Spectral Gaps and Rates to Equilibrium
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1. Introduction

The purpose of this paper is to investigate how geometric quantities, such
as inner radius and diameter, influence the gap between the first two eigen-
values for Schrodinger operators subject to Dirichlet and Neumann bound-
ary conditions for domains in Euclidean space. The estimation of these gaps
has important consequences for both physics and mathematics. For example,
M. van den Berg [Be] uses gap results for the Dirichlet problem to give suffi-
cient conditions for a free boson gas to macroscopically occupy the ground
state alone under the thermodynamic limit. Mathematically, the problem of
estimating the spectral gap has been of interest to analysts and geometers
for several years [AB1; L; SWYY; YZ]. Probabilistically, the spectral gap
determines the asymptotic exponential rate of convergence to equilibrium
for the associated Markovian semigroup, and it is related to the log-Sobolev
constant (see [D; Sa] for more on this). In the case of the Dirichlet gap, the
relevant semigroup is the one for Brownian motion conditioned to remain
forever in the domain. This interpretation was the original motivation for
our study of the problem.

If we examine the eigenvalue problem for a Schrédinger operator with a
smooth, nonnegative, convex potential V' under Dirichlet boundary condi-
tions in a smooth domain 2 C R”,

—Au+Vu=Au in Q,
u =0 on 91},

we see that the eigenvalues form a discrete set and can be arranged in non-
decreasing order [D]:

1.1)

O<A <Ay .-, (1.2)

A conjecture which has been of interest for a number of years is that, with
the above assumptions, for all convex domains of diameter d we have

2
3dL2 < AZ—Al:

where the lower bound is approached for thin rectangles (see [Be; AB1]).
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The first substantial progress on this conjecture was made by Singer et al.
[SWYY], who used a maximum principle technique as in [Sp] to show that

2 2 _
LI Ay—A < m; n 4(M—m)
r n

e (1.3)

for convex domains of diameter d and inner radius r (the radius of the
largest inscribed ball), where M =supgV and m = infg V. In particular, if

V =0 then (1.3) becomes

’ﬂ'z n7r2

WSAZ—AISTZ—" (1.4)
Later, Yu and Zhong [YZ] refined the maximum principle method to im-
prove the lower bound by a factor of four, and recently Ling [L], using the
same approach, found the strict inequality

7!'2

FE <Ay—Ap (1.5)
In Section 2 of this paper we obtain inequality (1.5) and improve it under
certain assumptions of symmetry through a new approach, which we believe
can be used to obtain a better lower bound even for the general case. Instead
of appealing to the maximum principle, we use a variational method along
the lines of what was done for the Neumann problem in a paper of Payne
and Weinberger [PW]. Our proof was motivated by comparing the behavior
of the diffusion conditioned to remain forever in the domain, where rate to
equilibrium is measured by A, —A;, with the behavior of the Brownian mo-
tion reflected at the boundary. This will be explained in more detail in Sec-
tion 5. Next, in the case V=0 and for n = 2, we use some recent results of
Jerison [J] to improve the upper bound of [SWYY] to
C C

A=A <SS — < —
2 1 d?2/3r4/3 r2’

(1.6)
where C is a universal constant. We close Section 2 with sharper upper
bounds for (1.3) by applying the proof of the Payne-Pdlya-Weinberger con-
jecture found in [AB2].

In Section 3 we study the “gap” corresponding to Neumann boundary
conditions. If 2 C R” is smooth and du/dn is the derivative of u# in the out-
ward normal direction, then the eigenvalues of the Neumann problem

—Au = pu in {,
(1.7)
6_u =0 on 909,
on

can be written as

O=p<pa=p3=---.

The gap p>—p; = p5 is actually just the first nonzero eigenvalue, and as
such has been studied much longer than the Dirichlet gap. In [W], Weinberger
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proved that among all domains of equal volume ||, the ball has the largest
pa, which implies that

c
K2 =757 (1-8)
12|
where c is the second Neumann eigenvalue for the ball of volume 1. Subse-
quently, in collaboration with Payne [PW], it was proved that for all convex
domains of diameter d,
2

K2 =5 (1.9)
with the lower bound being approached for long thin rectangles. Under the
same hypotheses, we will show in Theorem 4 that

Cc

where ¢ is a universal constant. This result allows us to conclude that the
exponential decay in time to equilibrium for a reflected Brownian motion is
proportional to 1/d>. (See Theorem 6 and its corollary.)
Combining (1.5), (1.9), and (1.10) yields
2
7 <p, < ﬁ = C(A;—A)). (1.11)
This leads us to investigate an upper bound for A, — A, in terms of ¢/d? when
the potential V' = 0. We end Section 3 by constructing a sequence of domains
{2} in R? with diameter d = 1 such that A, —A)— o as j— o, showing that
no such upper bound is possible.
In Section 4 we consider the case of the gap for Robin boundary conditions:

—Au=Au in Q,

%+au—00n69 O0<a<o (1.12)

0<A(@) <Ay(a) < -

These boundary conditions lie between the Neumann (« — 0) and Dirichlet
(o — o) cases, so it is hoped that a study of them will shed further light on
the extreme situations. (See [Sp] for basic references on this problem.)

Finally, in Section 5 we explicitly relate the calculations from the previous
sections to the study of the time to equilibrium for the normalized Dirichlet
heat kernel. It is well known that the rate to equilibrium is exponential and
depends upon the magnitude of A,—A,;, provided the semigroup is intrin-
sically ultracontractive [D]. In Theorem 6 we provide a detailed proof of
this dependence.

A word about the notation used throughout the paper: We use C or ¢ to rep-
resent a universal constant that may change between lines of inequalities. Un-
less otherwise stated, in the rest of the paper Q@ C R” will be a smooth, bound-
ed convex domain and V € L*(Q2) a smooth, nonnegative, convex potential.
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2. The Dirichlet Gap
The main result in this section is the following theorem.
THEOREM 1.  For Ay, A, defined as in (1.1)-(1.2), we have Ay — A, > x%/d*

Proof. From Kirsch and Simon [KS], if Ve L®(Q) is smooth then

f ol Vf IZ‘PIZ dz
f Q S 290 12 dz

where ¢, is the lowest eigenfunction and the infimum is taken over all C*(2)
functions satisfying [, fei = 0. In fact, this result applies for a much larger
set of potentials known as the Kato class. Under our assumptions the infi-
mum is achieved for f = ¢,/p;, where ¢, is the second eigenfunction. This
function f is smooth up to the boundary by (A) in [SWYY, Sec. 6].

Let u € C*(2) be such that both v and u¢, have bounded derivatives in Q
and

Az—/\l = inf

f upt dz = 0. (2.1)
Q
We then claim
2
f |Vu|?of dz > % f |ul?p? dz. (2.2)
] Q

Taking u = f = ¢, /¢, immediately proves the theorem, so we content our-
selves with demonstrating (2.2). We do this in two dimensions only, but
comment later on how the n-dimensional case follows similarly.

For the proof of (2.2) we need the following 1-dimensional lemma. This
lemma is essentially contained in [PW]; we include its proof for complete-
ness and because it shows the strictness of the inequality in Theorem 1.

LEMMA 1. Let p*(y) be a nonnegative log-concave function on an interval
0 < y < L. Then, for any piecewise C' function ii,

(Je P*» () dy)z]

fL *Wla')1*d >WZUL *Wa*(y)d
) = — U -
5 Dy J y 12 o Dy yyay f(fp*(y)dy

(2.3)

Proof. By letting u(x) = &#(y)—[§ p*(»)#1(»)dy/[§ p*(y)dy, it is enoughto
show (2.3) for p*(») nonnegative log-concave on 0 < y < L and u(y) piece-
wise C! satisfying

L
[ prrumay=o. (2.4)
0
This reduces (2.3) to

L 71_.2 L
[ Prowora =% | pro)umndy, (2.5)
0 L Jyg

where we can assume that p* > 0 on [0, L] and is twice differentiable.
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The minimizer v of
[o W)’ () dy
I§ p*ONuN)? dy
subject to (2.4) satisfies the Sturm-Liouville problem

(2.6)

[p*v'Y+Ap*v =0,
v'(0)=0v'(L) =0,

with A the minimum in (2.6); see [CH].
Dividing (2.7) by p*, differentiating with respect to y, and setting

w= vl(p*)l/Z (2.8)

2.7)

shows that w is a solution of
*\# %y712
w,,+[l(p )" 3 (pY)] ]w+/\w=0,
(2.9
w(0) =w(L) =0.

Since p* is log-concave we have 1(log p*)” < 0, and hence the second term
in (2.9) is less than or equal to zero. Multiplying by w and integrating by
parts, we obtain

_ Jgov2ay

— JEwray

with w(0) = w(L) = 0. Therefore, a lower bound for A is 7#%/L?, the first
Dirichlet eigenvalue for the interval [0, L], and the lemma is proved. We
remark that if p* is not constant in the lemma then the potential in (2.9) is
strictly less than zero and there is strict inequality in (2.3) and (2.5). O

A

Having shown the 1-dimensional lemma, we now return to the proof of
Theorem 1. Consider the set of lines that divide @ into two pieces of equal
area. Since  is connected, for any given 0 < 8 < 180°, at least one such line
forms an angle § with a ray in the direction of the positive x axis. No two of
these lines can be parallel, for then they would divide Q into three pieces,
such that on each side of the parallel lines there is equal area, forcing the
middle piece to have zero area. Hence, to every angle 0 < 6 < 180° we can
associate a unique line that divides @ in two and makes an angle # with the
positive x axis. With  as in (2.1), it follows from the continuity of u¢? that
there exists at least one angle # for which the corresponding line divides
into two convex subdomains Q,,, 2, of equal area with

f upt =0, i=1,2.
Q

1
Breaking each of the Q; up similarly and so forth, we obtain for any » =
1,2, ... acollection {Q,,} of 2 convex sets, all of the same area and satisfying

f uptdz=0, k=1,...,2"
Q

vk
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Fixing e, we take v such that
1 e\
A, =i ==|Q=n—-]}.
v I vkl 2»-[ I 1(4)

The inner radius of these sets is thus less than or equal to /4, and because
any convex domain may be inscribed in either a triangle or strip having the
same inner radius, we can place each Q,, between parallel lines at a distance
€ apart.

For each ©, € {Q,,} we introduce a coordinate system with the x axis tan-
gent to 2, and the positive y axis containing the diameter. If p(s) is the
length of the line segment (a;, b;), the intersection of the line y =s with Q2,,
then convexity of 2, makes p(s) a concave function on [0, L,] where L, is
the length of the diameter of ,.

By the mean value theorem applied to (du/dy)%¢2, we have a,<t,<b,
such that

du(x, y) \? L,
| (——”(ax > )) o}x, y)dxdy— p(y)[u(o,y)'12¢%(0,y>dy|
Q, Y 0

L, pb, au(x,y) 2 2 6“(0,_}’) ’ 2
J ), (%57 etmn—(5) eio.| axay
L, rb, a (du >
_<_J;) Ly (x—O)(a(—a}—wl) )(Ey,y)

If we set
a (ou \\.
Ml = sup(b;(g;gol) ) in Q,

the last quantity is bounded by

dxdy. (2.10)

L, pb,
M,f f |x|dxdy < M, A,e.
0 a,

Similarly, there is an M, with

L,
f u’pf a’xdy—f p()[u(0, M1*ei(0, y) d)” =MAye, (2.11)
Q, 0
and by assumption there is an M; such that

L,
fﬂ uet dxdy— fo p(y)soi"(O,y)u(O,y)dyl

v

< M;A,e. 2.12)

LV
fo P00, y)u(0, ) dy

By a result of Brascamp and Lieb [BL] we now have ¢, log-concave, which
implies the same for ¢{. Because our p is concave we have peot log-concave
and, by setting p* = pef in (2.3) and calling M = max(M,, M,, M), we de-
duce via (2.10), (2.11), and (2.12) that
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f |Vu ot dxdy
Q,

2
SIE A

L,
> fo [4(0, y)' 12 p(») 00, y) dy — eMA,

72 UL (J§* poiudy)?
= — [4(0, »)1*P(») 0{(0, y) dy — -2 }—eMAp
L2 {J ! [E+ po? dy
2 L, 2 d 2 MA 2
= 7r2 [f u*ptdxdy— (foLp‘pll; Y) }—eMA,,-—E_.L?_"_7r
L7 (g, Jo* pot dy /

2 MA e (5 poud MA, 72
= [ wotaray- M LIUDY g MET
L V .'-0 p¢l v

> sz uto? dxdy—C(M)A,e.

The last inequality holds since for smooth # we can assume u < M, so that

[o P(P) (0, Y)u(0, y) dy
I3 p(») @i (0, y) dy
Summing over {Q,,} and recalling that L, < d yields

=M.

2
f]Vu]2 dxdy_dzfu2¢12dxdy—C(M)|Q|e.
Q

Letting e — 0 proves claim (2.2) with the exception of strict inequality, which
may be derived by noticing that the p* = pe? used in our proof is not con-
stant and using the remarks at the end of Lemma 1.

If instead of R? we examine R”, the proof of the theorem can be modified
as follows. We replace lines dividing 2 into equal areas with hyperplanes
that break @ into pieces of equal volume, dividing Q into convex sets {Q,;} of
equal volume, with each Q,, fitting between two hyperplanes (say, x; = 0 and
X1 = €) and tangent to the hyperplane x,, = 0. We then let p(s) be the (n—1)-
dimensional volume of Q,, N{x, = s}, and recall a well-known consequence
of the Brunn-Minkowski inequalities {Sc], the so-called Busemann’s theo-
rem, which states that p!/"~V is concave. Consequently, p is log-concave on
0 < s < L,, and therefore so is p* = pp?. Theorem 1 is now complete. [

CoroLLARY 1. For a doubly symmetric domain in R? with longer axis of
symmetry of length b,

7l,2

Aa=Ai> 25

Proof. The symmetry assumptions on the domain are inherited by the first
two eigenfunctions, allowing the partitioning in the proof of Theorem 1 to
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be done in such a way that the lines dividing the region are parallel to the
longer axis. This means that each {2, in the proof can be contained between
parallel lines at a distance ¢ apart, and between the lines y =0 and y = 4.

ReMARK 1. Corollary 1 actually gives a better lower bound than (1.5) for
domains such as a square. In this case we get

2 2

3 T
—  VEIrsus A;—A;=

Ary—A = _—,
2= 252

where s is the side length.

REMARK 2. If in Theorem 1 the convexity hypothesis is removed then we
can find domains D, C B(0, 1) with A5 —A] — 0. As an example, take a set of
dumbbells connected by a thinner and thinner bar. In this case, the Brownian
motion has a hard time getting through the passage and hence the time to
equilibrium should be large. More generally, if a set of domains is tending
to become disconnected then the gap will tend to zero, because (essentially)
the second eigenfunction can be chosen approximately equal to the first on
one part of the domain and a negative multiple of it on the other part of the
disconnecting domain.

ReEMARK 3. The key to the lower bound is equation (2.11), which follows
from the log-concavity of pe# on line segments and a 1-dimensional com-
parison with the eigenvalues of the vibrating strings. We could thus improve
our result if we could get better bounds for the first eigenvalue of the fol-
lowing Schrodinger problem:
. [1 (ped)” 3 [(pel)T? _
w +[2 P 4 (peil? ]w+)\w 0,

w(0) =w(L,) =0,

where ¢, is the first eigenfunction restricted to a line segment in Q. What we
know is that the potential in (2.13) is strictly less than 0, giving strict inequal-
ity both in Theorem 1 and in Remark 1. As a final remark, we emphasize
having ¢, log-concave is not enough to improve the bounds on the eigen-
value even if its boundary values are zero. To see this, simply take ¢, to be
trapezoidal in shape with long bases and a short height.

(2.13)

THEOREM 2. Ifin (1.1) the potential V is 0 and n = 2, we can obtain a better
upper bound for the Dirichlet gap: A\, —\, < C/d*/3r*/3,

Proof. Let 5,7, be the first two eigenvalues for the Schrddinger operator
—d?%dx*+ ¥ p(x)? on [0, d], where p(x) is the cross-sectional length of Q
perpendicular to the diameter. Without loss of generality, we assume the
domain to have inner radius 1. We can then apply Theorem A in [J], which
states that

c
1]15/\1 and AzST]z'i‘F,
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where L is a natural length associated to Q that satisfies "> < L < d. Thus,

c
M—=M=nn—-nt+-—,

13
and by [J, Lemma 4.4], the right side can be majorized to obtain
c c C C
)\Z—AIS—L—E+Z—<L S—W |

Finally, if the potential ¥ € L*(2?) and only the inner radius is fixed, we have
the following isoperimetric inequality.

THEOREM 3. If n=2 and A|*%, A5 are the first two Dirichlet eigenvalues
Jfor a domain Q with inner radius r and potential V e L*(R), then (1.3) can
be improved to

Ap8_\hi < §—§—92+1 539(M—m).

Proof. The Payne-Polya-Weinberger conjecture proved in [AB2] states that,
for a nonnegative potential V'*,
AL A0 < 1.539A1 9,

where equality occurs for a ball with potential V' = 0. For given V, let V* =
V—m=0. Then A\Y"® = A"? _m and the preceding result applied to V*
yields

ApE—APE =200 AT < 1539770 = 1.539(A] T — m)
< 1.539(\> 4+ M—m) < 1.539(\) B+ M —m)
=3B — A8 11.539(M —m)
_ 8.899
I’

with B, the ball of radius r. The last inequality holds by domain monotonic-
ity and the next-to-last by the variational formulation for the eigenvalues.

[
The same theorem continues to hold in higher dimension with 8.899 and
1.539 replaced by the appropriate constant of the gap for the n-dimensional
ball of radius 1. If—in contrast to fixing the inner radius—we have only the
area fixed, the gap need not be bounded even for convex sets, as we will
soon see.

3. Neumann Conditions versus Dirichlet Conditions

In this section we discuss geometric results that hold for the Neumann gap
p, corresponding to (1.7). One of the early results in the area was the dis-
covery by Payne and Weinberger [PW] of the following optimal inequality:



150 RoBERT G. SMITS

2
T
Ha = 'd—z.
It is also true that there exists an upper bound in terms of the diameter. This
result, which we prove below using elementary ideas, may also be shown by
considering the convex domain under Neumann conditions as a submani-

fold of a manifold with positive Ricci curvature, and then applying a theo-
rem of Cheng [C].

THEOREM 4. For all convex domains in R? of diameter d,
- 48
B2= 3

Proof. We can take Q in the (x, y) plane with the diameter on the x axis and

f xdydx=0.
Q

The variational formulation of u,,
. Vul* dz
py = inf fﬂl 2|
Joudz=0 fg utdz

along with the choice u(z) = u(x, y) = x, allows us to reduce the proof to
demonstrating

, (3.1)

[ogdydx _ ¢
Jqx¥dydx ~ d*

Let f, g be concave and convex functions (respectively) such that

(3.2)

Q={((x,y):a<x<b, gx)<y<flx)

and set A(x) = f(x) —g(x). We know that # = 0 and concave, so (3.2) will be
proven if we can show

(b—a)?

By considering y* = sup,<y< #(x) and x* = h~1(y*), we define the piece-
wise linear interpolation

b b
f hx)dx < —S f x2h(x)dx. (3.3)

*

xf}_a(x—a), a<x=sx*
T(x)= .

4 -(b—x), x*=<x<b.

b—x

The left-hand side of (3.3) is majorized by (b —a)y*, while by concavity the
right-hand side is minorized by

C
(b—a)?

b
f x2T(x)dx.
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Hence (3.3) can be further reduced to showing

P PP AR szy*_
(b—a)y S(b—a)z[fa x (x*_a)(x a)dx+ x‘x b—-x*(b x)dx],
(3.4)
or equivalently
(b—a)’*= liz[b3+b2x*+ b(x*)2—a(x*)?>—a’*x*—a’)]. (3.5)

Dividing (3.5) by b—a yields
(b—a)? < —1—6‘2—[b2+ab+a2+(b+a)x*+(x*)2],

and choosing ¢ = 48 we have
b2—2ab+a? < 4b>+4ab+4a’+4(a+b)x*+4(x*)~
The previous inequality is true because

0<2(a+b)*+(a+b+2x*)>,
SO

pZS‘Z]‘E.

Notice that, if we fix the inner radius, we can apply the ideas of Theo-
rem 3 to get the isoperimetric inequality
N
r
where ¢ = p,(B)) = 3.39 is the eigenvalue for the ball of radius 1, and Q* is
the ball of same volume as .

We now give a brief table of u,d? for various convex domains, showing
how the gap increases as a diamond shape region is approached.

Domain Value

thin rectangle u,d? ~ w2

circle p,d? ~13.56
thin sector p,d? ~14.682
square pd*=2-72

An immediate corollary to Theorem 4 is the existence of a constant ¢ for
which
p2 < c(Ay—Ay).
On the other hand, there is no reverse inequality, as (1.10) and the next theo-
rem demonstrate.

THEOREM 5. For the sectors Q;={(r,0): 0=<r<1, 0<0<w/j}, the Dirichlet
eigenvalue gap is unbounded as j — co.
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Proof. By separation of variables, we find that the Dirichlet eigenfunctions
of Q; are u;,, x(r,0) =sin(jm8)J;,,(NAjm, k1), where Jim(r) is the Bessel func-
tion of order jm whose zeros are VA, ;. The eigenvalues of Q; are thus
Ajm, k- In addition, for j large the first two eigenvalues have m =1, so A; and
A, are the first and second zeroes of J,—(\/X ).

By approximating the first two zeros of J; (see [Ol]), we see that
A ~Jj243712j43 and A, ~ j*+6.48924/3.
From this we have
A=A~ 2.777j*3 5 0,

With |Q| and d the area and diameter of a domain Q, Theorem 5 has the
following consequence: There can not be a constant with
c c
— <
d? €]

for all convex domains €, since in our example d =1 and |Q;| = ¢j.

A=A < or even A,—A

4. The Robin Boundary Value Gap

If we fix o > 0 and consider the eigenvalue problem

Au+Au=0in {, 4.1)
gli+au =0 on 99, 4.2)
an

we obtain, as in the Dirichlet case, eigenvalues satisfying
0<A(a) <Ay(a) =As3(a) < ---.

This third type of boundary condition, the Robin boundary, can be thought

of as intermediary between that of the Neumann (o« — 0) and that of the

Dirichlet (o — o), and in terms of a physical interpretation it represents a

boundary that is partially reflecting (insulated) and partially absorbing.
Because

Ao) —A(@) > p, as a—0
and
A(a)—=Al@) = A;—A; as a—ioo,

we expect the lower bounds, which hold under both Neumann and Dirichlet
boundary conditions, to remain valid when Robin boundary conditions are
considered. For example, in convex domains we should have A (a) —A;(x) =
w%/d?. One possible approach to this is to mimic our proof of Theorem 1.
However, we do not know if the first Robin eigenfunction is log-concave,
which was a key point in our proof.

On an interval, say (—#/2, #/2) in R!, we know that A(a) is the first root
of tan(w/2)Vx = a/Vx and A,(«) is the first root of
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T T™ (04
tan(—z—\/)—c 7) ==,

Using implicit differentiation, we obtain

di; 4A;

dao  w\i+a?)+2a’
and Ay(a) > A («) implies dA,/da—dA/do > 0, so that Ay(a) —A(«) is in-
creasing. We actually have this increasingness for all gaps A;(a) —Ai(a),
k < j. We have also verified that the gap Ay(a) —A (@) is increasing for rec-
tangles and circles, which leads us to the following question: Is Ay (a) —A (@)

increasing for all bounded, convex domains in R”? We do not know the
answer to this question.

5. Rates to Equilibrium

In the following we show how estimates from Sections 2 and 3 may be used
to derive bounds on the rate at which heat kernels in convex domains tend
uniformly to a fixed function as time increases.

If a domain Q C R” is minimally smooth (convex is more than enough)
then the Dirichlet heat semigroup of A+ V is intrinsic ultracontractive, which
is equivalent to having its heat kernel K(¢, x, y) satisfy

0= K(¢,x,5) = Cio1(x) 1)) (5.1

for all (x, y,t) e DX DX (0, ), where ¢,(x) is the base eigenfunction with
leillzz =1 and C, depends only on ¢ and the domain (for this and related
topics, see [B1]).

If we set
eMK(t,x, )

e1(x) ey (y)

we obtain a new semigroup on L?(e¢#). This is the semigroup for Brownian
motion conditioned to remain forever in D, the Doob A-process associated
with ¢;. The conditioned Brownian motion tends to spend most of its time
in the “center” of the domain since this is where the eigenfunction is largest
(see [B2, Prop. 2] for a precise statement of this). For smooth convex do-
mains it is also reasonable to expect that the reflected Brownian motion will
tend to be in the “center” much of the time, particularly in the long run.
This motivated our comparison of time-to-equilibrium results, and hence
gaps results, for the two processes.

Following Saloff-Coste [Sa], for each ¢ > 0 we define the time to equilib-
rium for the Brownian motion conditioned to remain forever in 2 to be

K(t,x,y) =

T, =inf{t > 0: sup, ,cq|K(t, X, ¥)—1| <€}
and for the reflected Brownian motion to be

T, =inf{t > 0: sup, ,eq| P(t,x, ) —1/|Q|| < €},
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where P(¢, x, y) denotes the heat kernel for the Neumann problem. The next
theorem relates the spectral gaps A, —A; and p, to 7, and T,.

THEOREM 6. Given a convex domain Q C R", there exist constants C, and
C, such that for all t = 1,

e A=A < gup. ol K(2, X, y) —1| < Cje= P22t
and

e "' < sup, ,eo| P4, %, ) —1/|Q|| < Cre™#2!,

A

Proof. Since e ™ p(x) = fﬂ K(t,x,z)¢1(z2)dz, the semigroup property of

K(t, x, y) gives

|K(t,x, y)—1|= f((]?(%,x, z)—l)([?(%,y, Z)—l)golz(Z) dz
RO N
= ]?(—t—xx)—l 1?(1 )—1 (5.2)
- 2: ’ z’ysy . '

Furthermore, the heat kernel expansion in terms of the orthogonal eigen-
functions ¢,(x),

IA

L¥(pidz) L%(p2dz)

K(t,x,9) =3 e ™0, (x) 0n(¥), (5.3)
n=1
implies

2
= & —(h— ¢n(X)
Kit,x,x)=1]=3 e Pn—rr 2077
I ( I n§2 ‘4912()()

Ar—A @ An—ADE) pa(x)
sel=(25) S el - G o
SCXp{——(—/}LZAI—)—t”K(%,x,x)—I‘

K’(i.,x,x)—ll. (5.4)

2J 2J

= |I?(t,x,x)——l| < exp[—(/\z——)\l)(t‘—L»

Picking j an integer with #/2/€[3,1] (i.e. f = 1) and calling

c= sup |K(t,x,x)—1|< oo,
tel1/2,1], xed

by (5.4) we have
|1?(t,x,x)—l|scexp{—(/\z—/\l)t}expi()\z——)\])%}, t=1, (5.5)

and, using (5.2) and (5.5) together with #/2/ < 1, we have
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|R(t, %, y)—1| < Ce=P2=M1 ¢ >1,
On the other hand, by (5.3) we may write

eMTAlp)(x) M ¢2(¥)
K(t,x,y)———so (»)dy
ei(x) o) o2 (y)
®2(¥) ®2(¥)
—f Rt 0222 25 dy—f 2D 23 dy
o1(») a ¢1()
< [ |R@x 1) o} (¥ dy
e1(y)
< sup #2(7) sup |K(t,x,y)—1]|.
yeQ e1(») X, yeq
Taking the supremum on the left-hand side yields
eMi=hal = g=a=Ml < qup K (2, x, y)—1,
and we conclude that sup|K(t,x, y) —1| ~ e~ A=A ¢ > 1, O

The same proof would apply equally under Neumann conditions. Indeed,
the key point in our proof is (5.1). Such an estimate holds for the Neumann
heat kernel in our domains by [D, Thm. 2.4.4].

Theorem 6 and the results of Sections 2 and 3 allow us to estimate 7,
and T, by d? and r2. For example, we have the following result.

COROLLARY. Let Q be a convex domain in R? of diameter d and inner ra-
dius r, and assume that V = 0. Then there exist C} and C} such that

and

From Theorem 6 we see that the conjectured lower bound on the Dirichlet
gap is equivalent to the statement that among all convex domains of fixed
diameter the rate to equilibrium is slowest for a thin rectangle, while Theo-
rem 5 shows there are arbitrarily large rates to equilibrium even for fixed
area. The situation is quite different in the Neumann case, where for fixed
area uniformity of the heat kernel occurs with maximum rate for the ball.
We also note that for domains of fixed inner radius 1, the fastest rate to
equilibrium for either the Neumann or Dirichlet kernel is given by that of
the unit ball.

Finally, the Robin problem does not seem to have been studed probabilis-
tically. However, intuitively this should correspond to a diffusion which,
upon hitting the boundary, escapes or reflects with a certain probability de-
pending on the parameter «. On the domain Q, the gap A,(a) —A,(«) should
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then be a measure on the time to stability for this diffusion conditioned by
the first strictly positive eigenfunction ¢y".
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