Capacity Distortion by Inner Functions in the Unit Ball of \mathbb{C}^n

Domingo Pestana & José M. Rodríguez

1. Introduction

An inner function is a bounded holomorphic function from the unit ball \mathbf{B}_n of \mathbf{C}^n into the unit disk Δ of the complex plane such that the radial boundary values have modulus 1 almost everywhere. If E is a nonempty Borel subset of $\partial \Delta$, we denote by $f^{-1}(E)$ the following subset of the unit sphere \mathbf{S}_n of \mathbf{C}^n :

$$f^{-1}(E) = \{ \xi \in \mathbf{S}_n : \lim_{r \to 1} f(r\xi) \text{ exists and belongs to } E \}.$$

There is a classical lemma of Löwner (see e.g. [R, p. 405; T, p. 322]), about the distortion of boundary sets under inner functions.

LÖWNER'S LEMMA. An inner function f, with f(0) = 0, is a measure-preserving transformation when viewed as a mapping from S_n to $\partial \Delta$. That is, if E is a Borel subset of $\partial \Delta$ then $|f^{-1}(E)| = |E|$, where in each case $|\cdot|$ denotes the corresponding normalized Lebesgue measure.

Here we extend this result to fractional dimensions as follows.

THEOREM 1. Let f be inner in the unit ball of \mathbb{C}^n $(n \ge 1)$, set f(0) = 0, and let E be a Borel subset of $\partial \Delta$. Then:

(i) if
$$0 < \alpha < 2$$
 (and also $\alpha = 0$ if $n = 1$), then

$$\operatorname{cap}_{2n-2+\alpha}(f^{-1}(E)) \ge C(n,\alpha)\operatorname{cap}_{\alpha}(E); \tag{1.1}$$

(ii) if $\alpha = 0$ and n > 1, then

$$\frac{1}{\operatorname{cap}_{2n-2}(f^{-1}(E))} \le C(n) \left(1 + \log \frac{1}{\operatorname{cap}_0(E)} \right). \tag{1.2}$$

Here cap_{α} and cap₀ denote (respectively) α -dimensional Riesz capacity and logarithmic capacity with respect to the distance in S_n given by

$$d(a,b) = |1 - \langle a, b \rangle|^{1/2},$$

where

Received January 19, 1996.

Research of the second author was partially supported by a grant from CYCIT (Ministerio de Educación y Ciencia, Spain).

Michigan Math. J. 44 (1997).

$$\langle a,b\rangle = \sum_{j=1}^{n} a_j \bar{b}_j$$

is the usual inner product in \mathbb{C}^n . This nonisotropic distance is the natural one in the analysis of problems concerning \mathbb{S}_n . Also, this distance is equivalent to the Carnot-Carathéodory distance in the Heisenberg group model for \mathbb{S}_n . We refer to [R] for details about this distance. Also we refer to [C], [KS], and [L] for definitions and basic background on capacity.

Observe that, as a consequence of Theorem 1, one obtains the following.

COROLLARY. If $f: \mathbf{B}_n \to \Delta$ is inner and E is a Borel subset of $\partial \Delta$, then

$$Dim(f^{-1}(E)) \ge 2n - 2 + Dim(E),$$
 (1.3)

where Dim denotes Hausdorff dimension with respect to the distance d.

Analogous results with the Euclidean distance instead of d were obtained in [FPR]. Also, for some applications of these results we refer to [FP1], [FP2], and [FPR].

The basic tool that we use to prove (1.1) is a formula relating the α -energy J_{α} of a complex measure μ (see [L] for basic background on this subject) with its invariant Poisson extension \mathcal{P}_{μ} . This approach is due to Beurling [B].

THEOREM 2. If μ is a complex measure supported on S_n , the unit sphere of \mathbb{C}^n , then for all $n \geq 1$ and $0 < \alpha < 2n$ we have that

$$J_{\alpha}(\mu) \asymp \int_{0}^{1} \left\{ \int_{\mathbf{S}_{n}} |\mathcal{P}_{\mu}(r\xi)|^{2} d\xi \right\} r^{\alpha/2 - 1} (1 - r^{2})^{n - \alpha/2 - 1} dr. \tag{1.4}$$

By the expression $A \approx B$ we mean that the quotient A/B is bounded above and below by constants that can depend at most on n and α .

Recall that the invariant Poisson extension \mathcal{P}_{μ} of a complex measure μ (supported in \mathbf{S}_n) is defined as

$$\mathcal{P}_{\mu}(z) = \int_{\mathbf{S}_n} \mathcal{P}(z, w) \, d\mu(w), \quad z \in \mathbf{B}_n,$$

where

$$\mathcal{P}(z,w) = \frac{(1-|z|^2)^n}{\omega_{2n}|1-\langle z,w\rangle|^{2n}}, \quad z \in \mathbf{B}_n, \ w \in \mathbf{S}_n,$$

is the Poisson–Szegö kernel [R, p. 40; F] and ω_{2n} is the area of S_n . Observe that if n = 1, the Poisson–Szegö kernel is simply the classical Poisson kernel.

Also, if μ is a complex measure on S_n and $0 \le \alpha < 2n$, then the α -energy $J_{\alpha}(\mu)$ of μ is defined as

$$J_{\alpha}(\mu) = \iint_{\mathbf{S}_{\alpha} \times \mathbf{S}_{\alpha}} \Phi_{\alpha}(d(\xi, \eta)) \, d\bar{\mu}(\xi) \, d\mu(\eta),$$

where

$$\Phi_{\alpha}(t) = \begin{cases} \log(1/t) & \text{if } \alpha = 0, \\ 1/t^{\alpha} & \text{if } 0 < \alpha < 2n. \end{cases}$$

If E is a closed subset of S_n , then

 $(\operatorname{cap}_{\alpha}(E))^{-1} = \inf\{J_{\alpha}(\mu) : \mu \text{ a probability measure supported on } E\};$

for $0 < \alpha < 2n$,

$$\log \frac{1}{\operatorname{cap}_0(E)} = \inf \{ J_0(\mu) : \mu \text{ a probability measure supported on } E \},$$

and the infimum is attained by a unique probability measure μ_e , which is called the *equilibrium distribution* of E.

If E is any Borel subset of S_n , then the α -capacity of E is defined as

$$\operatorname{cap}_{\alpha}(E) = \sup \{ \operatorname{cap}_{\alpha}(K) : K \subset E, K \operatorname{compact} \}.$$

The analog of (1.4) with the Euclidean distance instead of d was obtained in [FPR]; it is remarkable that in [FPR] equality is obtained with an explicit constant (see Theorem B in the next section).

In order to prove Theorem 2, we will need a result (that appears in [PR]) about the integral of the square of a hypergeometric function.

THEOREM A [PR]. For all nonnegative integers $p, q, n \ (n \ge 1)$ and for all $\beta = \alpha/4 \ (0 < \beta < n/2)$, we have

$$\int_0^1 \left(\frac{F(t)}{F(1)}\right)^2 t^{p+q+\beta-1} (1-t)^{n-2\beta-1} dt \approx \frac{\Gamma(p+\beta)\Gamma(q+\beta)}{\Gamma(p+n-\beta)\Gamma(q+n-\beta)},$$

where F(t) = F(p, q; p + q + n; t).

By F(a, b; c; t) we denote the usual Gauss hypergeometric function

$$F(a, b; c; t) = \sum_{k=0}^{\infty} \frac{(a)_k (b)_k}{(c)_k} \frac{t^k}{k!},$$

where $(u)_k$ is the Pochammer symbol,

$$(u)_k = u(u+1)\cdots(u+k-1) = \frac{\Gamma(u+k)}{\Gamma(u)},$$

and $\Gamma(\cdot)$ denotes the Gamma function.

The outline of this paper is as follows. In Section 2 we will prove Theorem 2. Theorem 1 will be proved in Section 3.

We would like to thank J. L. Fernández for many useful discussions.

NOTATION. By C we will denote a constant, depending at most on n and α , whose value can change from line to line and even within the same line.

2. Proof of Theorem 2

If we use the kernel $\Phi_{\alpha}(|\xi - \eta|)$ instead of $\Phi_{\alpha}(d(\xi, \eta))$, we obtain the classical α -dimensional Riesz energy that we will denote by $I_{\alpha}(\mu)$. Observe that, if n = 1, then $I_{\alpha/2}(\mu) = J_{\alpha}(\mu)$ for all $0 < \alpha < 2$ and also $I_0(\mu)/2 = J_0(\mu)$. This remark

and the following theorem give the case n=1 of Theorem 2, with equality for an appropriate constant instead of the symbol \approx .

THEOREM B [FPR]. If μ is a complex measure supported on Σ_{N-1} , the unit sphere of \mathbf{R}^N , and if P_{μ} is its classical Poisson extension ($\mathcal{P}_{\mu} = P_{\mu}$ if N = 2), then we have the following.

(i) If $0 < \alpha < N - 1$, then

$$I_{\alpha}(\mu) = K(N, \alpha) \int_{0}^{1} \left\{ \int_{\Sigma_{N-1}} |P_{\mu}(r\xi)|^{2} d\xi \right\} r^{\alpha-1} (1 - r^{2})^{N-2-\alpha} dr,$$

with

$$K(N, \alpha) = \frac{4\pi^{N/2}}{\Gamma(\frac{\alpha}{2})\Gamma(\frac{N-\alpha}{2})}.$$

(ii) If $m = \mu(\Sigma_{N-1})$, then

$$I_{0}(\mu) = \omega_{N} \int_{0}^{1} \int_{\Sigma_{N-1}} \left| P_{\mu}(r\xi) - \frac{m}{\omega_{N}} \right|^{2} d\xi (1 - r^{2})^{N-2} \frac{dr}{r} + \frac{|m|^{2}}{2} \left[\frac{\Gamma'}{\Gamma} \left(\frac{N}{2} \right) - \frac{\Gamma'}{\Gamma} (N - 1) \right],$$

where ω_N denotes the area of Σ_{N-1} . In particular, if N=2,

$$I_0(\mu) = 2\pi \int_0^1 \int_0^{2\pi} \left| P_{\mu}(re^{i\theta}) - \frac{m}{2\pi} \right|^2 d\theta \frac{dr}{r}.$$

Observe that in [FPR] Theorem B was proved only for signed measures, but the result, stated in the actual form, follows simply by splitting μ into real and imaginary parts.

In [F], Folland obtained an expansion in spherical harmonics of the Poisson–Szegö kernel for the unit ball \mathbf{B}_n in \mathbf{C}^n . Let $\Delta_{\mathbf{B}_n}$ be the Laplace–Beltrami operator associated to the Bergman metric on \mathbf{B}_n ,

$$\Delta_{\mathbf{B}_n} = \frac{4}{n+1} (1-|z|^2) \sum_{i,j=1}^n (\delta_{ij} - z_i \bar{z}_j) \frac{\partial^2}{\partial z_i \partial \bar{z}_j}.$$

Here $\Delta_{\mathbf{B}_n}$ is the basic invariant differential operator on the symmetric space $SU(n,1)/U(n) \approx \mathbf{B}_n$. The solution of the Dirichlet problem

$$\begin{cases} \Delta_{\mathbf{B}_n} u = 0 & \text{in } \mathbf{B}_n, \\ u = f & \text{in } \partial \mathbf{B}_n, \end{cases}$$
 (2.1)

with continuous boundary data f, is given by the representation formula

$$u(z) = \int_{\mathbf{S}_n} \mathcal{P}(z, w) f(w) dw.$$

If $\mathcal{H}^{p,q}$ denotes the linear space of restrictions to S_n of harmonic polynomials $g(z, \bar{z})$ on \mathbb{C}^n that are homogeneous of degree p in z and of degree q in \bar{z} , then the solution of the Dirichlet problem (2.1) with $f \in \mathcal{H}^{p,q}$ is given by

$$u(r\xi) = S^{p,q}(r)f(\xi), \quad 0 \le r \le 1, \ \xi \in \mathbf{S}_n,$$
 (2.2)

where

$$S^{p,q}(r) = r^{p+q} \frac{F(p,q; p+q+n; r^2)}{F(p,q; p+q+n; 1)}.$$

Formula (2.2) gives to $S^{p,q}(r)$ a crucial role in obtaining the expansion of the Poisson–Szegö kernel in spherical harmonics.

In [PR] we give uniform asymptotic estimates of these functions when p, q grow to infinity.

Theorem C [PR]. There exists a universal constant C, not depending on n, q, m, z, such that—for all real numbers $m, n \ge 1, q \ge 1/m$, and $0 \le z < 1$ —if we denote

$$G = F(mq, q; mq + q + n; z)B(mq, q + n),$$

where B(x, y) is the usual Euler beta function, then

where

$$L = t_0^{mq} (1 - m(1 - t_0))^q (1 - t_0)^{n-1} \left(\frac{1 - z}{a^2 - b^2 z}\right)^{1/4} \frac{1}{m\sqrt{q+1}}$$

and

$$t_0 = \frac{a + bz - \sqrt{(1-z)(a^2 - b^2 z)}}{2z} = \frac{2}{a + bz + \sqrt{(1-z)(a^2 - b^2 z)}},$$
$$a = 1 + \frac{1}{m}, \quad b = 1 - \frac{1}{m}.$$

Moreover, the inequality is sharp in the sense that

$$\lim_{a \to \infty} \frac{G}{L} = \sqrt{2\pi}.$$

Observe that, without loss of generality, we can suppose $m \ge 1$ because of the symmetry of the hypergeometric function in the two first parameters.

We summarize the results about these spherical harmonics (see e.g. [F]) in the following result. This theorem generalizes the properties of classical spherical harmonics, which are described in [SW].

THEOREM D [F]. The following statements obtain for all $n \geq 2$.

(i) $L^2(\mathbf{S}_n)$ is the orthogonal sum $L^2(\mathbf{S}_n) = \bigoplus_{p,q=0}^{\infty} \mathcal{H}^{p,q}$, and the dimension of $\mathcal{H}^{p,q}$ is

$$D = D(p,q;n) = \frac{(p+q+n-1)(p+n-2)!(q+n-2)!}{p!\,q!\,(n-1)!\,(n-2)!}.$$
 (2.3)

(ii) If $f_1^{p,q}$, $f_2^{p,q}$, ..., $f_D^{p,q}$ is any orthonormal basis for $\mathcal{H}^{p,q}$, then

$$\sum_{j=1}^{D} f_j^{p,q}(\xi) \overline{f_j^{p,q}(\eta)} = H^{p,q}(\langle \xi, \eta \rangle), \quad \xi, \eta \in \mathbf{S}_n, \tag{2.4}$$

where $H^{p,q}(\langle \cdot, \eta \rangle)$ is the zonal harmonic of degrees p and q and pole η .

(iii) The L^2 -norm of the function $H^{p,q}(\langle \xi, \cdot \rangle)$ is

$$\int_{\mathbf{S}_n} |H^{p,q}(\langle \xi, \eta \rangle)|^2 d\eta = \frac{D}{\omega_{2n}}, \quad \text{for all } \xi \in \mathbf{S}_n, \tag{2.5}$$

where $d\eta$ denotes the usual Lebesgue surface measure in S_n (not normalized).

(iv) The function $H^{p,q}$ has the following explicit expression in terms of the Jacobi polynomials:

$$H^{p,q}(z) = \frac{D}{\omega_{2n}} \rho^{u-v} e^{i(p-q)\theta} \frac{P_v^{(n-2,u-v)}(2\rho^2 - 1)}{P_v^{(n-2,u-v)}(1)},$$
 (2.6)

where $z = \rho e^{i\theta}$, $u = \max\{p, q\}$, $v = \min\{p, q\}$, and

$$P_m^{(a,b)}(t) = \frac{(-1)^m}{m! \, 2^m (1-t)^a (1+t)^b} \frac{d^m}{dt^m} \left[(1-t)^{a+m} (1+t)^{b+m} \right]$$

is the Jacobi polynomial of degree m and parameters a, b ([L1, p. 275; AS, p. 785]; observe that in [F] there is a typographical error in the definition of these polynomials). Moreover, $\{H^{p,q}(z)\}_{p,q=0}^{\infty}$ is an orthogonal basis of $L^2(\{|z| < 1\})$ with respect to the measure $(1 - |z|^2)^{n-2} dx dy$ (since every polynomial in the variables z and \bar{z} can be expressed as a finite linear combination of $\{H^{p,q}(z)\}_{p,q=0}^{\infty}$).

(v) For $0 \le r < 1$ and $\xi, \eta \in \mathbf{S}_n$, we have that

$$\mathcal{P}(r\xi,\eta) = \sum_{p,q=0}^{\infty} S^{p,q}(r) H^{p,q}(\langle \xi, \eta \rangle). \tag{2.7}$$

We need to obtain the expansion of the integral kernel $\Phi_{\alpha}(d(\xi, \eta))$ in terms of these spherical harmonics.

First, fix α , with $0 < \alpha < 2n$, and let $\beta = \alpha/4$. If we denote by g(z) the function of one complex variable,

$$g(z) = \frac{1}{|1 - z|^{\alpha/2}} = \frac{1}{|1 - z|^{2\beta}}, \quad |z| < 1,$$
 (2.8)

then we can express the kernel $\Phi_{\alpha}(d(\xi, \eta))$ in terms of g as $\Phi_{\alpha}(d(\xi, \eta)) = g(\langle \xi, \eta \rangle)$. Now, develop g(z) as a Fourier series in the following way.

LEMMA 1. For all $n \ge 2$ and $0 < \beta < n/2$, we have the Fourier expansion

$$g(z) = \sum_{p,q=0}^{\infty} g^{p,q} H^{p,q}(z),$$

where $g^{p,q}$ has the expression

$$g^{p,q} = 2\pi^n \frac{\Gamma(n-2\beta)}{\Gamma(\beta)^2} \frac{\Gamma(p+\beta)\Gamma(q+\beta)}{\Gamma(p+n-\beta)\Gamma(q+n-\beta)}.$$
 (2.9)

In order to prove this result, we will need the following lemma.

LEMMA 2. For all $0 \le \rho < 1$, $\beta > 0$, and all integers m, we have that

$$\int_0^{2\pi} \frac{e^{im\theta}}{|1 - \rho e^{i\theta}|^{2\beta}} d\theta = 2\pi \rho^{|m|} \frac{\Gamma(|m| + \beta)}{|m|! \Gamma(\beta)} F(\beta, |m| + \beta; |m| + 1; \rho^2). \quad (2.10)$$

Proof. Without loss of generality we can assume that $m \ge 0$, since the case m < 0 will follow by conjugation. We have that

$$\begin{split} &\int_0^{2\pi} e^{im\theta} (1 - \rho e^{i\theta})^{-\beta} (1 - \rho e^{-i\theta})^{-\beta} d\theta \\ &= \int_0^{2\pi} e^{im\theta} \Biggl(\sum_{k=0}^\infty \frac{(\beta)_k}{k!} \rho^k e^{ik\theta} \Biggr) \Biggl(\sum_{j=0}^\infty \frac{(\beta)_j}{j!} \rho^j e^{-ij\theta} \Biggr) d\theta \\ &= 2\pi \sum_{k=0}^\infty \frac{(\beta)_k}{k!} \frac{(\beta)_{k+m}}{(k+m)!} \rho^{2k+m}, \end{split}$$

and the lemma follows by substituting the definition of the Pochammer symbols and using the definition of the hypergeometric function. \Box

Proof of Lemma 1. We will use in this proof the notation $\langle \phi, \psi \rangle$ to denote the usual scalar product in $L^2(\{|z| < 1\})$ with respect to the measure $(1 - |z|^2)^{n-2} dx dy$. This will not cause confusion since we will not use the inner product in \mathbb{C}^n within this proof.

We have that

$$g^{p,q} = \frac{\langle g, H^{p,q} \rangle}{\langle H^{p,q}, H^{p,q} \rangle}.$$
 (2.11)

We recall [R, p. 15] that

$$\int_{\mathbf{S}_n} \varphi(\langle \xi, \eta \rangle) \, d\eta = \frac{(n-1)\omega_{2n}}{\pi} \int_0^{2\pi} \int_0^1 \varphi((\rho e^{i\theta})(1-\rho^2)^{n-2} \rho \, d\rho \, d\theta, \qquad (2.12)$$

for all $\varphi \in L^1(\{|z| < 1\})$ with respect to the measure $(1 - |z|^2)^{n-2} dx dy$. Using (2.5) and (2.12), we deduce that

$$\begin{split} \frac{D}{\omega_{2n}} &= \int_{S_n} |H^{p,q}(\langle \xi, \eta \rangle)|^2 d\eta \\ &= \frac{(n-1)\omega_{2n}}{\pi} \int_0^{2\pi} \int_0^1 |H^{p,q}(\rho e^{i\theta})|^2 (1-\rho^2)^{n-2} \rho \, d\rho \, d\theta; \end{split}$$

hence

$$\langle H^{p,q}, H^{p,q} \rangle = \frac{\pi D}{(n-1)(\omega_{2n})^2}.$$
 (2.13)

On the other hand, since |p - q| = u - v,

$$\langle g, H^{p,q} \rangle = \frac{D}{\omega_{2n} P_v^{(n-2,u-v)}(1)} \cdot \int_0^1 \int_0^{2\pi} \frac{e^{i(q-p)\theta}}{|1 - \rho e^{i\theta}|^{2\beta}} P_v^{(n-2,u-v)}(2\rho^2 - 1)\rho^{u-v}(1 - \rho^2)^{n-2} d\theta \rho d\rho \quad \text{(by (2.6))}$$

$$= \frac{2\pi D}{\omega_{2n} P_{v}^{(n-2,u-v)}(1)} \frac{\Gamma(u-v+\beta)}{(u-v)! \Gamma(\beta)} \cdot \int_{0}^{1} F(\beta, u-v+\beta; u-v+1; \rho^{2}) P_{v}^{(n-2,u-v)}(2\rho^{2}-1)\rho^{2(u-v)}(1-\rho^{2})^{n-2}\rho \, d\rho \quad \text{(by (2.10))}.$$

By making the variable change $t = 2\rho^2 - 1$, we obtain

$$\langle g, H^{p,q} \rangle = \frac{2\pi D}{2^{n+u-v} \omega_{2n} P_v^{(n-2,u-v)}(1)} \frac{\Gamma(u-v+\beta)}{(u-v)! \Gamma(\beta)} \cdot \int_{-1}^{1} F(\beta, u-v+\beta; u-v+1; (1+t)/2) P_v^{(n-2,u-v)}(t) (1-t)^{n-2} (1+t)^{u-v} dt.$$

If we denote by (ϕ, ψ) the scalar product in $L^2[-1, 1]$ with respect to the measure $(1-t)^{n-2}(1+t)^{u-v} dt$, then the preceding formula can be written as

$$\langle g, H^{p,q} \rangle = \frac{2\pi D}{2^{n+u-v} \omega_{2n} P_v^{(n-2,u-v)}(1)} \frac{\Gamma(u-v+\beta)}{(u-v)! \Gamma(\beta)} (F, P_v^{(n-2,u-v)}), \quad (2.14)$$

where F denotes the hypergeometric function $F(\beta, u-v+\beta; u-v+1; (1+t)/2)$. It is known [L2, p. 29] that:

if
$$a, b > -1$$
, $\lambda = a + b + 1$, $-1 \le w \le 1$, and $t < 1/2$, then
$$G(w) \equiv F(a_1, a_2; a_3; (1 + w)t) = \sum_{v=0}^{\infty} C_v P_v^{(a,b)}(w),$$

where

$$C_v = \frac{(a_1)_v (a_2)_v (2t)^v}{(a_3)_v (v+\lambda)_v} {}_3F_2(b+1+v, a_1+v, a_2+v; \lambda+1+2v, a_3+v; 2t).$$

Here $_3F_2$ is the generalized hypergeometric function

$$_{3}F_{2}(\alpha_{1}, \alpha_{2}, \alpha_{3}; \beta_{1}, \beta_{2}; t) = \sum_{k=0}^{\infty} \frac{(\alpha_{1})_{k}(\alpha_{2})_{k}(\alpha_{3})_{k}}{(\beta_{1})_{k}(\beta_{2})_{k}} \frac{t^{k}}{k!}.$$

This gives

$$\frac{(G, P_v^{(a,b)})}{(P_v^{(a,b)}, P_v^{(a,b)})} = C_v \tag{2.15}$$

for all t < 1/2. Then, by making $t \to 1/2$, we obtain that (2.15) is also true for t = 1/2. Therefore,

$$(F, P_{v}^{(n-2,u-v)})$$

$$= C_{v}(P_{v}^{(n-2,u-v)}, P_{v}^{(n-2,u-v)})$$

$$= \frac{(\beta)_{v}(u-v+\beta)_{v}}{(u-v+1)_{v}(u+n-1)_{v}}$$

$$\cdot {}_{3}F_{2}(u+1, v+\beta, u+\beta; u+v+n, u+1; 1)(P_{v}^{(n-2,u-v)}, P_{v}^{(n-2,u-v)})$$

$$= \frac{(\beta)_{v}(u-v+\beta)_{v}}{(u-v+1)_{v}(u+n-1)_{v}}$$

$$\cdot F(v+\beta, u+\beta; u+v+n; 1) \frac{2^{u-v+n-1}}{u+v+n-1} \frac{(v+n-2)! u!}{(u+n-2)! v!},$$

where we have used the fact [L1, p. 276; AS, p. 774] that

$$(P_v^{(a,b)}, P_v^{(a,b)}) = \frac{2^{a+b+1}\Gamma(v+a+1)\Gamma(v+b+1)}{(2v+a+b+1)v! \Gamma(v+a+b+1)}.$$

Hence, using the Gauss summation formula

$$F(a, b; c; 1) = \frac{\Gamma(c)\Gamma(c - a - b)}{\Gamma(c - a)\Gamma(c - b)} \quad \text{if } c - a - b > 0$$

[L1, p. 99; AS, p. 556], we obtain that

$$(F, P_v^{(n-2,u-v)}) = 2^{u-v+n-1}(\beta)_v (u-v+\beta)_v \frac{(v+n-2)! (u-v)! \Gamma(n-2\beta)}{v! \Gamma(u+n-\beta) \Gamma(v+n-\beta)}.$$

By substituting this formula (which makes sense since $n - 2\beta > 0$) in (2.14), we obtain that

$$\langle g, H^{p,q} \rangle = \frac{(n-2)! \pi D}{\omega_{2n}} \frac{\Gamma(n-2\beta)}{\Gamma(\beta)^2} \frac{\Gamma(u+\beta)\Gamma(v+\beta)}{\Gamma(u+n-\beta)\Gamma(v+n-\beta)}$$

$$= \frac{(n-2)! \pi D}{\omega_{2n}} \frac{\Gamma(n-2\beta)}{\Gamma(\beta)^2} \frac{\Gamma(p+\beta)\Gamma(q+\beta)}{\Gamma(p+n-\beta)\Gamma(q+n-\beta)},$$
(2.16)

where we have used the fact [L1, p. 274; AS, p. 774] that

$$P_v^{(n-2,u-v)}(1) = \frac{(v+n-2)!}{v!(n-2)!}.$$

The lemma follows now by substituting (2.13) and (2.16) in (2.11), and by using that $\omega_{2n} = 2\pi^n/(n-1)!$.

Proof of Theorem 2. We choose an orthonormal basis $\{f_j^{p,q}\}_{j=1}^D$ of $\mathcal{H}^{p,q}$, for each $p,q \geq 0$. Let $\{\mu_j^{p,q}\}$ $(p,q \geq 0, 1 \leq j \leq D = D(p,q;n))$ be the Fourier coefficients of μ ; that is,

$$\mu \sim \sum_{p,q=0}^{\infty} \sum_{j=1}^{D} \mu_j^{p,q} f_j^{p,q}.$$

Recall that \mathcal{P}_{μ} is defined by

$$\mathcal{P}_{\mu}(r\xi) = \int_{\mathbf{S}_n} \mathcal{P}(r\xi, \eta) \, d\mu(\eta),$$

where $\mathcal{P}(r\xi, \eta)$ is the Poisson–Szegö kernel

$$\mathcal{P}(r\xi,\eta) = \frac{1}{\omega_{2n}} \frac{(1-r^2)^n}{|1-r\langle\xi,\eta\rangle|^{2n}}, \quad 0 \le r < 1, \ \xi,\eta \in \mathbf{S}_n.$$

Recalling (2.4) and (2.7), we deduce that

$$\mathcal{P}(r\xi,\eta) = \sum_{p,q=0}^{\infty} S^{p,q}(r) H^{p,q}(\langle \xi, \eta \rangle) = \sum_{p,q,j} S^{p,q}(r) f_j^{p,q}(\xi) \overline{f_j^{p,q}(\eta)}.$$

Now, Plancherel's theorem gives that

$$\mathcal{P}_{\mu}(r\xi) = \sum_{p,q,j} S^{p,q}(r) \mu_j^{p,q} f_j^{p,q}(\xi).$$

Again using Plancherel's theorem, we obtain that

$$\int_{\mathbf{S}_n} |\mathcal{P}_{\mu}(r\xi)|^2 d\xi = \sum_{p,q,j} (S^{p,q}(r))^2 |\mu_j^{p,q}|^2,$$

and so, if we denote by Λ the right-hand side in (1.4), we have that (recall $\beta = \alpha/4$)

$$\Lambda = \sum_{p,q,j} |\mu_j^{p,q}|^2 \int_0^1 (S^{p,q}(r))^2 r^{2\beta-1} (1-r^2)^{n-2\beta-1} dr;$$

substituting $r^2 = t$, using the definition of $S^{p,q}(r)$ yields

$$\Lambda = \frac{1}{2} \sum_{p,q,j} |\mu_{j}^{p,q}|^{2} \int_{0}^{1} \left(\frac{F(p,q;p+q+n;t)}{F(p,q;p+q+n;1)} \right)^{2} t^{p+q+\beta-1} (1-t)^{n-2\beta-1} dt
\approx \sum_{p,q=0}^{\infty} \frac{\Gamma(p+\beta)\Gamma(q+\beta)}{\Gamma(p+n-\beta)\Gamma(q+n-\beta)} \sum_{j=1}^{D} |\mu_{j}^{p,q}|^{2}
\approx \sum_{p,q=0}^{\infty} g^{p,q} \sum_{j=1}^{D} |\mu_{j}^{p,q}|^{2},$$
(2.17)

where we have used Theorem A and Lemma 1.

On the other hand, using again Lemma 1 and (2.4),

$$\Phi_{\alpha}(d(\xi,\eta)) = g(\langle \xi,\eta \rangle) = \sum_{p,q=0}^{\infty} g^{p,q} H^{p,q}(\langle \xi,\eta \rangle) = \sum_{p,q,j} g^{p,q} f_j^{p,q}(\xi) \overline{f_j^{p,q}(\eta)};$$

using Plancherel's theorem and (2.17), we obtain that

$$\int_{S_n} \Phi_{\alpha}(d(\xi, \eta)) \, d\mu(\eta) = \sum_{p,q,j} g^{p,q} \mu_j^{p,q} f_j^{p,q}(\xi),$$

$$J_{\alpha}(\mu) = \sum_{p,q,j} g^{p,q} |\mu_j^{p,q}|^2 \times \Lambda.$$

This finishes the proof of Theorem 2.

3. Proof of Theorem 1

We need the following lemmas.

LEMMA 3 [FPR]. Let μ be a finite positive measure in $\partial \Delta$, and let f be an inner function. Then there exists a unique positive measure \tilde{v} in \mathbf{S}_n such that $\mathcal{P}_{\mu} \circ f = \mathcal{P}_{\tilde{v}}$ and

$$\tilde{\nu}(f^{-1}(\text{support }\mu)) = \tilde{\nu}(\mathbf{S}_n).$$

Moreover, if f(0) = 0, then

$$\frac{1}{\omega_{2n}}\tilde{v}(\mathbf{S}_n) = \frac{1}{2\pi}\mu(\partial\Delta).$$

A different normalization is useful; choosing $\nu = (2\pi/\omega_{2n})\tilde{\nu}$, one obtains

$$\mathcal{P}_{\nu} = \frac{2\pi}{\omega_{2n}} \mathcal{P}_{\mu} \circ f \quad \text{and} \quad \nu(\mathbf{S}_n) = \mu(\partial \Delta).$$

The following lemma is well known.

LEMMA 4 (Subordination principle). Let $f: \mathbf{B}_n \to \Delta$ be a holomorphic function such that f(0) = 0, and let $v: \Delta \to \mathbf{R}$ be a subharmonic function. Then, for all $0 \le r < 1$,

$$\frac{1}{\omega_{2n}}\int_{\mathbf{S}_n}v(f(r\xi))\,d\xi\leq \frac{1}{2\pi}\int_0^{2\pi}v(re^{i\theta})\,d\theta.$$

LEMMA 5. Let μ be a complex measure on $\partial \Delta$, let f be an inner function with f(0) = 0, and let ν be a complex measure on \mathbf{S}_n such that $\mathcal{P}_{\nu} = (2\pi/\omega_{2n})\mathcal{P}_{\mu} \circ f$. Then:

(i) If $n \ge 1$ and $0 < \alpha < 2$ or if n = 1 and $\alpha = 0$, then there exists a constant C depending at most on n and α such that

$$J_{2n-2+\alpha}(\nu) \leq CJ_{\alpha}(\mu).$$

(ii) If $\alpha = 0$, $n \ge 2$, and $m = \mu(\partial \Delta)$, then there exists a constant C depending at most on n such that

$$J_{2n-2}(v) \le C(|m|^2 + J_0(\mu)).$$

Proof. Since $v = |\mathcal{P}_{\mu}|^2$ is subharmonic (in the Euclidean sense), we obtain by subordination (Lemma 4) that

$$\int_{\mathbf{S}_n} |\mathcal{P}_{\nu}|^2 d\xi = \left(\frac{2\pi}{\omega_{2n}}\right)^2 \int_{\mathbf{S}_n} |\mathcal{P}_{\mu}(f)|^2 d\xi \le \frac{2\pi}{\omega_{2n}} \int_0^{2\pi} |\mathcal{P}_{\mu}|^2 d\theta. \tag{3.1}$$

Using Theorem 2 twice, the inequality (3.1), and the fact that $n \ge 1$, we have that

$$J_{2n-2+\alpha}(\nu) \asymp \int_{0}^{1} \left\{ \int_{S_{n}} |\mathcal{P}_{\nu}(r\xi)|^{2} d\xi \right\} r^{n-2+\alpha/2} \frac{dr}{(1-r^{2})^{\alpha/2}}$$

$$\leq C \int_{0}^{1} \left\{ \int_{0}^{2\pi} |\mathcal{P}_{\mu}(re^{i\theta})|^{2} d\theta \right\} r^{n-1+\alpha/2-1} \frac{dr}{(1-r^{2})^{\alpha/2}}$$

$$\leq C \int_{0}^{1} \left\{ \int_{0}^{2\pi} |\mathcal{P}_{\mu}(re^{i\theta})|^{2} d\theta \right\} r^{\alpha/2-1} \frac{dr}{(1-r^{2})^{\alpha/2}}$$

$$\leq C J_{\alpha}(\mu).$$

This finishes the proof of part (i) in the case $n \ge 1$, $0 < \alpha < 2$. The other case follows from [FPR, Lemma 5], since $J_0(\nu) = I_0(\nu)/2$.

In order to prove (ii), using that $m = \mu(\partial \Delta) = \nu(S_n)$ we obtain that

$$\int_{\mathbf{S}_n} \left| \mathcal{P}_{\nu}(r\xi) - \frac{m}{\omega_{2n}} \right|^2 d\xi + \frac{|m|^2}{\omega_{2n}} = \int_{\mathbf{S}_n} |\mathcal{P}_{\nu}(r\xi)|^2 d\xi.$$

Integrating this equality and using Theorem 2, we have that

$$\begin{split} J_{2n-2}(\nu) &\asymp \int_0^1 \int_{\mathbf{S}_n} \left| \mathcal{P}_{\nu}(r\xi) - \frac{m}{\omega_{2n}} \right|^2 d\xi \, r^{n-2} dr + \frac{|m|^2}{(n-1)\omega_{2n}} \\ &= \int_0^1 \int_{\mathbf{S}_n} \left| \frac{2\pi}{\omega_{2n}} (\mathcal{P}_{\mu} \circ f)(r\xi) - \frac{m}{\omega_{2n}} \right|^2 d\xi \, r^{n-2} dr + \frac{|m|^2}{(n-1)\omega_{2n}} \\ &\leq C \int_0^1 \int_0^{2\pi} \left| \mathcal{P}_{\mu}(re^{i\theta}) - \frac{m}{2\pi} \right|^2 d\theta \, \frac{dr}{r} + \frac{|m|^2}{(n-1)\omega_{2n}} \\ &\leq C(|m|^2 + I_0(\mu)) \leq C(|m|^2 + J_0(\mu)), \end{split}$$

where we have used subordination (Lemma 4) with $v = |\mathcal{P}_{\mu} - m/(2\pi)|^2$ and Theorem B.

Finally we can finish the proof of Theorem 1. We may assume that E is closed. In order to prove (1.1), let us denote by μ_e the α -equilibrium probability distribution of E, and let ν be the probability measure in \mathbf{S}_n such that $\mathcal{P}_{\nu} = (2\pi/\omega_{2n})\mathcal{P}_{\mu_e} \circ f$. By Lemma 5,

$$J_{2n-2+\alpha}(\nu) \le CJ_{\alpha}(\mu_e) = C(\operatorname{cap}_{\alpha}(E))^{-1}.$$
 (3.2)

But, from Lemma 3, $v(f^{-1}(E)) = 1$, and so

$$J_{2n-2+\alpha}(\nu) = \iint_{f^{-1}(E)\times f^{-1}(E)} \Phi_{2n-2+\alpha}(d(\xi,\eta)) \, d\nu(\xi) \, d\nu(\eta).$$

Now let $\{K_j\}$ be an increasing sequence of compact subsets of $f^{-1}(E)$ such that $\nu(K_j) \nearrow 1$. Then, for each j,

$$J_{2n-2+\alpha}(\nu) = \iint_{f^{-1}(E)\times f^{-1}(E)} \Phi_{2n-2+\alpha}(d(\xi,\eta)) \, d\nu(\xi) \, d\nu(\eta)$$

$$\geq \nu(K_j)^2 \iint_{K_j \times K_j} \Phi_{2n-2+\alpha}(d(\xi,\eta)) \, \frac{d\nu(\xi)}{\nu(K_j)} \, \frac{d\nu(\eta)}{\nu(K_j)}$$

$$\geq \nu(K_j)^2 (\text{cap}_{2n-2+\alpha}(K_j))^{-1}$$

$$\geq \nu(K_j)^2 (\text{cap}_{2n-2+\alpha}(f^{-1}(E)))^{-1}.$$

Consequently, if we let $j \to \infty$, we obtain that

$$J_{2n-2+\alpha}(\nu) \ge (\operatorname{cap}_{2n-2+\alpha}(f^{-1}(E)))^{-1}. \tag{3.3}$$

Therefore, in the case $0 < \alpha < 2$, $n \ge 1$, (1.1) now follows from (3.2) and (3.3). The case $\alpha = 0$, n = 1, follows from [FPR, Thm. 1].

In order to prove (1.2) we proceed as follows. Let μ_e be the equilibrium distribution of E for the logarithmic capacity, and let ν be the measure supported on S_n such that $\mathcal{P}_{\nu} = (2\pi/\omega_{2n})\mathcal{P}_{\mu_e} \circ f$. Using Lemma 5,

$$J_{2n-2}(\nu) \le C(1+J_0(\mu_e)) = C\left(1+\log\frac{1}{\operatorname{cap}_0(E)}\right).$$

Now, to finish the proof, one need only follow the same approach used to prove part (i).

References

- [AS] M. Abramowitz and I. A. Stegun, *Handbook of mathematical functions with formulas, graphs, and mathematical tables,* 9th ed. Dover, New York, 1970.
 - [B] A. Beurling, Ensembles exceptionnels, Acta Math. 72 (1940), 1–13.
 - [C] L. Carleson, Selected problems on exceptional sets. Van Nostrand, Princeton, NJ, 1967.
- [FP1] J. L. Fernández and D. Pestana, Distortion of boundary sets under inner functions and applications, Indiana Univ. Math. J. 41 (1992), 439–448.
- [FP2] ——, Radial images by holomorphic mappings, Proc. Amer. Math. Soc. 124 (1996), 429–435.
- [FPR] J. L. Fernández, D. Pestana, and J. M. Rodríguez, *Distortion of boundary sets under inner functions* (II), Pacific J. Math. 172 (1996), 49–81.
 - [F] G. B. Folland, Spherical harmonic expansion of the Poisson–Szegö kernel for the ball, Proc. Amer. Math. Soc. 47 (1975), 401–408.
 - [KS] J. P. Kahane and R. Salem, *Ensembles parfaits et sèries trigonomètriques*, Hermann, Paris, 1963.
 - [L] N. S. Landkof, Foundations of modern potential theory, Springer, New York, 1972.
 - [L1] Y. L. Luke, *The special functions and their approximations*, vol. I, Academic Press, New York, 1969.
 - [L2] ——, The special functions and their approximations, vol. II, Academic Press, New York, 1969.
 - [PR] D. Pestana and J. M. Rodríguez, *Uniform asymptotic estimates of hypergeometric functions appearing in potential theory*, Methods Appl. Anal. 3 (1996), 80–97.
 - [R] W. Rudin, Function theory in the unit ball of \mathbb{C}^n , Springer, New York, 1980.
- [SW] E. Stein and G. Weiss, *Introduction to Fourier analysis on Euclidean spaces*, Princeton Univ. Press, Princeton, NJ, 1971.
 - [T] M. Tsuji, Potential theory in modern function theory, Chelsea, New York, 1975.

D. Pestana
Departamento de Matemáticas
Universidad Carlos III de Madrid
Butarque, 15
Leganés, 28911 Madrid
Spain

domingo@dulcinea.uc3m.es

J. M. Rodríguez
Departamento de Matemáticas
Universidad Carlos III de Madrid
Butarque, 15
Leganés, 28911 Madrid
Spain

rodrig@dulcinea.uc3m.es