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1. Introduction

The concept of Poisson structure plays an important role in mathematics and
physics. Apparently, Poisson structures in local coordinates were first consid-
ered in 1875 in the work of Lie [20]; from the mathematical viewpoint, such a
theory has been developed since the early 1970s by Lichnerowicz [19], Weinstein
[26], and others. A Poisson manifold is a smooth manifold M endowed with a
Poisson bracket, that is, a Lie bracket { , } on the algebra of smooth functions on
M satisfying Leibniz’s rule. The existence of a Poisson bracket on M is equiva-
lent to the existence of a skew-symmetric contravariant 2-tensor G on M satisfying
[G, G] = 0, where [, ] denotes the Schouten—Nijenhuis bracket [1].

For a Poisson manifold M, Koszul [15] introduced a differential operator A:
A (M) — A¥1(M), defined by A = [i(G), d], where i (G) denotes the contrac-
tion by G and d is the exterior derivative of M. We call it the Koszul differential
and shall write 8§ instead of A. Since §2 = 0 [4; 15], it defines the so-called canon-
ical homology of M. Moreover, as in the Riemannian case, a Poisson Laplacian
A = d§ + éd, which is identically zero, can be defined [15]. A k-form « is called
harmonic (with respect to the Poisson structure) if da = §a = 0. In [4], Brylinski
proposed the following.

PrROBLEM. Give conditions on a compact Poisson manifold M ensuring that any
de Rham cohomology class has a harmonic (with respect to the Poisson structure)
representative «, that is, do = da = 0.

In the particular case of symplectic manifolds, this problem has already been solved
[4; 8; 21]. More precisely, Brylinski [4] proved that for compact K&hler manifolds
this problem has an affirmative solution. However, we exhibit in [8] an exam-
ple of a compact symplectic manifold M* and a de Rham cohomology class a on
M* such that a does not admit harmonic representatives. Independently, Mathieu
[21] proved that a compact symplectic manifold has the conditions of Brylinski’s
problem if and only if it satisfies the hard Lefschetz theorem.

Almost cosymplectic manifolds are another important class of Poisson mani-
folds. Remember that an almost cosymplectic manifold is a (2n + 1)-dimensional
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manifold with a closed 2-form & and a closed 1-form 5 such that n A ®" £ 0
[2]. Roughly speaking, almost cosymplectic manifolds may be considered as the
odd-dimensional counterpart of symplectic manifolds.

The aim of this paper is to study Brylinski’s problem for almost cosymplec-
tic manifolds. The main result, proved in Section 5 (see Theorem 5.4), is that an
important class of almost cosymplectic manifolds satisfies Brylinski’s problem.

MAIN THEOREM. Let M be a compact cosymplectic manifold. Then any de Rham
cohomology class of M has a harmonic (with respect to the Poisson structure) rep-
resentative.

Cosymplectic manifolds appear to be the closest odd-dimensional analog of Kéhler
manifolds; several known results from Kéhler geometry carry over to the cosym-
plectic manifolds [23; 24], particularly topological properties [3; 6]. However, the
proof of our main theorem is not a consequence of the corresponding result for
Kihler manifolds. We need to introduce and study, in Section 3, new operators for
almost cosymplectic manifolds. Moreover, in Section 4 we prove the cosymplec-
tic version of the Hodge decomposition theorem for compact Kidhler manifolds
[12; 27].

We show in Section 6 that the conditions of Brylinski’s problem are not satisfied
for any arbitrary almost cosymplectic manifold. In fact, we construct a 5-dimen-
sional compact manifold M°> and an almost cosymplectic structure on M> such
that M° has a de Rham cohomology class (of degree 3) not admitting a harmonic
representative.

I wish to thank to M. Ferndndez and M. de Ledn for their interest and helpful
conversations.

2. The Koszul Differential of a Poisson Manifold

Let M be a C* manifold. Denote by X(M) the Lie algebra of C* vector fields
on M, and by §F(M) the algebra of C* functions on M. A Poisson bracket { , }
on M is a bilinear mapping

{, SM) x§(M) — S(M)

satisfying the following properties:

(i) (f, gh} = {/f. g}h + g{f, h} (Leibniz’s rule),

(i) {f, g} =—{g, f}, and
(iii) {{f, g}, h} + {{h, 1}, g} + {{g, h}, f} = O (Jacobi’s identity)
for f, g, h € §(M).

Properties (ii) and (iii) mean that { , } endows F(M) with a Lie algebra struc-
ture. Moreover, for fixed f € F(M), property (i) implies that the mapping g —
{f., g} defines a vector field X, which is called the Hamiltonian vector field cor-
responding to f. Thus,

Xr(g) =(fg) for g eFM).

A manifold M endowed with a Poisson bracket is called a Poisson manifold.
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Poisson manifolds were introduced by Lichnerowicz [19], who remarked that
a Poisson bracket gives rise to a skew-symmetric tensor field of type (2, 0) on M
such that

G(df,dg) =(f, g} for f, g e (M). (1)

G is called a Poisson tensor and satisfies [G, G] = 0, where [ , ] is the Schouten—
Nijenhuis bracket [1]. Conversely, given such a tensor G we can recover the Pois-
son bracket by means of (1). The rank of G is called the rank of the Poisson
structure. (In general, the rank of G is not constant.)

The local structure of a Poisson manifold M was elucidated by Weinstein [26].
Concretely, if the Poisson structure has constant rank, then there exist local co-

ordinates {¢',...,q", p1,..., Pr 2\, ..., 2" %"} around each point of M such
that

L9 d

G = —_— A —,
i=1 aq' apt
r (af & of 9
xr=2 | - oz @
i=1 aq apl apl aq

Y afag_afag}
{f. &l ,-z:;{aq" opi  opiaqi )’

(Such local coordinates are called Darboux coordinates.)

Next, we shall denote by A*(M) the space of the differential k-forms on M.
Koszul [15] introduced the differential operator §: A¥(M) — A*1(M) given by
the commutator of i (G) and the exterior differential d; that is,

8 =[i(G),d] =i(G)od —doi(G). 3)

On the other hand, Brylinski [4], inspired by the differential of the Chevalley—
Eilenberg complex C.(F(M), §(M)), has proved that § can be alternatively de-
fined by the formula

S(fodfi Ao Adfiy= D (=D {fo, iYdfi Ao Adfi A+ Adfe

1<i<k
+ Y =D fdifi, f;)
I<i<j<k
/\dfl/\.../\gﬁ/\.../\gﬁ-/\.../\dfk. 4)

Since 82 = 0 [4; 15], the canonical complex of M is the complex

e AL S AR S A ) > -

The homology of this complex is denoted by H*"(M) and is called the canonical
homology of M.

ReEMARK 2.1. The canonical homology was called Poisson homology by Hueb-
schmann [13] and (Koszul-Brylinski)-Poisson homology by Vaisman [25].
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Taking into acount the Hodge theory for Riemannian manifolds, we may consider
a Laplacian related to the Poisson structure A = dé + 8d, which identically van-
ishes [15]. We can define the notion of harmonicity for a compact Poisson mani-
fold as follows: A k-form o on a compact Poisson manifold M is harmonic (with
respect to the Poisson structure) if do = da = 0. Brylinski [4] stated the following
problem.

BRrYLINSKI’S PROBLEM. Give conditions on a compact Poisson manifold M en-
suring that any de Rham cohomology class in H* (M) has a harmonic (with respect
to the Poisson structure) representative «, that is, dae = da = 0.

Brylinski’s problem has already been studied for compact symplectic manifolds
(see [4; 8; 21]).

In [4] Brylinski also defined, for symplectic manifolds, the symplectic star op-
erator %, imitating the definition of the Hodge star operator for Riemannian man-
ifolds. He proved that

x2=17] and 8= (—D*"xdx

on A¥(M). The symplectic star operator  permits us to relate the canonical ho-
mology with the de Rham cohomology of M.

PROPOSITION 2.2 [4].  The symplectic star operator x establishes an isomorphism
of the canonical homology group H;* (M) with the de Rham cohomology group
H?"~%(M) for M a symplectic manifold of dimension 2n.

REMARK 2.3. The symplectic star operator was first considered in the 1950s
by Libermann [17]. Take the isomorphism u: X(M) — A'(M) defined by
w(X) = i(X)w for any X € X(M), and extend it to an algebra isomorphism
W Do XX (M) > @y A¥(M). Hence, the symplectic star operator is defined
for each k-form o by

*(@) = (D" (" (@)vu, 5)

where vy, is the volume form on M given by vy = 0" /n!.

3. Almost Cosymplectic Manifolds

A (2n + 1)-dimensional manifold M is said to have an almost contact structure if
there exists on M a tensor field ¢ of type (1, 1), a vector field &, and a 1-form 75
satisfying

p*=—-I1+n1®E  nE =1

Moreover, if the almost contact structure (¢, &, n) on M admits a compatible Rie-
mannian metric g—that is, if

8@ (X), ¢(Y)) = g(X,Y) — n(X)n(Y)

for X,Y € X(M)—then M is said to have an almost contact metric structure and
a 2-form ® on M can be defined by
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P(X,Y) =g@(X),Y)

for X,Y € X(M). This is called the fundamental 2-form of the almost contact met-
ric structure, and satisfies n A ®" # 0. Moreover, vy = (n A ®")/n! is a volume
form on M.

A (2n + 1)-dimensional manifold M with an almost contact metric structure

(¢’ g:a n, g) is called:

(1) almost cosymplectic iff ® and 5 are closed;
(ii) normal iff Ny + 2dn ® &€ = 0, where Ny is the Nijenhuis torsion of ¢;
(ii1) cosymplectic iff it is normal and almost cosymplectic (or equivalently iff
V¢ = 0).

From now on, we suppose that M is an almost cosymplectic manifold of dimen-
sion (2n + 1), with almost contact metric structure (¢, &, n, g) and fundamental
2-form .

As in the symplectic case, almost cosymplectic manifolds have an associated
Poisson structure [9, 11]. For each function f € §(M), there exists a unique
vector field Xy on M such that

[(Xp)® =df —&(f)n,
n(Xs) =0,

called the Hamiltonian vector field associated to f. Then, the Poisson bracket { , }
on M is defined by

{f, 8} =—-0(Xy, Xp)

for any f, g € F(M). Furthermore, the Poisson tensor G is given by (1) and its
rank is 2n. If we consider Darboux coordinates {g!,..., ", p1,..., pn, 2} ina
neighborhood of every point of M, then the fundamental 2-form ®, the vector
field &, and the 1-form 7 may be written by means of these coordinates as

. d
dpi Ndq', &= 2 7 = dz;

b =

n
i=1

the other elements are given by (2). We then have the Koszul differential for almost
cosymplectic manifolds, and we may ask for the solution of Brylinski’s problem
for such Poisson manifolds.

First, Libermann’s definition (5) of the symplectic star operator permits us to
extend this concept to almost cosymplectic manifolds. We consider the isomor-
phism [9] u: ¥(M) — AY(M) defined by u(X) = i(X)® + (i (X)n)n for any
X € X(M), and we extend it to an algebra isomorphism u: ., Xk(M) —»
Diso A¥(M). Hence, we define the almost cosymplectic star operator as the iso-
morphism x: A¥(M) — A@"+D=*(p1) given by

*(e) = (=D (™ (@)vy ©)
for any o € A¥(M).
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In order to study the almost cosymplectic star operator and the Koszul differ-
ential on almost cosymplectic manifolds, we must recall some known facts. Fer-
nindez, Ibifiez, and de Leén [9; 11] have shown that the space A*(M) may be
decomposed as

A (M) = AL(M) & A5 (M), @)

where the spaces A’g (M) and A’,; (M) are defined as follows:

Ag(M) = {a € A*(M) | i(§)a = 0},
AS(M) ={a € A(M) | n A =0}

In fact, in [9] it is proved that for any « € A¥(M),

a=(@—-—nAia)+nnil)a,

with (@ —n Ai(§)a) € A’g M)and (n Ni(§)a) € A’fT(M). In that paper the fol-
lowing operators on Af (M) were defined: the almost cosymplectic &-star opera-
tor ¢, defined in a similar way to the symplectic star operator; and the differential
operator dg of degree +1, which it is the projection of the exterior differential d
over the space A;‘; (M). It was also shown in [9] that

§= (=" xgdexy and x> =1, ®)

on A’g (M).
Both operators x and ¢ are related in the following way.

PROPOSITION 3.1. Let M be a (2n + 1)-dimensional almost cosymplectic mani-
fold. Then

(1) *(@) = (=D*n A (x¢a) for a € AL(M);

(ii) *(@) = —*z(((§)a) for @ € AX(M).

Proof. First, we shall explain the Libermann-type definition of the almost cosym-
plectic & -star operator. We consider the restriction of the isomorphism p: X(M) —
Al (M) to the subspace X,(M) ={X € X(M) | n(X) = 0}, that is, the isomor-
phism fi: X,(M) — Alg (M), which we extend to an algebra isomorphism. Then

*¢(@) = (—=DFi(a N @)vj, ©)
for any o € A’é(M) whereg vi,[ =i(&)vy.

Now, since vy = 1 A vy, and i is the restriction of p, from (6) and (9) we have
the following.

(i) Fora € Af(M):
xo = (=D¥i(u la)vy = (=D (@ ) (vj An)
= (=D*G (A" )v) An =*g(@) A7
= (—1D*n A xg(@).
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(ii) Fora € A¥(M): & =n Ai(§)a and

*a =+ AiE)a) = (—DXi(u g AiE)a))vy
= (=D¥ig AT EE) @) (0 A vy)
= (—D*a7 @) a)v;, = —x ([ (§)a). O

COROLLARY 3.2.
(i) **a = (=D**a fora e A’;(M);
(i) **a = (=DFa for a € A% (M).

Proof. This follows directly from (8) and Proposition 3.1. O

Notice that, because of the canonical decomposition (7), we deduce from Corollary
3.2 that 2 # I, but
* =1 10)

Next, we introduce a differential operator of degree —1 defined by
8 = (=D 13 dx (11)

on A*(M); we call it the second Koszul differential of an almost cosymplectic
manifold. From (10), 8,2 = 0 and we consider the complex

coo o AR B AK(MY 5 AN M) > -

The homology of this complex will be called second canonical homology of M,
it is denoted by HS"2(M).

ProprosITION 3.3. The almost cosymplectic star operator x establishes an iso-
morphism of the second canonical homology group chanz (M) with the de Rham
cohomology group H?"tD=k(M), for M an almost cosymplectic manifold of di-
mension 2n + 1).

REMARK 3.4. The operators § and 4, are different, as are their homology groups;
that is,
H*" (M) % H{*™(M),

as we shall show in Section 6. Nevertheless, there exists a relation between both
operators, as we shall prove in the following proposition.

PrOPOSITION 3.5. Let M be a (2n + 1)-dimensional almost cosymplectic mani-
fold. Then:

(1) &2 =38 on AL (M);
(ii) fora € A’;}(M),
d2(a) =n A8 (5)a) + B,
where B € AL(M).
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Proof. From (8), (11), Proposition 3.1, and Corollary 3.2, we have the following.
(i) For o € Af(M):
S0 = (=D 3 dx (@) = (=D P d((=1)*n A xea)
= (1 Ad(xsa)) = (—1DF x (7 A d(xs))
= (=% % (§ Ade(*e@)) = (=1 ! xp di 5 ()
= dc.
(ii) For e € A% (M):
S0 = (—D)* P dx (@) = (=D P dx: (i (&))
= (=¥ [dg x¢ ((E) o) + (d — d) x¢ (i (E) )]
= % [—dg *¢ ((E)) + (d — dg) * () )]
= (—1)**'y A xgdg *e ((E)a) — xi (E)(d — di) x5 (i (§))
=nASEE)a) —xi(5)(d — dg) *¢ (i(§)a),
where x£i(§)(d — dg) »¢ (i(§)a) € A’g (M); it may be seen locally that this is
equal to i (£)di (§)(@). 0

REMARK 3.6. Since an almost cosymplectic manifold is a Poisson manifold, the
“Poisson” Laplacian A = d§ + éd identically vanishes. However, we can define
a new Laplacian A, for §,: A, = dé, + §,d. A direct computation in Darboux
coordinates {g',...,q", p1,..., Pn, 2} shows that, for any f € F(M),

d%f
922’

For the Koszul differential 6 we have Brylinski’s problem asking for conditions
to ensure that any de Rham cohomology class in H* (M) has a representative

such that da = da = 0. Therefore, we can formulate a similar problem for the
second Koszul differential §, on almost cosymplectic manifolds.

Ar(f) =—

NEw PROBLEM. Give conditions on a compact almost cosymplectic manifold M
ensuring that any de Rham cohomology class in H*(M) has a representative o
such that do = §,a = 0.

4. A Decomposition Hodge’s Theorem
for Cosymplectic Manifolds

This section is devoted to giving a similar result for compact cosymplectic man-
ifolds to the Hodge decomposition theorem for compact Kédhler manifolds [12;
27]. To prove this result, we follow Chinea, de Ledn, and Marrero [6], where
the authors developed a detailed study of topological properties of cosymplectic
manifolds and introduced the trigraduation of complex forms.
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First of all, we recall the following result about the harmonicity with respect to
the Riemannian metric.

PrOPOSITION 4.1 [6, Prop. 1]. Let M be a (2n + 1)-dimensional compact cosym-

plectic manifold, with almost contact metric structure (¢, §, n, g) and fundamental
2-form ®. Then:
(1) if o is a harmonic k-form then n A « is a harmonic (k 4+ 1)-form;

(i1) « is a harmonic k-form iff « — n N i(§)a is a harmonic k-form and i (§) o is
a harmonic (k — 1)-form;

(iii) A’;I M) = A’;L (M) ® A’;M(M ), where A’}f (M) is the space of harmonic k-
forms and A’;L £ (M) (resp. A’;I,n (M)) is the subspace of A’g (M) (resp. A’fl (M)
of harmonic k-forms.

COROLLARY 4.2. The induced mapping
i5): Ay, (M) — A} (M) (12)
is a linear isomorphism.

Proof. Recall [9] that the mapping z(/é?) A’; M) — A’g"l (M) is defined by
i(/g’\)(a) =i(§)afora € A’f] (M). The result then follows from Proposition 4.1.

. [
Next, we shall present the trigraduation of complex forms. Let M be a (2n + 1)-
dimensional manifold with an almost contact metric structure (¢, &, 1, g) and fun-
damental 2-form ®. We extend ¢ and 1, to a complex tensor field of type (1, 1) and
a complex 1-form, respectively, and denote them by the same symbols. Hence, the
eigenvalues of ¢ are /=1, —/—1, and 0. As in the almost Hermitian manifolds,
we obtain a trigraduation of complex forms on M:

A= P APTT(M).
2,9=0,...,n;r=0,1
prqtr=k
In fact, for a cosymplectic manifold there exist local coordinates {zy, ..., 2., 2}
around each point of M (with z; complex coordinates and z a real coordinate)
such that {dz,, ..., dz,} is a local basis of complex forms of tridegree (1, 0, 0),

{dz1, ..., dz,} of tridegree (0, 1, 0), and {dz} of tridegree (0, 0, 1). It follows that
the set of complex forms {dz;, A---Adzj, NdZg, N--- ANdzg,}and {dzjy A--- A
dzj, Ndzg N---Ndzg, ANdzywithl < ji <--- < j,<nand]1 <k <---<
k, < n are local bases for A?*?:0(M) and AP91 (M), respectively. Moreover,

VI

P =—
2

D dzjAdE, n=dz. (13)
j=1
(See [6] for a complete description of the trigraduation.)

Denote by A% £ (M) (resp. AGy (M) the space of the (resp. harmonic) complex
k-forms « on M such that i (§)x = 0, and denote by A’é,n(M ) (resp. A{‘C H,W(M )
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the space of the (resp. harmonic) complex k-forms o on M such that ¢ A n =
0. Then, Proposition 4.1 and Corollary 4.2 still hold for complex forms. Fur-
thermore, the induced mapping (12) preserves the trigraduation in the following
sense:

(&): AL (M) - AR (M)

is a linear isomorphism.
The following result was proved in [6].

ProOPOSITION 4.3 [6, Prop. 11).  Let M be a (2n+ 1)-dimensional compact cosym-
plectic manifold with almost contact metric structure (¢, €, n, g) and fundamental
2-form ®. Then

AL (M) = @ AP°(),
p+g=k

Ay (M) = P AL (M),
pt+g=k

where AT (M) denotes the space of harmonic complex forms of tridegree
(p.q,0).

Thus, we have the following corollary.

COROLLARY 4.4 (cosymplectic Hodge decomposition theorem). For a compact
cosymplectic manifold M, every harmonic k-form o can be uniquely decomposed
as a sum of harmonic forms of pure type. That is,

o = E ap’q,r,

p+q+r=k
where ap 4, € AT (M).
Proof.

Al (M) = Ay (M) ® Ay (M)
= Ay (M) ®IE) (Al (M)

- @ oo (@ xivon)

ptq=k p+q=k—1

- @ stono( @ wptan)

ptq=k prg=k—1

= P AL ). O

ptq+r=p
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S. Harmonic Cohomology Classes for Cosymplectic Manifolds

The aim of this section is to prove that any compact cosymplectic manifold sat-
isfies Brylinski’s problem. We shall presume throughout that M is a (2n + 1)-
dimensional compact cosymplectic manifold with almost contact metric structure
(¢, &, n, g) and fundamental 2-form ®.
THEOREM 5.1. Fora € AP9" (M), we have

*(@) = (V=177 &, ().
Proof. We take local coordinates {zi, ..., Z,, 2z} such that ® and 7 are given by

(13). Putting z; = xj++/—1y;, wehave ® = 3 %_, dx; Ady; andhence{ax , ay
3 37} form an orthonormal basis with respect to g. Furthermore, g —1 is given by

n 8 2 n a 2 a 2
-1
)5 G 2
].ZI: 0x; ; dyj 9z

then g~! (dzj, dz;) = 2. If we remember that the Hodge star operator is given by
B A (xge) = Ag™H (B, o) - v,
then for«, B € G (M) we have
*g [dzgy A  Adzig AdZy Ao NAZy Adzp AdZp A Adzp AdZp,

= 2B (1) 'z, A Adzg, AdZy A AdTy Adzg AdZg,

Ao ANdzg, ANdzg, ANdz,
*g [dak, A Ndzg Az A+ AdZy Adzp, AdZp A Adzp, AdZp, Ad2]

= 2B (1) gz A Adz AdZy A - AdZ Adzg AdZg,
A ANdzg ANdZg,,

wherea = 1[i(i+ 1)+ j(j — D1+ij+sand {ky, ..., ki, l1, ..., 1, p1, ..., Ps.

qis.---.q}={1,...,n}.
To compute the cosymplectic star operator, we observe that

0 - d _
pwldz) =2/-1—, pldz)=-2vV-1—, pldr)=
0z; 0z
Then, from (6),

* [dzg Aos Adzgg AdZy A+ ANAZy Adzpy AdZpy A Adzp, AdZp,
= 2B (1Y (—1)dz A Adzgg AdZy Ao AdZ Adzg,
ANdZg A+ Ndzg, Ndzg, Ndz,
* [dzg Ao Az AdZy A AdZ Adzp AdZp A Adzp, AdZp, AdZ
= 2B (1Y ()P dz A Adzgg AdZ A -+ AdZ
ANdzg NdZg N--- Ndzg ANdZg,,
where b = J[iG + 1)+ j(j — DI+ jGE+ D+ G +j+r).



194 RAUL IBAREZ

Thus, for a complex form « of pure type (p, g, ),
*(@) = (V=117 &, (). 3

COROLLARY 5.2. Let a be a harmonic form of pure type (p, q,r) on a cosyn-
plectic manifold. Then §,a = da = 0.

Proof. 1f « is harmonic, then x; d x; (@) = 0. It follows from Theorem 5.1 and
the fact that o is of pure type that §;(c) = & *> d * () is also 0.

Now, if @ is harmonic and of pure type (p, ¢, 0), then §o = 0 from Proposition
3.5(1). If @ is harmonic and of pure type (p, g, 1), then i(§)a is harmonic (from
Proposition 4.1) and of pure type (p, g, 0), so 6(i(§)a) = 0 and, realizing that §
preserves the decomposition (7) (see [9]), we have

6(a) =8(n A (@) =nA8@EE)a) =0. [

REMARK 5.3. Theorem 5.1 and Corollary 5.2 hold also for almost cosymplectic
manifolds.

THEOREM 5.4 (Main Theorem). If M is a compact cosymplectic manifold, then
any de Rham cohomology class of M has a representative o such that d,a =
s = 0.

Proof. Taking into account that any de Rham cohomology class is generated by a
harmonic form, Corollary 4.4 and Corollary 5.2 yield the resulit. 0

Note that we have actually proved that compact cosymplectic manifolds satisfy
Brylinski’s problem and the new problem.

6. The Almost Cosymplectic Nilmanifold M>

The purpose of this section is to show that Brylinski’s problem is not satisfied for
any compact almost cosymplectic manifold.

Consider the 5-dimensional compact nilmanifold M> = I'\K described in [9;
11], where K is a simply connected nilpotent Lie group of dimension 5 defined
by the left invariant 1-forms {¢; | 1 < i < 5} such that

doy =doy =doas =0,

doz = o3 A s,

dog = o1 A oy,
and where I' is a discrete and uniform subgroup of K. On account of Kobayashi’s
theorem [14], the manifold M> can be alternatively described as the total space at
the top of a tower M> — M* — T3 of principal S'-bundles.

An easy computation using Nomizu’s theorem [22] shows that the de Rham
cohomology of M? is
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H°(M) = {1},
H'(M) = (1], [e2], Ls]),
H*(M?) = {lo1 A o3 + aa A ais], [og A g, [ A 5],
[oa A 3], [oa A 4], [z A as]),
H>(M?) = {[og Ao Aoz, [0 Aap Aag], [on A s Aas], (14)
[o1 A ag Aas], [aa Aas Al [0z Aas Aasll,
H4(M5) = {[a1 Aax Aaz Aagl, [og A s Aag A as],
[ A a3 A g A asl},
H>(M?) = {[og Aaa Aoz Ao Aas]).
The compact manifold M> does not admit cosymplectic structures because its
minimal model is not formal (see [6]); in particular, the triple Massey prod-
uct {[ee2], [et2], [rs]) is nonzero. However, M> does admit almost cosymplectic
structures.

Let {X;} be the basis dual to {¢;}. Then we define the tensor field of type (1, 1)
over M by

$(X1) = X4, d(X2)=X3, ¢(X5)=0,
o (Xy) =X, ¢(X3)=—X>.
Let the vector field £ = X5, the 1-form n = a5, and the compatible Riemannian
metric g = o + a2 + & + af + 2. Then (¢, &, 1, g) is an almost contact met-

ric structure on M° (arising from a left invariant almost contact metric structure
on K) whose fundamental 2-form & is

D =o) Aag+ oy Aos.

It is now a simple matter to check that d® = dn = 0, from which it follows that
M? is a compact almost cosymplectic manifold.

Moreover, it can be shown that the Poissontensoris G = X4 A X1+ X3A X It
is also easy to verify that, for the Koszul differential § of M with Poisson tensor G,

S(az ANag) =, S(oa Aoz Aay) = —ap Aay,
SlasAhags An)=aiAn, S AazAagAn) =—oAay AR,
and §(B) = 0 for the other left invariant forms .
THEOREM 6.1. The de Rham cohomology class [ay A oz A ag]l on H 3(MP) does

not admit a representative v harmonic (with respect to the Poisson structure); that
is, dv = év = 0.

Proof. Consider the de Rham cohomology class [a2 A a3 A a4] € H>(M?). As
we know, §(ay A oz Aay) = —a; Aap F# 0.
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Suppose that there exists a representative of [oy A a3 A o4] that is harmonic
(with respect to the Poisson structure). Hence, there exists a form 8 € AZ2(M°)

such that
S(ax Aas Aag +do) =0.

Since dé + 8d = 0, we deduce that
dé0 = 8(op ANz Aay) = —ap Aoy = d(—ay). (15)

Multiplying (15) by 5, we obtain that d(w4 A n + 86 A ) = 0. Then (see [9]),
since § preserves the decomposition (7)—that is, §(6) A n = §(6 A n)—we obtain
that

[og A +8(6 Am)] € H(MP).

We consider two possibilities.
Case I: [ag An+8OAn)] =0in H>(M?). Here, there exists a 8 € A (M?)

such that as A n = 6(—6 A n) + dB. We now apply the operator L (defined by
L(a) = a A ®) to both sides, and from (3) and that Ld = dL we obtain

ar Az Aag A= L8(—0 An) + L(dB)
= L(di(G) — i(G)d)(® A 1) +d(LB)
=d(LB+ Li(G)(6 An)) — Li(G)d6 An)
— d(LB + Li(G)O An) +0 Am)

via direct computation, if we realize that d(6 A 1) is a combination of {a; A ay A
a3 AN, QA0 A4 AT, 0] Ad3s Adg AR, o Aaz Aag An}. Hence we have
obtained a contradiction with (14), because the form oy A a3 A aq A 1 defines a
nonzero de Rham cohomology class on M°.

Case 2: [os A1+ 80O An)] # 0in H>(M?). In this case, there exist real
numbers A; e R (i = 1,...,6) and a form 8 € A!(M°) such that

arAn=8-0An)+dB+r(ciAaz+asAn)+l Aay
+ Az0p AN+ Aqop Az + Asaa A otg + Agas A 1. (16)
Next, we apply L to both sides of (16) and obtain
(I—-ADaxAasAhasAn— (A + Ao Aax Aoz Aag+Agag Aoz Aaa An =dy

for some 3-form y. We then obtain a contradiction with (14), except when A; = 1,
Az + A4 =0, and A¢ = 0. In that case, we multiply (16) by n and obtain

O=aAas AN+ o Aag An— Ay Aoz An+ Asay Aag An+d(B An).

Again we have a contradiction with (14) (notice that oy A a4 A 1 belongs to [a; A
oy A azl). O

Therefore, Brylinski’s problem is not satisfied for any compact almost cosymplec-
tic manifold.
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REMARK 6.2. Notice that the differentials § and §, have different behaviors with
regard to Brylinski’s problem and the new problem, respectively. In fact, for M’
the de Rham cohomology class [a; A a3 A a5 + ap A a3 A ag] € H3(M?) satis-
fies the new problem because 8,(ot; A a3 A s + ax A az A o) = 0, but does not
satisfy Brylinski’s problem because § (@) Az Aas +ap Az Aay) = —ay A #
0, as follows from the method used in Theorem 6.1.

We also have the following related questions.

(1) Isthe result of the new problem true for any compact noncosymplectic almost
cosymplectic manifolds?

(ii) Taking into account Mathieu’s result [21], is it true for compact almost co-
symplectic manifolds that Brylinski’s problem is satisfied iff the cosymplectic
hard Lefschetz theorem is satisfied (see [6])? Does the same result hold for
the new problem?

Finally we shall show that there does not exist an isomorphism between the ca-
nonical homology and the second canonical homology for compact almost cosym-
plectic manifolds.

COROLLARY 6.3. Let M = I'\K be a compact alimost cosymplectic nilmanifold
whose almost contact metric structure arises from a left invariant almost contact
metric structure on K. Then there exists an isomorphism

v: H2(RY) — HP(T\K), k>0, (17)
where R is the Lie algebra of K.

Proof. This follows easily from Proposition 3.3 and Nomizu’s theorem [22] for
the de Rham cohomology of a compact nilmanifold. O

In [9; 11] the authors have also proved that under the conditions of Corollary 6.3,
there exists an injective homomorphism

v: H*(R*) - H"™(T\K), k=>0. (18)
Thus, from Corollary 6.3 applied to M, we calculate

HE*" (M) = {{aa}, {oa}, {os}}.
From (18),

H{™(R%) = {{ao}, {03}, {ea), {as)} € H™ (M),
SO
dim H*2(M’) = 3 # 4 = dim H{™(8*) < dim H*™(M°).

Consequently,
H{™(M?) % H{™ (M°).

REMARK 6.4. Notice that H{**(M>) % H*(M?®).
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