On the Sum of Monotone Operators

LiaNnG-Ju CHU

1. Introduction

Let X be a reflexive Banach space. Troyanski [28], using Asplund’s averag-
ing technique [1], has shown by means of a theorem of Lindenstrauss that
there exists an equivalent norm on X that is everywhere Fréchet differenti-
able except at the origin and whose polar norm on its dual X™* is everywhere
Fréchet differentiable except at the origin. For notational simplicity, we may
assume throughout this paper that the given norm on X already has these
special properties.

A set-valued operator 7: X — X* is a function sending each xe X to a
(possibly empty) subset Tx of X™*. For a set-valued operator T: X — X* the
domain, the range, the graph, and the inverse of T are denoted, respec-
tively, by

D(T):={xe X; T(x) # 08},

R(T):=Ui{x*e X*;x*e T(x)},

G(T)={(x,x")e XxXX*; x*e T(x)},
and
T x*):=[xe X;x*e T(x))].

Recall that a set-valued operator 7: X — X™* is monotone, provided that
(X'=x,y'=yy=0 V(x,»),(x,y)eG(T).

T is maximal monotone provided T is monotone and there exists no other
monotone set-valued operator whose graph properly contains the graph of
T. Such operators have been studied extensively in both theory and applica-
tions; see, for example, the work by Brézis [3] and Phelps [19] and the refer-
ences cited therein. It is known [20; 22; 23] that the subdifferential operator
of a closed proper convex function is maximal monotone. The subdifferen-
tial operator of a convex function f on X is defined by

af(x) = {x* e X*; f(2) - f(x) = {(z—x,x*) Vze X]}.
T is cyclically monotone, provided that

(X1 —X0, X0+ X=X, X[ Y+ oo+ {Xo— Xy X)) <0
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for any set of pairs (x;,x/)e G(T), i=0,1,2,...,m. A maximal cyclically
monotone operator is one whose graph is not properly contained in the graph
of any other cyclically monotone operator. Indeed, Rockafellar [20, Cor. 1]
proved that a set-valued operator T is maximal cyclically monotone if and
only if T = df for some (closed) proper convex function f. We now intro-
duce two new operators. T is called a (BH)-operator, provided that
inf (x—Xx*—x*)>—w0 VxeD(T), vXx*e R(T).
(x,x*)e G(T)
For Y*C X*, T is called a Y*-operator provided that, for all y*e€ Y™, there
is some ¥ € X such that
inf (x—X,x*—jp*)> —oc0.
(x,x*)e G(T)
We remark that the concepts of Y *-operators and (BH)-operators were first
introduced by Brézis [3] and Brézis and Haraux [4] in connection with mono-
tone operators in Hilbert spaces, but they did not use that terminology. In
addition, we denote the duality mapping by J, which is the Fréchet gradient
of the function j(x) := 3||x||%. Thus, the mapping J assigns to each x € X the
unique J(x) € X* such that

(x, J(x)) = | x| = | ()|

(see [2; 3; 9; 12; 17; 18; 24; 28]). As is shown, J maps X one-to-one and onto
X™* and is norm-to-norm continuous. Also, J is a strictly monotone opera-
tor, and for each x € X we have

Hzl? = sHix|P+<z—x, J(x)) vzeX.

For simplicity, we shall denote by co C, cl C, and int C the convex hull,
the closure, and the interior of a convex subset C of X, respectively. In addi-
tion, ri C denotes the relative interior of C, that is, the interior taken in the
closed affine hull of C:

riC:={x;3¢>0, a(x+B,)NclaffCC C},

where B, := {x; ||x|| < €}. It is easily seen that claff C = xy+ cl(span(C—C))
for all xye C. Thus, we have

ri C = {x; 3¢ > 0, 5 x+ (B, Ncl(span(C— C)) C C}.
The normality operator to a convex set C will be defined by

_ [ x*eX*;{y—x,x*)=0vyeC} if xeC,
Ne () '"{ﬂ if x¢C.

Indeed, the normality operator to a closed convex set C is exactly the sub-
differential of the indicator function 6., where

0 vxeC,
bc()= { +oo vxgC.
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For a set-valued operator 7: X —+ X* and a nonempty closed convex sub-
set C of X, the usual variational inequality is given as follows.

ProBLEM VI(7,C). Find xe C and x*e T(x) such that
(y—x,x*y=0 vyeC.

For the existence of the problem VI(T, C), see [6; 7; 10; 11; 12; 13; 14; 21; 27].
Under this notation, it is known that any solution to the variational inequal-
ity VI(9f, C) is an optimal solution of the convex programming:

min{ f(x); x e C]. (P)

To motivate the notion, we remark that x is an optimal solution to (P) if and
only if 0 € 3(f+68c)(x), and in general we have

Af(x)+Nc(x) = 3f (x)+8dc(x) C 3(f+dc)(x). @

It is therefore clear that every solution of VI(df, C) is always an optimal
solution of (P). On the other hand, once we have shown that

af(x)+ N¢(x) = af(x)+36c(x) D 3(f+dc)(x), (2)

every optimal solution of (P) is also a solution of VI(T,C), with T = af.
It is known that in a finite-dimensional space, {22, Thm. 23.8] implies the
equalities (1) and (2) under the condition

ri(dom f)Nri C # 9,
where the term dom f is the effective domain of f, defined by
dom f:={xe X; f(x) < +oo}.

Indeed, if one can show that df+ N, is a maximal monotone operator then
equalities (1) and (2) hold. It is natural now to turn to the sum of maximal
monotone operators. In [24, Thm. 2], Rockafellar showed that if T}, 75:
X — X* are maximal monotone set-valued operators, with dim X < o, such
that ri D(T,)Nri D(T3) # @, then T+ T, is maximal monotone. One of the
main motivations behind this theorem is that such results make it possible,
as Browder has remarked (5, p. 92], to derive theorems about variational
inequalities from fundamental theorems about the ranges and effective do-
mains of maximal monotone operators. For details, see for example [4; 6; 8;
10; 11; 12; 13; 20; 21; 23; 24; 25; 27]. In this paper we consider the milder
constraint qualification

0 eri(co D(T;) —co D(T3)),

under which we will show that T, + T, is maximal monotone, even if X is an
infinite-dimensional reflexive Banach space. In general, for n = 2 we show
that 77+ 7T, + - - - + T, is maximal monotone under the constraint qualification

(0,0,...,0)eri(coCy;XcoC3 X -+ Xco C,),
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where C := D(T))ND(T3)N --- ﬂD(Tk_l) —D(Ty) forallk=2,3,...,n. In-
deed, our main theorem (Corollary 3.5) relaxes and unifies the hypotheses

(i) X is finite-dimensional and ri D(7,)Nri D(T>,) # B and
(ii) D(T)Nint D(T,) # 0

appearing in [24]. However, Rockafellar’s sum theorem (see Proposition 2.4
below) plays a crucial role in proving our main result. In a finite-dimensional
space X, it is clear (by the simple fact that ri(A—B)=riA—ri B for any
convex subsets A and B of X [22, Cor. 6.6.2]) that the condition (i) is equiv-
alent to our constraint qualification. Also, it should be noted that our con-
straint qualification is definitely weaker than that of Rockafellar. A simple
example in a normed space X would be the following: Let A be a closed
hyperplane in X, and let B be a 1-dimensional subspace such that X = A+ B
and AN B = {0}. Let T}, T, be the normality operators for the closed convex
sets A, B, respectively. Then 0e€int(A4A — B) =ri(co D(T;)—co D(T3)), but
D(Ty)Nint D(T,) = ANint B =4.

2. Preliminary Results
We begin with some general identities and inclusions.

ProrosiTioN 2.1. For any nonempty subsets A, B, C, D of X, one has:
(@) coAXcoB=co(AXB);
(b) coA+coB =co(A+B); and
(c) AXB—CXD=(A-C)X(B—D).
Moreover, if A and B are convex, then:
(d) riANriBCri(ANB);
(e) i(AXB)CriAXriB;
(f) whenever ri A # @, one has zeri A if and only if for x€ A there is

some A > 1 such that (1—A)x+Aze A; and
(g) whenever ri{A—B) # 0, one has riA—ri B C ri(A—B).

Proof. The proofs of the first four assertions are left to the reader. To prove
(e), we note that for (x, y) e ri(A X B) there is some ¢ > 0 such that

((x,y)+B)Nclaff(AxB)C AXB.

Since
((x+B.x)Nclaff Ay X ((y+ B, ;) Nclaff B) C ((x, y)+ B,)Nclaff(A X B)
C AXB,
we obtain

(x+BE/2)ﬂclaffACA and (y+B£/2)ﬂcl aff BC B.
Here, we use the norm ||(, )| on X' x X, defined by

16, P = il + ]2

It follows that x eri A and y € ri B. Thus, we establish (e).
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Next, we prove (f). If zeriA and xe A with x # z, then there is some
e > 0 such that
z+(B.Ncl(span(A—A))) C A.

It is clear that (A—1)(z—x) e cl(span(4 — A)). Also, for1 <A< 1+¢/||z—x||
we have
A= (z—x)|=A-D|z—x| <e.
It follows that
(A—-1)(z—x)e B,Ncl(span(A—A)).
This implies

(1-Ax+Az=z2+(A—-1)(z—x) e z+(B.Ncl(span(A4A—A))) C A.
Conversely, since ri A # 0, we have some xgeri A. For z # x;, there is
some A > 1 such that

x:=({1-A)xp+AzeA.
It follows that
1 A—1

Z=Xx1+ 3

On the other hand, since x e ri A, we have some e > 0 such that
Xo+ (B, Ncl(span(A— A))) C A.

Letting €; := ((A—1)/A)e and taking any u € B, Ncl(span(A4 —A)), we then
have

Xg.

AU
A—1

€ B, Ncl(span(A — A)

and

Xo+ ueA.

A—1
Since u € B, Ncl(span(A4 —A)) and, by the convexity of A4,

1 A—1 A
z+u—--Xxl+ 3 (x0+}\__1 u)eA,

we conclude that z+ (B, Ncl(span(A —A))) C A and hence z e ri A.

Finally, we establish (g). Suppose that x:= x;—x, where x;eriA and
X, €ri B, and that y := y,—y,e A— B where y,€ A and y, € B. Then by (f)
there is some A; > 1 such that

(1=ADy1+Ax € 4,
as well as some A, > 2 such that
(1-A)y,+A,x,€B.
By the convexity of A and B, we then have
(I-a)y;+axjeA Vi<a<A; and (1-B)y,+Bxe€B VI<B=<A,.
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Let A:=min{A;,A,} > 1. Then
(1=A)y+Ax=(1=-A)y;+Ax;—((1—=A)y,+AXx,) e A—B.
Again, (f) implies that x eri(4 — B). Thus, the assertion (g) follows. Ol

We now state some well-known results, which we shall use in proving our
main results.

PROPOSITION 2.2 ([24])). If T: X—> X* is a monotone operator, then T is
maximal monotone if and only if R(T+J) = X™

The following proposition, essentially due to Browder [5], is a generaliza-
tion of the fundamental Hilbert space theorem of Minty [15].

ProposITION 2.3. If T: X - X* is a maximal monotone operator and A > 0,
then R(T+AJ) = X* and (T+AJ)7 is a single-valued maximal monotone
operator from X* to X that is demicontinuous.

The following proposition is called Rockafellar’s sum theorem [24, Thms.
1(a) & 2].

PROPOSITION 2.4. If T}, T5: X — X* are maximal monotone operators such
that either

(1) X is finite-dimensional and ri D(T)) Nri D(T3) # @, or else
(ii) D(T))Nint D(T,) # 9,

then T+ T, is a maximal monotone operator.

Next, we will show a fundamental property. From this, we can conclude
that the sets ridom f, co D(3f), and dom f have the same closed affine hull.

PROPOSITION 2.5. Suppose that Y* is a convex subset of X* and
g#riY*CcSCclY*C X™*
Then the sets S and Y™ have the same closed affine hull.

Proof. We first note that there is no loss in generality in assuming that the
origin is in riY™*. Let 4(S) and V(S) denote (respectively) the closed affine
hull of S and the closed subspace of X™* generated by S. Then it is easy to
check that A(S) = V(S). Similarly, A(Y*) = V(Y™*). Thus, in order to show
that A(S) = A(Y*), we only need to show that V(S) =V(Y™*). It therefore
suffices to show that V(clY*) C V(riY™*). If not, by a simple application of
the Hahn-Banach (or separation) theorem, there exists an element, say x,
of X that vanishes on V(riY*) but not on V(clY*). For any ueclY™* there
exists a net (#;) in Y* that converges to u. Since OeriY™*, for Ae (0,1] we
have (see [22, Thm. 6.1])

Uus(A):=(1—-MNus;=(1—-A)uz;+A, OeriY*
and hence
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us=limus(A) e V(riY™*).
AlO
It follows that

u=limuseclVEiY*)=V(riY").
Thus,
{x,uy=0 VueclY™

Therefore x vanishes on V(cl Y*), which leads to a contradiction. Thus, we
can conclude that riY* and clY* have the same closed affine hull, and the
assertion follows. O

Using the preceding propositions, we now establish a technical result, which
is the tool to prove our main theorems.

PROPOSITION 2.6. If T: X — X* is a maximal monotone Y *-operator and
R(T)YC cl(coY?), then ri(coY™*) C R(T). Moreover, if ri(coY*)# @ then
rifcoY*) =ri R(T).

Proof. We first show that T is a co Y*-operator. Let y*=3;A; 7!, where
y'eY A;=0,and 3;A;=1foralli=1,2,.... Since T is a Y *-operator, for
each i there are X;€ X and yu; > —oo such that

pi={x—X;, x*—y> v(x,x*)eG(T).
Equivalently,
pi =X I =X, XM =X, I — (X x*)  V(x,x*)e G(T).
Let xX:=>;A;X;. Then, for (x,x*)e G(T), we have
E Aiﬂi_z AiX PEY < (x,x*)— <x, 2 Aiﬁ)‘ (E AiXi, X*>-
H ] ! 1
Define
pi=2 A — 2 AikX I
1 1
It follows that
—00 < p+{X, J*) < (X, X" — (X, P*)— (X, X* )+ (X, 7*) = (x— X, x*— §*).

We can therefore conclude that 7 is a co Y *-operator, so now we may sup-
pose without loss of generality that Y* is convex. Note that for any y*eriY*
there is some o > 0, so that whenever z*€ V:=clspan(Y*—Y™*) with [|z*||< «
we have y*+z*e Y™ Since T is a Y*-operator, there exist some ¥(z*) € X and
u(z*) > —oo such that

p(2*) =Ax—X%(2*), x*—y*—2z*) V(x,x*)eG(T). (3)
By Proposition 2.3, for ¢ > O there is some «, € X such that

ye(T+eJ)(u,.),
which implies
(ue, y*—eJu)e G(T). 4)
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Combining (3) with (4), we then have
p(z*) = (u, —x(z*), —eJu, —z7*). 5)
Since J(-) = a(3|-||»),
(")~ ey eJuy < | 2P = lucl.
It follows that if z*€ V with [|z*|| < o and if ¢ > 0,

(u,, 2*) = u,, z"‘>+-§—||u€u2 < %llf(z")llzﬂf(z*), Y —u(z*).  (6)

Using (6), we are now ready to prove that for all z*eV,

sup [{ue, 2*)| < +oo. (7)
0<e=xl
Define
B(z*) = || %(2*)|[*+ (*(z*), 2*) — u(z*)
and

v(z*) := max{|B(z*)|,|8(—z")|}.
By (6), for z*e ¥V with ||z*|| = « and for 0 < e < 1, we have
[Cue, 20| < v(2*). (8)

For z*e V with ||z*]| > a, we let A := ||2*||/« and z{ := (1/A)z*; then z* = Az}
and ||zf|| = «. It follows from (8) that

Kue, 28 =v(zf) vO<e=xl.
Hence we have
iz

’ N=A € D<A )= x * <1. 9
[Cates 23] = AlCute, 21| = Ay (zf) = ~— Y(IIZ*IIZ) VO<es 9

Combining (8) and (9) yields

sup [{u,2*)| <+ Vvz*eV.
O0<ex<l
Next, we define *V:={xe X; (x,y*) =0vy*e V] and let U:= X/*V. Since

X is assumed to be reflexive, we may identify the dual space U* (see [26,
Thm. 4.9]) with (*V)*, which is V. Thus, for xe X, we may define [x]:=
x+1Ve U and define {[u], -): U*— R by {u], u*) :=(u, u*). It is easy to
check that the map is well-defined, since for all ye1V and u*e U*=V we
have

((ul,u*) =Cu+y,u*)=(u,u*).

By (7) we then have

sup [[u], u*)| < +o vu*e U™
O<ex<l

From the uniform boundedness principle we obtain

sup |[[#]|| < +eo. (10)
0<e=<l
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Now we will show that for all u e X with JueV,

lleefl = 021 (1)

For any 6 > 0, since
|Cee1ff == inf{lu—y|; y e V3,
there exists some y € 1V such that
lu =yl < é+[|L]].
It follows that for any Ju € V we have (y, Ju) = 0, and therefore
el = Cu, Juy = Cu~p, Juy < |lu—y||| Ju|| < @+||{u1])]|u].

Equivalently, [|u]| < é+|{«]|| for all 6 > 0. Thus, for all ue X with JueV,
we have ||u|| < ||[#]|. Note that by (4) we see

Ju.e e W(y*—Tu,) Ce W (Y*—R(T))
Ce (Y*—clY*)Cclspan(Y*—-Y*)=V. (12)

By (10), (11), and (12) we conclude that the set {#, |0 < e < 1} is bounded.
Since
luell? = Cutes Juey = || Ju|?,

the set {Ju,|0 < e <1} is also bounded. So when ¢ converges to 0, we may
assume (taking a subnet of (u,)) that y*—eJu, converges to y* and that u,
converges weakly to some «# € X. Since 7T is monotone, by (4) we have

0<{(z—u,z*—(y*—eJu)y v(z,z2*)eG(T).
Letting € — 0, we obtain
0=<({z—u,z*—y*) Vv(z,2*)eG(T).

Since 7 is a maximal monotone operator, (u#, y*) e G(T'); that is, y*e R(T).
Thus, ri(coY™*) C R(T).
Moreover, if # # ri(coY *), then

rifcoY*) C R(T) C cl{coY™).

Applying Proposition 2.5 with S := R(T), we obtain that the sets R(7T") and
coY* have the same closed affine hull, say A. Working in 4, we take the
interior operation int, and get

inty(coY ™) =int,(ri(coY*)) Cinty R(T) C int4(cl(co Y*)) = int,(coY™).

It follows that
rilcoY*) CriR(T)Cri(coY™).

Thus, we conclude that ri(co Y*) =ri R(T). O
We also need the following.

ProposiTiION 2.7. If T: X—> X* is a monotone operator and A > 0, then
T+AJ is a (BH)-operator.
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Proof. Let xe D(T+AJ)=D(T) and X'e R(T+AJ). First, we consider the
case when D(T') is bounded. Let u > 0, so that

D(T+MJ)=D(T) C {x; x| < p).

Consider any (x, x*) € G(T+ AJ). Then, for any x*e (T+AJ)(X%), the mono-
tonicity of T+ AJ yields

so that
(Xx—%, x*=X*y = (x—%, B*—x*) = —[|x—%| | #* = X*[| = —2p] %* - x*].
Thus we have

inf (X=X, x*~x*y = -—Zpllf*—-?ll > —oco,
(x,x*)eG(T+AJ)

This implies that 7+ AJ is a (BH)-operator.

Next, we consider the case when D(T') is unbounded. Let X* e (T+ AJ)(X),
so that there exists some y*e Tx such that x* = y*+AJx. For any (x,x*) e
G(T+AJ) we can write x* = y*+ AJx, where y*e Tx. Consequently,

(X=X, X" ==X,y =D+ AXMx—X, IX)+{x—X%, X*)—AM{x—X, JX).
The first term on the right is nonnegative, so
T vk s =112
it LN Allx"—z\(f, Jx >+<" X x*)-A(i, Jf>+)\"—x—"——.
[l ] [l [lxl llxI lixI

Since each of the last four terms on the right is bounded, we can conclude
that

-
im  XTBRXD Lo
wxyeca+an Xl
flx]| -+

Now, let o > 0 be such that, for any (x, x*) e G(T+AJ) with || x|| = a, we
have

(Xx—X,x*)
x|l
If [|x}| = 8= || x||[|x*|, then
e - T
X=X X% _ Il I + 10l
llx]l (B x|l

It follows that for (x, x*) € G(T+AJ) with || x|| = vy := max{«, B}, we have

> 1+[|x*].

< |Jx*||+1.

(x—%, X*)
x|~

X=X, X7 > 14+[%] =
Il

which yields .
(x—X%x*—x*y=0. 13)

On the other hand, by the monotonicity of T+AJ, for (x,x*)e G(T+AJ)
with [|x|| = 4 and for X*e (T + AJ)(X), we have
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It follows that

(Xx—F, x*— X'y = (x—%, B =x*) = —||x — x| | #* = X7

= ~(y+|FDI%* - x°). (14)
Combining (13) with (14), we obtain
inf  (x—% x*—X*) = min{0, —(y+ || &) || #*—X*||} > —co.
(x,x*)eG(T+AJ)
This implies that 7+ AJ is a (BH)-operator. O

3. Main Results for Two Maximal Monotone Operators

We begin with an extension of Brézis and Haraux [4] in a reflexive Banach
space. Indeed, Brézis and Haraux [4, Thm. 3] show that if 7| and T, are
monotone (BH)-operators from a Hilbert space into itself such that 7+ 7
is maximal monotone, then R(7;+ T3) = R(T}) + R(T>); that is,

cl R(T;+T,) = cl(R(T}) + R(Ty))
and

THEOREM 3.1. If T},T>: X —» X* are monotone (BH)-operators such that
T+ 7, is maximal monotone, then

ri(co R(T})+co R(T»)) C R(T1+T,) C R(T))+ R(T>).
Moreover, if ri(co R(T})+co R(T>)) # 0, then
riR(T1+T2) = fl(R(T1)+R(T2)) = ri(coR(T1)+coR(T2)).

Proof. LetT:=T,+T,and Y*:= R(/]\‘l)+R(T2). Then R(T)=R(T1+T5,) C
R(T))+R(T,) =Y*Ccl(coY™). For y* = y}+y3, where y*e R(T;) for all i =
1,2, and for Xe D(T) = D(T,)N D(T,), since each T; is a (BH)-operator we
have .
—o< inf (x—X, Y7 -y} = p;.
(x,y})eG(T)
Thus, we have
—o < ptpps  inf  (x—F (VYD) - T+
(x,¥7)e G(T)
= inf {(x—x,x* —?).
(x,x*)e G(T)
It follows that 7" is a Y *-operator. Notice that, by Proposition 2.1(b),

R(T\+T5,) CcoR(T )+ co R(T,) =co(R(T))+ R(T>))
C cl(co(R(T7) + R(T3))).
Now, by Proposition 2.6 with T=T7,+ T, and Y* = R(T})+ R(T;), we have
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ri{(co R(T})+co R(T3))
=ri(co(R(T)+R(T3)))
=1iR(Ty+T>) C R(T{+T,) C R(T})+R(T3) C co R(T)+co R(Ty)
= cO(R(T})+ R(T3)) C cl(co(R(T)+ R(T3))).
Given the nonemptiness of ri(co R(T;) + co R(T>)), we apply Proposition 2.5

and conclude that the above sets have the same closed affine hull. Taking the
interiors with respect to this common closed affine hull yields

ri R(T)+ T3) = ri(R(T)) + R(T3)) = ri(co R(T})+ co R(T3)). O

The power of Theorem 3.1 is suggested by the following interesting result,
which supplements certain results of Minty [15] and Rockafellar [25] con-
cerning the convexity of D(T') and R(T).

CoRrOLLARY 3.2. If T: X — X* is a maximal monotone operator with

rilcoD(T))#0 and ri(coR(T))#0
then
ri(fcoD(T)) =riD(T) and ri(coR(T))=riR(T).

Proof. Define S}, S,: X*— X by
Si(x*) = (T+3J)1(x*) vx*eX* and S,(x*):=0 vx*e X*
Then S; and S, are maximal monotone and (by Proposition 2.3) D(S;) = X*
for all i =1, 2. Thus,
D(S))Nint D(S,) = X*=4.
It follows from Proposition 2.4 that S,+.S, is maximal monotone. Also,

Proposition 2.7 implies that S; and S, are (BH)-operators. Thus, Theorem
3.1 implies that

ri(co R(S;)+co R(S;)) C R(S,+S3).
Since R(S;) = D(T) and R(S,) = {0}, we have
ri(ccoD(T)) C R(81+8,) =R(S,)=D(T) CcoD(T).
By Proposition 2.5, D(T') and co D(T) have the same closed affine hull.

We then have
ri(coD(T)) C ri D(T') C ri(co D(T)).

Thus, we conclude that ri(co D(T)) =ri D(T). On the other hand, T is
maximal monotone and R(T) = D(T™!). Applying the above result to 77},
we conclude that ri(co R(T)) =ri R(T). O

LeEmMA 3.3. If T: X — X* is a maximal monotone operator and A: X —» X is
an invertible continuous linear operator, then A*TA is maximal monotone.

Proof. We first notice that A*TA is monotone, since for all (x, »), (X, ) €
G(A*TA) there exist x*e TA(x) and y*e TA(X) such that y = A*x* and 7 =
A*y*. Thus,
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(X=X, y—=P) =L{x—=X, AN (x* = y*)) =(Ax - AX,x*—y*) =2 0.
The last inequality holds because 7" is monotone. Now, suppose that
(X=X, y=y»=0 V(x,y)e G(A*TA).

To prove that A*TA is maximal monotone, it suffices to show that (x;, y;) €
G(A*TA). Notice that

O0=<{x—x,y—y»
=(Ax—Ax;, (A Yy — (A" 7y V(x,y) e G(A*TA). (15)

Now, for (x, y) e G(T), there is some X, such that AX,=Xx and ye TAX,.
Thus, (Xy, A*7) € G(A*TA). By (15) we have

(X—Ax;, 7= (A yd =0 V(% 7)eG(T).

Since T is maximal mbnotone, we conclude that (Ax,, (A*)"'y,) € G(T) and
hence (xy, y,) € G(A*TA). Thus, the proof is complete. O

We are now ready to establish the main theorem for the case of two maxi-
mal monotone operators.

THEOREM 3.4. If T\,T,: X - X* are maximal monotone operators and
Ay, Ay X — X are invertible continuous linear operators satisfying the con-
straint qualification

0 eri(co AT'D(T}) —co A5'D(T>)),

then the operator ATT\A,+ A5T, A, is maximal monotone.

Proof. 1t is clear that A]T, A+ A5T, A, is monotone. By Proposition 2.2,
it is sufficient to prove that

R(ATT1A1+A5T2A2+J) =X*
For any fixed xge X*, we define S, S,: X*— X by

S1(x*):= (AT 4, +3J) 7 (x*)
and
Sy(x*) = —(A3T, Ay +3J) (x5 —x*).

It is clear from Proposition 2.3 and Lemma 3.3 that S; and S, are maxi-
mal monotone single-valued operators. Thus,

D(S)Nint D(S,) = X* = 0.

By Proposition 2.4, we conclude that S;+ S, is also a maximal monotone
operator. Since by Proposition 2.7 each S;! is a (BH)-operator, each S; is
also a (BH)-operator. It follows from Theorem 3.1 that

ri(co R(S;)+co R(S,)) C R(S,+S>).
Since R(S;) = A7'D(T}) and R(S,) = —A7'D(T5), it follows that
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0 e ri(co AT'D(T}) — co A5 D(T5)) = ri(co R(S;) +co R(S,)) C R(S;+S,).

Thus, 0 e R(S,+S,). Let x*e€ X™* be such that 0 € S;(x*)+ S,(x*). It follows
that there is some y*€ S,(x*) such that —y*e S,(x*). We then have

X5 = X"+ (x§—x*) e (AT T1 A1+ 3))(V*) + (A3TL, Ay 4+ 37)(5%)
=(ATT1 A+ AT, A, + 1)(Y").
This completes the proof. O
As a consequence, by taking each A, to be the identity mapping, we obtain

the following result, which generalizes [24, Thm. 2] to a reflexive Banach
space.

CoROLLARY 3.5. If T, T,: X > X* are maximal monotone operators satis-
JSying the constraint qualification
0 eri(co D(T}) —co D(T3)),
then the operator T+ T, is maximal monotone.
As previously remarked, together with the well-known result [23, Thm. A]

that every subdifferential operator of a closed convex function on a Banach
space is maximal monotone, we establish the following motivating theorem.

THEOREM 3.6. If f: X — R is a closed proper convex function on X and if
C is a nonempty closed convex subset of X such that

0 eri(dom f—C),
then x is a solution of VI(3f, C) if and only if x is an optimal solution of (P).

4. Main Results for n Maximal Monotone Operators

In this section we will extend the main theorem to the case of » maximal
monotone operators.

THEOREM 4.1. If T\, T>,...,T,,: X —> X* are maximal monotone operators
and A,, A,,...,A,: X— X are invertible continuous linear operators satis-
Jfying the constraint qualification

(0,0,...,0)eri(coCy XcoCy X -+ Xco Cp),
where

Ci:=AT'D(TYNAF'D(T)N - N AL D(Ty—1) — A" D(Ti)
vk=2,3,...,n,
then the operator AT\A\+A3T, A+ -+« + AT, A, is maximal monotore.
Proof. Observe that 0eri(co Cy) forall k =2,3, ..., n, since

(0,0,...,0)eri(coCyXcoCyX -+- Xco C,)
C ri(co C;) Xri(co C3) X -+ Xri(co Cp,).
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We now prove the assertion by induction. In the case n =2, this is exactly
the conclusion of Theorem 3.4, since

0 eri(co C5) = ri(co(AT'D(T)) — A5'D(T>)))
= ri(co AT'D(T}) — co A7 'D(T>)).

Suppose that the assertion holds for n = k and that we have a maximal
monotone operator T:=A[T1 A+ A3T, Ay + - + AT Ag. Now, let n=
k+1. Notice that

Oeri(coCy4q)
= ri(co(A7 ' D(T)NAZ'D(TH)N --- N A D(T) — A1 D(Tye11)))
= ri(co(AT'D(TY) NAZ'D(TH) N -+ - NAL'D(T})) — co Ak 1 D(Tie11))
=ri(co D(T)—co Aiy 1 D(Tj 41)).

Again, Theorem 3.4 implies that T+ A% Ty 41 A1 =TT+ A} T 1 Ak s
is maximal monotone; that is, the operator

AT A+ AT Ap+ -+ Aj 1 Tie 1Ak

is maximal monotone, where I denotes the identity mapping on X. This
completes the proof. 0

As a consequence, by taking each A, to be the identity mapping on X, we
obtain the following corollary.

CorOLLARY 4.2. If T\,T5,...,T,: X—> X* are maximal monotone opera-
tors satisfying the constraint qualification

0,0,...,0)eri(coCyXcoCy X --- Xco Cp),
where

Cr:=D(MND(T)N--ND(Ty_)—D(Ty) Vk=2,3,....n,

then the operator T\+ T, + --- + T, is maximal monotone.

From the general inclusion ri dom fC D(df) C dom f, for any closed proper
convex function f on X we have the following.

CorOLLARY 4.3. If fi, f2, ..., [u: X = R are closed proper convex functions
satisfying the constraint qualification

Oeri(dom fiNdom f,N:--Ndom f;_;—dom f;) Vvk=2,3,...,n,

then the operator 8f,+ df,+ - -+ df, is maximal monotone.

Finally, we give an extensive form concerning maximal cyclical monotonicity
as follows.

THEOREM 4.4. If T}, T>,...,T,: X— X* are maximal cyclically monotone
operators satisfying the constraint qualification
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(0,0,...,0)eri(coCyXcoC3X - Xco C,),
where

Cpi=D(T)YND(TYN - ND(Ty_)—D(T) Yk=2,3,...,n,

then the operator Ty+ T+ --- + T, is maximal cyclically monotone.
Proof. Since each T; is a maximal cyclically monotone operator, by [23,
Cor. 1] there is some closed proper convex function f; on X such that 7; = af;

fori=1,2,...,n. Since by [23, Thm. A] each subdifferential operator of a
closed proper convex function is maximal monotone, we have

T1+T2+---+T,,=6f1+8f2+---+6f,,=6(f1+f2+---+f,,).

The last equality follows from Corollaries 4.2 and 4.3. Thus, the assertion
now follows from [23, Cor. 1]. O
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