2 we now have that

G =< C”Mb f"K"‘ PI(RH) = C"f"[{" "PL(R"Y)-

Now we turn our attention to G3. Let 1 < p; < 00. Note that, when x € A,
y € Aj, and j > k + 3, we have |x] < 2|y| and

[b, m( > f,-)(x)

j=k+3

b —b
<c[ PO s0 = ol ane.
<2yl 1Y

Set
T2 g(x) = Clx|~ " f 1bGx) — b8 (y) dy.
lyl=2|x|
By Lemma 2.1 we obtain that, for 1 < p; < oo,
Gs; < CIIT;,I,I(IfI)HK;Z-m(Rn) =C sup (T, (1 FDs 9l

el _, <1
£y 1wn

2
=C  sup I(lfl T,18))

gl o P
njl
< Cllf 1| gp1(gmy sup 122! gll o) ny = ClLF IIKam(Rn),
q1 g oy <1 (R)
kP &

where in the last inequality we have used Theorem 2.2 for M, 2/l

In the following let 0 < p; < 1and, for j € Z, let b; be the mean value of b on
B(0,27). When j > k + 3, (2.9) states that

I xxlb, Til fillLez@wmy < IxXx(B — )T, fillLezwry + | xe Ti (B — by) fi) Loz (rm)
< Clibllsmowm (j — k02492 £i |l Loy wry.
Thus, by a similar estimate to E3, we obtain

00 00 . _ p1y1/p1
©s = C{ 2. ( D YU filla@n2 VPt — k)) }

k=—o00 \ j=k+3
L 1/p1
< C{ Z 2kep1)| £ “qu(Rn)} = C"f”K;m(Rn),
k=—00

since @ > —n/q;.
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We leave the estimate for G3 with the case p; = oo to the reader.
This finishes the proof of Theorem 2.6. O

The following corollary is obvious.

COROLLARY 2.4. Let b, 1, q1, q2, @, p1, and p, be as in Theorem 2.6. If the
linear operator T; satisfies

T f()| < C f| | f(Y)I

yln—l
for f € LY(R") with compact support and x ¢ supp f, and if [b, T;] maps
L9(R™) continuously into L92(R™), then [b, Ti] maps Kg;P'(R™) continucusly
into Kg;7*(R™).

(2.10)

Obviously, Theorem 1.4 is ]llSt a special case of Corollary 2.4.
Note that L% (R") = Kg/?%(R") and L% ,(R") = K}/?%*(R"). From this
x| |x|8
follows our next corollary.

COROLLARY 2.5. LetO <l <n,1<gqy <o00,1/qy=1/q1—1/n, —n+qil <
a < n(qy —1), and B = q2a/q;. Given a BMO(R") function b and a linear func-
tion Ty, the linear commutator [b, T;] maps Ll x| (R™) continuously into L?;I s (R™)
if T; satisfies one of the following:
(a) T satisfies (2.8) and (2.9) in Theorem 2.6, and [b, T;] maps LI(R") contin-
uously into L2 (R");
(b) T; satisfies (2.10) in Corollary 2.4, and [b, T;] maps L?(R") continuously
into L2 (R™); or
(c) T; is the standard fractional integral I; of order |.

Obviously, Theorem 1.3 is just some special cases of Corollaries 2.2 and 2.5.
Moreover, Corollary 2.5 is a generalization of the result in [13] to the linear com-
mutators.

By a careful look at the proof of Theorem 2.6, we easily see that the following
theorem holds for the maximal fractional commutator.

THEOREM 2.7. Let b € BMO(R"), and let 1, q1, q2, p1, p2, and a be as in
Theorem 2.6. Suppose {Tl }jer (I is some index set) are linear operators. Then
T, f(x) = sup;;|[b, T 1 £ (x)| maps Kq:P'(R™) continuously into Kg,”*(R") if
1}%, maps L1(R") continuously into L%2(R"), and {T, }jer satisfies one of the
following conditions.

(@) For f € LY(R"), supp f C Ax, and |x| = 2¥ with k € Z,
1T/ £ ()] < Colx ™" PN £l ey (2.11)

for f € L'\(R™), supp f C Ay, and |x| < 22 withk € Z,
T/ F(0)] < Co27*@ D £l L1cgny. 2.12)
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(b) For f € L'(R™) with compact support and x ¢ supp f,

Tfe < o [ (”l),[ dy. @.13)

Here Cy is independent of j.

COROLLARY 2.6. Let b, {T,j }jer, and T}*, be as in Theorem 2.7. Let 0 <
I <n 1 <q <00, 1/q2 =1/q1 —1/n, —nq1/q, < a < n(gq1 — 1), and
B = q2a/q1. Then the maximal fractional commutator T;", maps Lf;]a (R™) con-
tinuously into Li’;l s (R™) if T}, maps LI(R") continuously into L (R") and if
the T; (j € I) satisfy one of (a) and (b) in Theorem 2.7.

The generalization of Corollary 2.6 is just the case with 0 < I < »n of Theorem
1.4. Let us prove it now.

Proof of Theorem 1.4 with 0 < | < n. As in the proof of Theorem 2.5 (see
also [21, Thm. 1]), we write fi o(x) = f(X)Xpr-2<xj<2t+13(x) and fi1(x) =
F(x) = fx,0(x). Then

o0

T f(x) = ) T f(0)xe(x)
k=—00
< Y T fed®xe®) + Y T (fin) (®)xe(x)
k=—00 k=—o00

= T4 f(x) + T} £ (x).

If we set my = inf{w(x) : 2572 < |x| < 2K}, then w(x) ~ my for 22 <
[x] < 2¥*1 by (1.3). Therefore, by the fact that 7;*, f maps L7(R") continuously
into L722(IR"™), we obtain

oo
175 £11% I gn = E 1755 e Xell o, gy ™ Z )2 I T3, (e, 0) Xk 1 P22 ey

=—00
<C Z(mk)‘12||fkonm(w, c Z I feoll o g
k=—00 k=—00
q2/q1
< C q1 N Jx
( > /2 o ) )
C”f"LQI (R")

To prove the theorem, it suffices to verify that TII maps L:‘;)‘ql (R™) continuously
into L%, (R"). In fact,

> b(x)—>b .
T! f(x) < Co Z ([ |b(x) — b(P) Ifk,l()’)ldy)xk(x)

k=—00 |x - yln—l

< Clx|~D fl o =B 1O dy
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i Cfu 1<l ,'b(x> — bW - 1f - 1y~ P dy
x|<ly

= Ll f(x) + L} f(x).

Now, L}f(x) < CM,;’/lf(x). Since w € A(q1, g2), by [20, Thm. 3.2, p. 544],
we obtain

1 1
”L[f"LZJZQZ(Rn) _<_ C”M;:/ f“Li;%IZ (Rn) 5 C"f"L:IDIIIl (Rn).

For L?f, note that w € A(q1, ¢2). It follows from Definition 1.2 that wle
A(g,, q1). Thus, by duality,

2 2
1L} flle @m= sup [Lif,ie)l= sup  [(f,L}8)l
wi2 el <1 gl o <1
L2 ,@®" L'Z ,®rY
w92 w D

!
<Clfln gn  sup 1M gl o
Loan B vl Lj,l—q R

8l ¢ < 4

" =< C“f"[,qwlql (R™)?

L 2— !(Rn)
w D

where we used that 1/g; = 1/q; — 1/n and Theorem 3.2 in [20].
This finishes the proof of Theorem 1.4 for the case 0 </ < n. O

To end this section, we now prove Theorem 1.5.

Proof of Theorem 1.5. Let f(x) = Y 72 o f(X)x;(x) = Z}?i_w fi(x) and
m=n/(n —1lq). Thenm > 1. Write

o) ryl/p
1B, T fl g p.p geny < C{ Z Zkﬂp( Z l X[, Tl]fj“L‘l(R”)) }

k=—00 j<m(k+1)
00 pyl/p
+C{ > ka’( > lxdd, Tl]fj"L‘I(R")) }
k=—00 j>mk+1)
= H,; + H,.

For H;, by the same argument as for D; in the proof of Theorem 2.1 and the
hypothesis that [b, T7] is bounded on L7(R"), we obtain

) ) pylp
H; _<_C[ Z 2'3”( Z llfjlqu(R")) } = Cllfligzrwny-

k=—c0 j<mk+1)
For Hj, note that j > m(k + 1). Denote by b, the mean value of b on the ball
B, 2’""). For x € A, we have
I[b, T11 f;(x)| < |b(x) — bumi| - | T1 £ ()| + | Ti((D — i) £i) (%))
DL,
Aj Ix - yln

+C[ Ib(y)—bmkl~|f(y)ldy
Aj

< Clb(x) — b

|x — yn?
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< C2MDNb(x) — buie] - || fill Lewrm)
+ 271D (j — mk) bl Mo ®m I £ |l ey
by (1.1). Thus,

I xx[b, Tl fill Lamry < C2KM/4HI4=1D(j — mk)||blleMo®™ || £; | Lacrny-

Therefore, by the same argument as for D3 in the proof of Theorem 2.1, we obtain

00

=—00

] py1/p
x( > ||J3-||L4<Rn)2f<""/ﬂ”(j—mk)) }

j>m(k+1)
=< Cliblismo®™ Il f | g2-r -

This finishes the proof of Theorem 1.5. L

3. Commutators on Herz-Type Hardy Spaces

In this section we will consider the endpoint cases of our Theorems in Section 2.
As we pointed out in Section 1, Theorem 1.2 is no longer true if @ > n(1 — 1/q).
Instead of this, we have the following.

THEOREM 3.1. Let b € BMO(R") and let T be a standard Calderon—Zygmund
operator, that is,

1) =p. [ K S0 dy,

with the kernel k(x, y) satisfying

ly —z[

lk(x,y) —k(x,2)| < Cm

3.1

for somee € (0,1]and 2|y —z] < |x —z|. If 1 < q < o0, n(l—l/q) <oz <
n(l—1/q)+e¢, and 0 < p < oo, then the commutator [b, T] maps HK (R")
continuously into Kg'*(R").

Proof. We first restrict 0 < p < 1. Let g; be a central (a, g, 0; b)-atom sup-
ported in B(0, 27). In this case, it suffices to show ||[5, Tla;l| KPR < CwithC
independent of j. Write
j+2
106, T 3erry = D 2Pl Xelb, T I o
k=—00
o0
+ Y 2XP|xelb, T1aj1%g g,
k=j+3
=]+ 715
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For J;, using the L7(IR")-boundedness of the commutator [b, T'] (see [5]), we

obtain i+
Ji < Clla; uiq(Rn)( > 2’“’1’) <C,
k=—00 )
with C independent of j.

To estimate J,, we first compute || xx[b, T]lajllLew) for k > j 4 3. In fact, let

bj be the mean value of b on the ball B(0, 27). Note that if x € Ag, y € B(0, 2),
and k > j + 3, then 2|y| < |x|. By the vanishing moments of a; and Holder’s
inequality, we obtain

I xx[b, T1aj || Lewn)
< l® — b)) xxTajliLawry + I T (B — bj)a;) xillLawry

q 1/q
< ( lb(x) — bjlq dx)
Ax

q 1/q
+ { fA ( f k(x, ) — k(x, 0)] - 16() — b - laj(y)ldy) dx}

< C||b|lsmo®m) k — j)2]'[8+n(1—1/4)—a]-k[n(1—1/q)+,<;]. (3.2)

By substituting this estimate into J,, we obtain

(k(x, y) — k(x,0))a;(y)dy

o0
J2 = C“b“gMo(Rn) Z (k - j)pz(k—j)[a—n(l—l/q)—s] = C”b"gMo(Rn),
=j+3

since a < n(l — 1/q) + . This finishes the proof of Theorem 3.1 for the case of
O0<p<l.

Nowletl < p <ocand f = E]__ook-aj, where a; is a central (¢, g, 0; b)-
atom supported on B(0, 27). By (3.2), Minkowski’s inequality, and Holder’s in-
equality, we have

00 k-3 pyl/p
1B, T1S gz n) s[ > 2’“’"’( D 11 xelb, T]a,-qu(Rn)) }
k=

-0 j=—0
00 o0 pyl/p
+{ 3 zkap( > A1 lixete, T]a,-umm) ]
k=—o0 j=k=2
i S t-nena-tjp-0) 1"
C{ ( A1 — )25 q_s) }
k=—00 \ j=

+C{ ioo( izl 2(k—})a) }l/p
<[ Z(Z

j —00

k-3 p/p'1/p
x ( Z k — j)P’2(k-j)[a~n(1—1/q)-8]p’/2) }
j

=—00

| J'P2(k—j)[a—n(1—l/q)—€1p/2)
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o0 o0 .
+ C{ Z ( Z: |A_j|p2(k—1)ap/2)

=—00 \j=k-2
p/P’'\1/p
( 3 a6 ;)ap/z) ]
j=k—2
1/p
sc{ Y wr}”
j=—00
sincea <n(l—1/g9) +¢eanda > 0.
This finishes the proof of Theorem 3.1. O

REMARK 3.1. From the proof of Theorem 3.1, we easily see that if we replace
(3.1) by the local condition

lk(x,y) —k(x,0)] < C

for € € (0, 1] and 2|y| < |x|, then the proof of Theorem 3.1 still works. In par-
ticular, local Calder6n—Zygmund type operators LCZO, (R") (see [24, p. 63] for
the definition) satisfy (3.3).

|yI®
|x|n+s

(3.3)

REMARK 3.2. Assuming more regularity on the kernel k(x, y), we can extend
Theorem 3.1 to a larger range of o and s; see also Theorem 3.2.

For the endpoint cases of Theorem 1.2, we have a similar conclusion to one of
Theorem 1.1.

THEOREM 3.2. Letl <q; <00, >n(1—1/q1),0<l <n, /g =1/q1 —
I/n,0 < py < py <00, and

I f(x) =p.v.'/IR ——fiz)——dy.

n |x — y|n!

Ifb e BMO(R™) and s + 1 > o +n(1/q; — 1), then [b, I1] maps HK > p‘ J(R")
continuously into Kg;7*(R").

Proof. Note that (2.1) holds (see the proof of Theorem 2.2). Without loss of gen-
erality, we may assume that p; = p,. We only prove the theorem for 0 < p; <
1; for 1 < p; < 00, the proof is similar to that of Theorem 3.1. Given our restric-
tion on py, it suffices to prove that if a; is a central (@, g, s; b)-atom supported on
B(0, 27) then
I[b, Il]aj "1’(;"2'?1 (R™) <C,
with C independent of j. Toward this end, write
j+2

b, 130 1o ey = = Y 2FPix[b, Ila;|| T, gy

k=—00

+ Z 241 | 3 [b, L1a;11%%, gy
k=j+3

= Q; + Qs.
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For Qq, using that [b, I;] maps L7/(R") continuously into L72(R") (see [3, p. 8]),
we have

Jj+2 j+2
Ql <C Z 2kd}71 "a] ”qu(R") < C Z 2(k—'})OlPl <C
=—00 k=—00

with C independent of j, since o > n(1 — 1/¢q;) > 0.
For Q,, we first estimate |[b, I;]a;(x)| when x € Ay and k > j + 3. In fact, if
we denote by b; the mean value of b on the ball B(0, 27), we then have

b(x) —b
(b, Ii]a;(x)| = fn -I%C)C—)_Tl,,(_yl—)aj(J’) d}’l
_pl | [ D) f 5 -0,
< |b(x) — bj| fR o — y? dy‘+ P a;j(y) dy|.

Using the s-order vanishing moments of @; and the s-order Taylor expansion of
|x — y|™"* at x, we obtain

s+1
|b, Ia;(x)| < Clb(x) — btflx_egmﬂﬁﬁwwﬂ@’
ly[FHb(y) — bj| - la; (»)]
+C /,, Ix — gzyln—l+s+1 dy,

where 0y, 6, € (0, 1). Note that |x — 6;y| > |x| — |y| > |x|/2 fori = 1 or 2. We
deduce that

Jj+D+jn(1-1/q1)—ja

b, Bl (D) < CIb() = byl — ey

2j(s+)—ja y 1/q)
4+ C— / b; —b 1d )
([, I~ bty

2 jls+1+n(1-1/g1)~c]

= @) — by | x|n—tts+]
2][S+1+n(l—l/q1)—a]
+C |x|n—l+s+1 ”b"BMO(R")-

Therefore, for k > j + 3, we have

2Jls+14n(1-1/g1)—a] /g2
I xx[b, IlajliLe2@my < C (f |b(x) — bj|? dx)

2 k(n—I+s+1)

2jls+14n(1-1/g1)—c]
+ C”b"BMO(R ) 2k(n—l+s+1

—n/q2)
< Cl|bllsmow (k — j)2U-Rlstl4nd-1/q)—al—ka

where we used that 1/q, = 1/q; — I/n.
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Thus, noting that s + 1 > a +n(1/q; — 1), we deduce
co
Q2 < Clibllsmony Y |, 2V~ PbtH+=0-lad=elg _ jy < C||b|lsmon)
k=j+3

with C independent of j.
This finishes the proof of Theorem 3.2. O

Let b €¢ BMO(R"). We define the maximal operator B f » associated with the
commutator of the Bochner-Riesz operator by

B, f(x) = supb, BA1f ()l

where (B2 £)'(€) = (1 — r2[£[2)%_f(£). We also set
B} f(x) = sup|B; f(x)I.

r>0

THEOREM 3.3. Letl <q <oo,a>n(l—-1/g),8 >a+nfqg—n+1)/2,
and 0 < p < 00.Ifb e BMO(R") and s +1 > a +n(1/q — 1), then B} , maps
HK;,’bp **(R™) continuously into K; P(R™).

Proof. Let us first suppose that 0 < p < 1. In this case, it is enough to show that
for central («, g, s; b)-atom a; supported in B(0, 27),

8
"B*‘baj "K;vP(Rn) S C

with C independent of j. To do so, we write

Jj+1 oo
) k & k 8
1B paill%argny = D 2*PUxeBl yaillfa@m + D 2PlxkB? 411 agar)
7 k=—00 k=j+2
= N; + N,.

Theorem 2.13 in [2] now tells us that whenao > n(l1 —1/g)and § > o +n/q —
n+1D/2=®m+1)/2,

B yajllLa@my < CliajllLan.

Therefore,
j+1 j+i _
Ny <C ) 2*P|gj|fymmy <C > 200 <
k=—o0 k=—oc0

with C independent of j.
Now let k > j + 2 and let b; be the mean value of b on the ball B(0, 27). Then

1B La;(x)] < |b(x) — bj| - |Bda;(x)| + BL((b — bj)a;)(x).

For x € A, we claim
2ilBo—(—1)/2—a+n(1-1/9)]

|x|80+(n+1)/2

Bjaj(x) < C (3.4)
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and ,
2jlbo—(n—1)/2—a+n(1-1/g)]

BX((b — bj)aj)(x) < C|Ibllsmorn) P , (3.5)

where max{(n — 1)/2, a+n/qg — (n+1)/2} < 8o < min{d, (n +1)/2 + s}. The
proof of (3.4) is similar to that of (3.5). We prove only (3.5). Toward this end, we
choose g1, g2 € (1, 00) such that 1/q + 1/g; + 1/g2 = 1. Note that

{®—bj)aj} * Bé(x) =r" fB 020 a; (y)(b(y) — b)) B*((x — y)/r) dy.

We consider the following two cases.

CaseI: 0 < r < 2/.Inthis case, note that | B%(z)| < C(1 + |z])~@++D/D and
|x]| > 2|y|. From Holder’s inequality, it follows that

H{aj (b — b))} * B2 (x)| < r™"|lajl| e | (B — b)) X po,25) | sy

q2 1/q2
X =Yy
X B‘s( ) dy)
(fB(o,zi) r

< Crm"27I%Hima b ppmo v

1 1/q>
. d
(/B(o,zf) (1 + |x — y|/r)s+@+D/2g: y)
2J Go—(—1)/2—a+n(1-1/q))

<C "b“BMO(R") lxl50+(n+1)/2

with C independent of j and r.

Case Il: r > 2/.Inthis case, by the vanishing moments of a; and s-order Taylor
expansion of B%[(x — y)/r] at x/r, we obtain

l{a; (b — b))} + B ()|
-0
< cro! fI e =50 O - vf’B“(x — )| Iy dy,
yl<2

Whereﬂ‘:(ﬂl’ ﬂZ’ ---’,Bn)’ ﬁl+ﬁ2+"'+ﬁn=s+l: ﬁi GNU{O}, 6 € (Oa 1):

and 9 \B /5 \Bn
VA = — e .
(axl) (ax,,)
Using |VPB%(2)| < C(1 + [z])~C¢+®+D/D for any B € (N U {0})" and Holder’s

inequality, we obtain
Haj(b — bj)} * BX(x)| < Cr™ 1205 D 1g; | Lawmy | (B — b}) X po,25) | Larwy

dy /92
X
(/|y|52f 1+|x - 9}’|/r)(5+("+1)/2)‘”)
2jGo—(n—1)/2—a+n(1-1/g))
= ClibllBmorr) | [So+H(n+D)/2

with C independent of j and r.
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Combining Case I with Case II, we obtain (3.5).
Therefore, for k > j + 3, we have
s _ 2Jj@o—(n~1)/2—a+n(1-1/g))
"XkB*,baj “L‘I(R") S C "b"BMO(R") (k - .]) 2k(80+(n+1)/2—n/q) . (3'6)

Thus,

cC
N; < Cllbllemory D (k — j)2U=RCotetD/2=e=n/0) < C|b|po mey
k=j+2

with C independent of j.

This finishes the proof of the theorem for the case 0 < p < 1. Using (3.6) and
Minkowski’s inequality, we can finish the proof of the theorem for the case 1 <
p < oo in a similar way to the proof of Theorem 3.1. We omit the details here.

This finishes the proof of Theorem 3.3. ]

REMARK 3.3. In Theorem 3.3, if « = n(l/p — 1/gq) and 0 < p < 1 then
a+n/qg—m+1)/2=n/p— (n+1)/2, which is called the critical index (see
[12, Chap. 3]). In general, § > o +n/q — (n + 1)/2 cannot be removed.
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