Capacity Distortion by Inner Functions
in the Unit Ball of C”"

DoOMINGO PESTANA & JOSE M. RODRIGUEZ

1. Introduction

An inner function is a bounded holomorphic function from the unit ball B,, of C”
into the unit disk A of the complex plane such that the radial boundary values have
modulus 1 almost everywhere. If E is a nonempty Borel subset of A, we denote
by f~1(E) the following subset of the unit sphere S,, of C":

fUE) ={& €8, :lim,_,; f(r&) exists and belongs to E }.

There is a classical lemma of Lowner (see e.g. [R, p. 405; T, p. 322]), about the
distortion of boundary sets under inner functions.

LOWNER’SLEMMA. Aninner function f, with f(0) = 0, is a measure-preserving
transformation when viewed as a mapping from S,, to dA. That is, if E is a Borel
subset of 0A then | f ~1(E)| = | E|, where in each case | - | denotes the correspond-
ing normalized Lebesgue measure.

Here we extend this result to fractional dimensions as follows.

THEOREM 1. Let f be inner in the unit ball of C" (n > 1), set f(0) = 0, and let
E be a Borel subset of 0A. Then:

(1) f 0O<a <2(andalsoa =0 ifn = 1), then
capan—2+a(f T (E)) = C(n, a) capy(E); (1.1)
(ii) if c =0andn > 1, then

1
C 1+1
capan—2(f-(E)) (")( g

1
_ . 1.2
CaPo(E)) (1.2

Here cap, and capg denote (respectively) «-dimensional Riesz capacity and log-
arithmic capacity with respect to the distance in S,, given by

d(a,b) = |1 — {a, b)|'/?,

where
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(a,b) = a;b;
j=1

is the usual inner product in C”. This nonisotropic distance is the natural one in
the analysis of problems concerning S,,. Also, this distance is equivalent to the
Carnot—Carathéodory distance in the Heisenberg group model for S,. We refer
to [R] for details about this distance. Also we refer to [C], [KS], and [L] for
definitions and basic background on capacity.

Observe that, as a consequence of Theorem 1, one obtains the following.

CoRrOLLARY. If f:B, — A isinner and E is a Borel subset of A, then
Dim(f~'(E)) > 2n — 2 + Dim(E), (13)

where Dim denotes Hausdor{f dimension with respect to the distance d.

Analogous results with the Euclidean distance instead of d were obtained in [FPR].
Also, for some applications of these results we refer to [FP1], [FP2], and [FPR].

The basic tool that we use to prove (1.1) is a formula relating the a-energy J,
of a complex measure u (see [L] for basic background on this subject) with its
invariant Poisson extension P, . This approach is due to Beurling [B].

THEOREM 2. If u is a complex measure supported on S,,, the unit sphere of C",
then foralln > 1 and 0 < a < 2n we have that

1
Ja(u)xf{ IPu(rg‘)lsz}r"‘/z“l(l——rz)"_“/z_ldr. (14)
0 S,

By the expression A < B we mean that the quotient A/B is bounded above and
below by constants that can depend at most on » and «.

Recall that the invariant Poisson extension P, of a complex measure p (sup-
ported in S,)) is defined as

Pu(z) = f Pz, wydu(w), ze€B,,
S,

where
(1—|z»)"
wan |1 — (z, w)[?*’

Pz, w) = z€B,, wesS,,

is the Poisson—-Szego kernel [R, p. 40; F] and w»,, is the area of S,,. Observe that
if n = 1, the Poisson—Szegd kernel is simply the classical Poisson kernel.

Also, if p is a complex measure on S, and 0 < a < 2n, then the w-energy
Jo () of w is defined as

(i) = / f Pl ) diE) dia(),
where
log(1l/¢t) if a« =0,

Do (t) =
® [l/t‘" if 0 <a <2n.
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If E is a closed subset of S,,, then
(capt,,(E))‘1 = inf{ J,(u) : p a probability measure supported on E };

for0 < a < 2n,

log = inf{ Jo(u) : n a probability measure supported on E },

capo(E)

and the infimum is attained by a unique probability measure px., which is called
the equilibrium distribution of E.
If E is any Borel subset of S,,, then the «-capacity of E is defined as

capy(E) = sup{capy(K) : K C E, K compact}.

The analog of (1.4) with the Euclidean distance instead of d was obtained in
[FPRY]; it is remarkable that in [FPR] equality is obtained with an explicit constant
(see Theorem B in the next section).

In order to prove Theorem 2, we will need a result (that appears in [PR]) about
the integral of the square of a hypergeometric function.

THEOREM A [PR]. For all nonnegative integers p,q,n (n > 1) and for all B =
/4 (0 < B <n/2), we have

[(f@)z prasoi sty o TPHPTGHH
o \F() F(p+n—pBTrg+n—p)

where F(t) = F(p,q; p+q +n; t).

By F(a, b; c; t) we denote the usual Gauss hypergeometric function

0 k
Fabicn =3 @O

£=0 (C)k k!’

where (1) is the Pochammer symbol,

r k
Wr=u@+1)---(u+k—-1= —(L—I—_—),
I'(u)
and I'( - ) denotes the Gamma function.
The outline of this paper is as follows. In Section 2 we will prove Theorem 2.
Theorem 1 will be proved in Section 3.

We would like to thank J. L. Fernandez for many useful discussions.

NoTtATION. By C we will denote a constant, depending at most on # and o, whose
value can change from line to line and even within the same line.

2. Proof of Theorem 2

If we use the kernel ®,(]é — n]|) instead of ®,(d (&, n)), we obtain the classical
a-dimensional Riesz energy that we will denote by 7, (). Observe that, if n =1,
then I,/2(n) = Jo(p) forall 0 < o < 2 and also Io(p)/2 = Jo(u). This remark
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and the following theorem give the case n = 1 of Theorem 2, with equality for an
appropriate constant instead of the symbol < .

THEOREM B [FPR]. If u is a complex measure supported on Xy_1, the unit
sphere of RN, and if P, is its classical Poisson extension (P, =P, if N =2),
then we have the following.

1) If 0<a < N —1, then

1
Iy(p) = K(N,Ot)f [/ IPu(ré)Izdff}r“‘l(l — rHN-2=e gy,
0 XN-1

with
4 N/2

r(Hr(*55)

Pue) — 2| a1 - v

K(N,a) =

(ii) If m = u(Xn_1), then

1
To(1) =wN/ /
0 JEN

o[ (3) - w0 -]

where wy denotes the area of Y y—_1. In particular, if N = 2,

1 2r
Io(w) = 2 f /
0 JO

Observe that in [FPR] Theorem B was proved only for signed measures, but the re-
sult, stated in the actual form, follows simply by splitting x into real and imaginary
parts.

In [F], Folland obtained an expansion in spherical harmonics of the Poisson—
Szegd kernel for the unit ball B, in C”. Let Ag, be the Laplace-Beltrami operator
associated to the Bergman metric on B,,,

4 = 9?2
Ap = — (1 — |z]? S — 7.7 ) —
B = TR ,-;1( A P 2

. m |2 dr
Pu(re'g) — '2—7[’ do 7

Here Ap, is the basic invariant differential operator on the symmetric space
SU(n, 1)/U(n) = B,. The solution of the Dirichlet problem

Ag,u=0 inB,,
u=f in 9B,

with continuous boundary data f, is given by the representation formula

u(z) = /S Pz, w) f (w) dw.

2.1)

If ‘HP 9 denotes the linear space of restrictions to S,, of harmonic polynomials
g(z, z) on C” that are homogeneous of degree p in z and of degree ¢ in zZ, then
the solution of the Dirichlet problem (2.1) with f € H?*? is given by
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u(r§) =SSP fE), 0=<r=1, §e8§,, 2.2)

where )
F(p,q;p+q+n;ro)

F(p,g;p+q+n 1)

Formula (2.2) gives to $7'7(r) a crucial role in obtaining the expansion of the
Poisson—Szego kernel in spherical harmonics.

In [PR] we give uniform asymptotic estimates of these functions when p, g
grow to infinity.

SP(r) = rpPta

THEOREM C [PR]. There exists a universal constant C, not depending on n, q,
m, z, such that—for all real numbers m,n > 1,q > 1/m, and 0 < z < 1—if we
denote

G = F(mq, q; mq + q + n;2)B(mg, q +n),

where B(x, y) is the usual Euler beta function, then

G > CL,
where
1—z \VW* 1
L=t1—-mQ0 —t))?(1 — t)*!
and
a+ bz —+/(1 —z)(a® — b2z) 2
to = _ ,
2z a+bz+ /(1 —z)(a®—b?7)
1 1
a=14+—, b=1——.
m m

Moreover, the inequality is sharp in the sense that

lim & = V2.
g—o0 L
Observe that, without loss of generality, we can suppose m > 1 because of the
symmetry of the hypergeometric function in the two first parameters.
We summarize the results about these spherical harmonics (see e.g. [F]) in the
following result. This theorem generalizes the properties of classical spherical
harmonics, which are described in [SW].

THEOREM D [F]. The following statements obtain for alln > 2.
(i) L2(S,) is the orthogonal sum L*(S,) = G};?qzo ‘HP1, and the dimension of

HP1 s
(ptq+n—1)(p+n—-2)(q+n-—2)!
D=D T H) = . Q2.
(P.q:n) plgl(n— DI(n—2)! (23)
Gi) If 74, £, ..., 54 is any orthonormal basis for HP:4, then

D

FPAEF ) = HPI(E, n), & n €S, 2.4)
j=1

where HP1(( -, n)) is the zonal harmonic of degrees p and q and pole 1.
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(iii) The L%-norm of the function HP9((, -)) is

D
[iErae mpan= ", fratges, @9
S, W2
where dn denotes the usual Lebesgue surface measure in S, (not normalized).
(iv) The function HP*? has the following explicit expression in terms of the Jacobi
polynomials:
P(n——2,u—v) (2,02 _ 1)

D .
HP(7) = _pu—vel(P—q)B v
a)2n U(n~2,u—-v) (1)

; (2.6)

where z = pe'?, u = max{p, q}, v = min{p, q}, and

@) (_l)m dm

— __ p\a-+m b+m
P00 = o e r e O A D]

is the Jacobi polynomial of degree m and parameters a,b ([L1, p. 275;
AS, p. 785]; observe that in [F] there is a typographical error in the defini-
tion of these polynomials). Moreover, { HP*1 (z)};?q=0 is an orthogonal ba-
sis of L>({|z| < 1)) with respect to the measure (1 — |z|))"*~2dx dy (since
every polynomial in the variables z and 7 can be expressed as a finite linear
combination of { HP? (z)}f,f’q=0).

v) ForO<r <landé&,n €8S,, we have that

o0

Peré, )= ) SPIRHPI(E, ). 2.7)

p,q=0

We need to obtain the expansion of the integral kernel ®,(d(&, n)) in terms of
these spherical harmonics.

First, fix «, with 0 < o < 2n, and let 8 = «/4. If we denote by g(z) the
function of one complex variable,

1

= , 1, 2.8

g@) =

then we can express the kernel ®4(d(&,n)) in terms of g as ®,(d(&, n)) =
g({&, n)). Now, develop g(z) as a Fourier series in the following way.

LEMMA 1. Foralln > 2 and 0 < B < n/2, we have the Fourier expansion

g)= ) gMMHP(z),

p,q=0
where gP1 has the expression

Ln—28) F'(p+B)TI'g+8)
rp)? T'(p+n—Blg+n—p)

In order to prove this result, we will need the following lemma.

gl =2m (2.9)
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LEMMA 2. Forall0 < p <1, B > 0, and all integers m, we have that

e I(|m| + B)
525 40 = 2mp" ———— = F (8, ; 1;p%. (2.10
fo |1 — pei®|?8 Ty | P Iml+ B; Im| +1; p%).  (2.10)

Proof. Without loss of generality we can assume that m > 0, since the case m <
0 will follow by conjugation. We have that

2x
f eimﬂ(l _ peie)—ﬁ(l _ pe—-iB)—,B do
0
2
=f0 gimo (Z (i?k k sz)(Z (f')l j —119) do
k=0 j=0

o (B (Bkam m
=20 T wr

k=0
and the lemma follows by substituting the definition of the Pochammer symbols
and using the definition of the hypergeometric function. O

Proofof Lemma 1. We will use in this proof the notation (¢, ¥} to denote the usual
scalar product in L%({|z| < 1}) with respect to the measure (1 — |z|*)*~2 dx dy.
This will not cause confusion since we will not use the inner product in C” within
this proof.

We have that
(HP4, HP1)' '

We recall [R, p. 15] that

_ 1 n 2JT 1 .
f (&, ) dn = D@ f / o((pe®)(1 — p)"2pdpds,  (2.12)
S» 4 0 0

for all € L'({|z] < 1}) with respect to the measure (1 — |z|2)"~2 dx dy. Using
(2.5) and (2.12), we deduce that

D
— = | |HPI((&, n)|*dn
W2 Sx

(n - 1)60 n 2” l s n—
e f fo [HP4 (pei®) (1 = p?)"2p dp d;
0

hence

xD
HP1 HP?) = . 2.13
( ) (n - 1)((02,,)2 ( )

On the other hand, since |p — q| = u — v,

2r pilg—p)o
, Hpvq
(g ) n —2,u— v)(l) f / |1 _peIBIZ,B

PO=24=9 252 _ 1)p* (1 — pH)*2d0 pdp (by (2.6))
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27D Tw—v+p) [! 2
= . F(B,u—v+B;u—v+1; p°)
w2, P (1) = 0)!IT(B)  Jo
P21 (2p% = 1)V (1 = p*)"2pdp  (by (2.10)).
By making the variable change ¢t = 2p% — 1, we obtain
2nD 'u —v+ B)

2" g, PR (1) (0 — 0)IT(B)

(g, Hp9q) —

1
/ FBu—v+Bu—v+1;(1+1)/2)
-1
Pv(n—Z,u—-v) (f)(l _ t)n—Z(l + t)u—v dt.

If we denote by (¢, ¥) the scalar product in L?[—1, 1] with respect to the measure
(1 —£)""2(1 + 1)*~7 dt, then the preceding formula can be written as

2wD 'u—v+B)
2 (o PUTEET (1) (e — ) T(B)

where F denotes the hypergeometric function F(8, u—v+8; u—v+1; (141)/2).
It is known [L2, p. 29] that:

ifa,b>—-1,A=a+b+1,—-1<w<=<1,andt < 1/2, then

(F, P24y (2.14)

v

(g, HP?) =

o0
G(w) = F(ar, az; az; (1 + w)t) = Yy C, PE@D(w),

v=0

where
_ (a1)v(a2)y(2t)°
P (@) (A,
Here 3 F; is the generalized hypergeometric function

N O CHARC
F ] ) ; ] ; = R
sFa(ay, aa, 033 B, B2 1) kzz(; BB kI

sFp(b+14v,a1+v,a+v; A+ 1+ 2v, a3 + v; 21).

This gives
(G, P

(P&D, PED)
for all t < 1/2. Then, by making ¢+ — 1/2, we obtain that (2.15) is also true for
t = 1/2. Therefore,

(F, Pu(n—-Z,u—U))
— CU(P(n—Z,u—v) P(n——2,u—-v))
v ’ v

_ (Blo(u —v+ ,B)v

(u—v+1),(u+n-1),

3P (u+t1, v+8, u+B; utvtn, u+t1; 1)(PH-20—v | ph=2u-v)y

__ (Bu—v+p),

uu—v+Dy(u+n-—1),

C, (2.15)

u=vrn—l  (y 4+ p —2)u!
u+v+n—1ww+n—-2)1v!’

- Fv+B,u+B;utv+n; 1)
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where we have used the fact [L1, p. 276; AS, p. 774] that
2000+ (y +a + DI'w+ b+ 1)
Qut+a+b+DITw+a+b+1)
Hence, using the Gauss summation formula
I'c)I'(c — a — b)
~ Tc—al(c—Db)
[L1, p. 99; AS, p. 556], we obtain that

(Plfa,b), P;Ea’b)) —

F(a,b;c; 1) ifc—a—b>0

wW+n—-2u—-—v)!T'(n—-28)
vVITw+n—-Brrv+n—-p8)

By substituting this formula (which makes sense since n — 28 > 0) in (2.14), we
obtain that

(F, P 72070) = 24702 (B),(u — v + B),

mn—2)!'aDT'(n —2B) Fru+BIr(v+ )

, Hp'q —_—
(g, £ ©m CB? Twrn—pre+n=—p o
_ (n=)'wDT(n—2B) T(p+PTg+ph) '
W2n L(B)? T(p+n—Pri(g+n—p)
where we have used the fact [L1, p. 274; AS, p. 774] that
P]fn—z,u—-v)(l) — (v + n— 2)! .
v!(n —2)!

The lemma follows now by substituting (2.13) and (2.16) in (2.11), and by using
that w,, = 27" /(n — 1)!. O

Proof of Theorem 2. We choose an orthonormal basis {7}, of H?4, for
each p,q > 0. Let {u}"?} (p,q = 0, 1 < j < D = D(p, g; n)) be the Fourier
coefficients of w; that is,

00 D
B WA

p,q=0 j=1
Recall that P, is defined by
Pu(r§) = | P&, n)dumn),
Sh
where P(r&, n) is the Poisson—Szego kernel

1 (=
Pesm = =& mi

Recalling (2.4) and (2.7), we deduce that

0<r<l1, &nes,.

P@ré,m)= Y SPIEHPI(E ) =Y SPE) P9E) 7 ().
P,q=0 Pq.J

Now, Plancherel’s theorem gives that
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Pu@) =Y SPIG)ul? f11(&).

P:q,J

Again using Plancherel’s theorem, we obtain that
f PGP ds = 3 (PP,
p.4.J

and so, if we denote by A the right-hand side in (1.4), we have that (recall 8 =
o/4)

A= S [ 6@ -y
Pq.J
substituting 72 = ¢, using the definition of S74(r) yields

1 . . 2
F(p,q;p+q+n;1)

P‘IJ

- I'(p+PTr'g+B) T
AZ_:OF(ern—ﬁ)F(qun ﬁ)ZI |

Z g”_Zm;”fF

r.q=0
(2.17)

where we have used Theorem A and Lemma 1.
On the other hand, using again Lemma 1 and (2.4),

Do (d(E, 1) = g(UE, M) = Y gPIHPIUE, ) = D> gP 1P IE) 7 (n):

p,q=0 Psq:J

using Plancherel’s theorem and (2.17), we obtain that

| @a@Emydum = Y- gl 504,

" p.q.j
Ty =) g™l < A.
p.g.j
This finishes the proof of Theorem 2. 0l

3. Proof of Theorem 1

We need the following lemmas.

LeEMMA 3 [FPR]. Let u be a finite positive measure in 0A, and let f be an inner
Junction. Then there exists a unique positive measure v in S,, such that P, o f =
Py and

i:)(f_-l(Support m)) = v(S,).
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Moreover, if f(0) =0, then
1

. 1
—U(8,) = —u(3h).
W2p 2w

A different normalization is useful; choosing v = (27 /w;,)V, one obtains
P,=—"P,of and v(S,) = u(dA).
The following lemma is well known.

LEMMA 4 (Subordination principle). Let f: B, — A be a holomorphic function
such that f(0) = 0, and let v: A — R be a subharmonic function. Then, for ali
0<r<l,

27
L[ wreeyas < — f v(re™®) do.
27T 0

W2 JS,

LEMMA 5. Let i be a complex measure on 0A, let f be an inner function with
f(0) =0, and let v be a complex measure on S, such that P, = 2n/w2,)P, 0 f.
Then:

(i) Ifn>1and0 <a <2o0rif n =1and a = 0, then there exists a constant
C depending at most on n and o such that

JZn—2+a (V) = CJot ()u') .

(ii) If ¢« =0, n > 2, and m = pu(9A), then there exists a constant C depending
at most on n such that

Jon—a(v) < C(Im|* + Jo(w)).

Proof. Since v = |7'3,L|2 is subharmonic (in the Euclidean sense), we obtain by
subordination (Lemma 4) that

W2op W2p

5 21\ 2 2n [ 5 .
(PP dE = [ 1Pucpras < /0 Pdo. ()

Sn
Using Theorem 2 twice, the inequality (3.1), and the fact that n > 1, we have that

! 2 n—2+a/2 dr
Jon—24a(V) < [0 {fﬂlPu(r%’)I dé‘}r = rnen

SN 6|2 —1+a/2-1 dr
SC/O {/0 [P (re’)| dG}r =2

: 2 012 a/2—-1 dr
< C/O {/0 [Py (re'”)| d@}r —(1 — 2yl
< CJo ().

This finishes the proof of part (i) in the case n > 1, 0 < o < 2. The other case
follows from [FPR, Lemma 5}, since Jo(v) = Ip(v)/2.
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In order to prove (ii), using that m = w(3dA) = v(S,) we obtain that

A

Integrating this equality and using Theorem 2, we have that

2 Im|?
d& +

Pu(ré) —

= |P, (ré)|* dE.

W2ap W2y

1 2 2
Jan-a(v) < f [ Poe) — | ag gy + — 1M
n W2p (n — 1)w2n
i m|?
/ / wo fré) — dEr"—zdr—I——_
(n — Dwa,
2n 2
igy m |m|
< C/ / Pu(re™) | do (n iy

< C(Im|* + Io(w)) < C(Iml + Jo(#)),

where we have used subordination (Lemma 4) withv = |P, —m/ (27)|? and The-
orem B. O

Finally we can finish the proof of Theorem 1. We may assume that E is closed. In
order to prove (1.1), let us denote by u. the a-equilibrium probability distribution
of E, and let v be the probability measure in S,, such that P, = 27 /w2,) Py, © f.
By Lemma 5,

Jan-21a(V) < Cly(p.) = Clcapa(E)) ™. (3.2)
But, from Lemma 3, v(f‘l(E)) =1, and so

oz (V) = f f Banzsald(E, 1)) dV(E) dv ().
“HE)x f~I(E)

Now let {K;} be an increasing sequence of compact subsets of f~!(E) such that
v(K;) /' 1. Then, for each j,

onrra(V) = [ / B2n_zra(d(E, n) dV(E) dv ()
fFUE)x f-U(E)

dv(€) dv(n)
K;)? / / Do (d(E,
> v(K;) Ko 2n—2+a(d(&, 1)) oK) v(K;)
> v(K;)?(capan—24+a(K;)) !
> v(K;)*(capan—ate (f TH(E) .

Consequently, if we let j — 00, we obtain that

Jon—21a(V) = (capan—z+a (F THE)) L (3.3)

Therefore, in the case 0 < @ < 2, n > 1, (1.1) now follows from (3.2) and (3.3).
The case « = 0, n = 1, follows from [FPR, Thm. 1].

In order to prove (1.2) we proceed as follows. Let u, be the equilibrium distri-
bution of E for the logarithmic capacity, and let v be the measure supported on S,,
such that P, = Q2n/w2,)P,, o f. Using Lemma 5,
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1
Jon—2(v) < C(A + Jo(pe)) = C(l + log W) .

Now, to finish the proof, one need only follow the same approach used to prove
part (1).
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