Local Homology Properties
of Boundaries of Groups

MLADEN BESTVINA

0. Introduction

In this paper we formalize the concept of the boundary of a group (Defi-
nition 1.1). Even though a group might have different boundaries, certain
global and local homological invariants of the boundary are determined by
the cohomological invariants of the group. In particular, we show (Theorem
2.8) that the boundary of a Poincaré duality group is a homology manifold.

1. Boundaries of Groups

1.1. Z-Structures on Groups

Recall that a compact metrizable space is a Euclidean retract (or ER) if it
can be embedded in some Euclidean space as its retract, or (equivalently) if
it is finite-dimensional, contractible, and locally contractible. A closed sub-
set Z of a Euclidean retract X is said to be a Z-set if any of the following
equivalent conditions hold.

(a) There is a deformation #,: X — X with hy =id and h,(X)NZ =0 for
t>0.

(b) For every e > 0 there is a map f: X — X that is e-close to the identity
and whose image misses~ Z.

(c) For every open set U C X, the inclusion U\Z - U is a homotopy equiv-
alence.

DErINITION 1.1. Let G be a group. A Z-structure on G is a pair (X, Z) of
spaces satisfying the following four axioms.

(1) X is an ER.
2) Zis {Z-set in X.
(3) X =X\Z admits a covering space action of G with compact quotient.
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(4) The collecti~on of translates of a compact set in X forms a null se-
quence in X; that is, for every open cover U of X, all but finitely
many translates are U-small.

A space Z is a boundary of G if there is a Z-structure (X, Z) on G.

It is an immediate consequence of the axioms that the orbit of each point in
X accumulates on all of Z, and that for every z € Z, every neighborhood U
of z in X, and every compact set K C X there is g € G such that g(K) c U.

Similar axioms have been considered in the past, notably in attempts to
establish the Novikov conjecture [CP; FH; FW].

In many examples the G-action on X extends to an action on X. It would
seem natural to add this requirement to our definition (as in the articles just
quoted), but we have found no use for it in the present work.

ExaMpPLEs 1.2. (i) Every torsion-free word-hyperbolic group G admits a Z-
structure in which X is the Rips complex of G and Z is the Gromov bound-
ary dG [Gr]. The verification of the axioms in this case may be found in
{BeMel].

(ii) If G admits a covering space action by isometries with compact quo-
tient on a CAT(0)-space X, then G admits a Z-structure via compactification
by equivalence classes of geodesic rays. In particular, fundamental groups
of nonpositively curved closed Riemannian manifolds admit a Z-structure.

(iii) In many cases (braid groups, S-arithmetic groups, Baumslag-Solitar
groups, . . .) it is possible to give ad hoc constructions of structures satisfy-
ing axioms (1)-(3) (but not always (4)). We are not aware of any group G
that admits a finite K(G, 1) and does not have such a weak Z-structure.

(iv) More concretely, the Baumslag-Solitar group

BS(1,2) =<{x, t|t7'xt = x?)

has a Z-structure with Z homeomorphic to the reduced suspension of the
Cantor set (= “Cantor-Hawaiian earring”). The universal cover of the pre-
sentation 2-complex is contractible and can be viewed as the union of “sheets”
homeomorphic to the plane. Each sheet can be compactified by adding a
circle, and so that any two sheets share exactly one point at infinity. The
compactification of sheets is not the usual compactification that results from
viewing each sheet as a copy of the hyperbolic plane, but can be constructed
from it by blowing up the special point on the circle (the parabolic fixed
point) to an arc and collapsing the complementary arc to a point. Another
way to construct such a compactification is to identify each sheet with the
Euclidean plane so that the usual (CAT(0)) compactification satisfies axiom
(4). A variation of this construction is described in Example 3.1.

(v) If G is a torsion-free, geometrically finite Kleinian group in SO(#, 1)
with no parabolics, then (H”"US"~1, A) is a Z-structure on G, where A de-
notes the limit set of G. Torsion-free uniform lattices in Lie groups admit
a Z-structure by (ii). Torsion-free nonuniform lattices in rank-1 Lie groups
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admit Z-structure in which Z is a Sierpinski space. One blows up each para-
bolic fixed point on the sphere at infinity to the (n—1)-ball of directions
leaving the point.

(vi) Benakli [Ben] has constructed groups whose boundaries are the Sier-
pinski curve and the Menger curve respectively. In [Dra] Dranishnikov con-
structs groups (finite-index subgroups of Coxeter groups) with boundary
n-dimensional Menger compactum, or (alternatively) a space whose coho-
mological dimension depends on the ground field! See also [BeMe] and [Bes].

In practice, the most difficult axioms to verify are (1) and (2). The following
[BeMe, Prop. 2.1} is useful.

LemMa 1.3. Let (X, Z) be a pair ~of finite-dimensional compact metrizable
spaces with Z nowhere dense in X, and such that X = X\ Z is contractible
and locally contractible and the following condition holds:

(*) For every ze Z and every neighborhood U of z in X, there is a neigh-
borhood V of z contained in U such that

V\ZU\Z
is null-homotopic.
Then X is an ER and Z is a Z-set in X.

LemMa 1.4. If(X,Z) isa Z-structu[e on G,and if K is ajjm'te K(G,1),
then there is a natural Z-structure (K\UZ,Z) on G, where K denotes the
universal cover of K.

Proof. The topology on K UZ comes from taking the closure of the diago-
nally embedded K in (K U)X X (the first factor is the one-point compacti-
fication of K, and the map to the second factor is any G-map K —» X< X).
That this is a Z-structure on G follows from Lemma 1.3. t

Therefore, we may always assume without loss of generality that X is a cell
complex, and that the G-action is cellular.

Similarly, one can show that if two groups G and G’ with finite Eilenberg-
MacLane spaces are quasi-isometric and if Z is a boundary of G, then Z is
also a boundary of G".

1.2. Global Invariants

Fix a PID L. Throughout the paper, unless otherwise indicated, all homology
and cohomology groups are taken with coefficients in L. Also, Hom, ®,
et cetera are over L. We use the Steenrod homology theory (for a review see
Section 1.3); the cohomology theory is Cech-Alexander-Spanier.

Fix a Z-structure (X, Z) on a group G. For the record, we state an imme-
diate consequence of definitions, the long exact sequence of the pair (X, Z),
and the fact that X is contractible.
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PROPOSITION 1.5.
AYZ)= H!*'(X)= H'*Y(G;LG) and H/(Z)=HX (X).

The shape of Z is determined by G.

PROPOSITION 1.6. If Z, and Z, are boundaries of G, then Z, and Z, have
the same shape.

Proof. The sequence of neighborhoods of Z; in X; is pro-isomorphic to the
sequence of complements of larger and larger compact sets in X. O

The following theorem computes the dimension of a boundary in terms of
the cohomological dimension of the group. It was stated in [BeMe] in the
case of hyperbolic groups. The proof is valid in the setting of Z-structures.
Recall that if the covering dimension dim Z of Z is finite, then dim Z =
dimz Z.

THEOREM 1.7. Let Z be a boundary of G, and let L be a PID. Then
a'tmu_Z = Cd[]_G—l.
In particular, dim Z =cd G —1.

1.3. Review of the Steenrod Homology Theory

Let Z be a compact metrizable space. Embed Z as a Z-set in a compact ab-
solute retract X (e.g., if Z is finite-dimensional then we can embed it in
the boundary of a ball; in general, we can embed it in a face of the Hilbert
cube). Let X := X\ Z. The proper homotopy type of X depends only on Z.
Following Steenrod [St], define the Steenrod reduced homology of Z by

Hy(2):= B (X),

where the right-hand side stands for reduced singular homology based on
locally finite chains. Steenrod did not shift dimensions. For more thorough
expositions and generalizations of this concept, see [BoMo; Br; Mil; Fe].
When Z is a polyhedron (or, more generally, an ENR), we can take X to be the
cone on Z and easily see that H;(Z) agrees with the usual singular homology.

If Z’ is another compact metric space embedded as a Z-set in an absolute
retract X’, then any map f: Z — Z’ can be extended to a map F: X - X’ s0
that F~!(Z’) = Z. In particular, the restriction X — X’= X’\Z’ is proper
and induces a homomorphism between homology groups based on locally
finite chains. This homomorphism is declared to be f,: H(Z) - H/(Z'). It
depends only on f.

If A is a closed subset of Z, define

H{(Z,A):= H,(ZUcA).

It is a pleasant exercise to verify that this homology theory satisfies the usual
axioms of Eilenberg and Steenrod.
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If z € Z, define local homology groups H(Z, Z\{z}) :=limg H(Z, B) as B
ranges over compact subsets of Z\{z}. More generally, if A € Z is a closed
subspace, define H;(Z, Z\ A):=limg H;(Z, B) as B ranges over compact
subsets of Z\ A.

ProposITION 1.8. Let Z be a Z-set in an AR )?: and let A =] Z be a closed
subspace. Choose a basis of neighborhoods {U;} of A in X and let U; =
XN (7, Then

H(Z, Z\ A) = lim H{{ ((U).

Proof. LetV;:= ZNU,. The pair (X \U,, X\U,) is excision-equivalent to the
pair (Z, Z\V;) (via the pair (¥}, aV})).

The sequence [H.(X\U)] is pro-trivial (i.e., sufficiently long composi-
tions of bonding homomorphisms are trivial) since A4 is a Z-set in .X. Hence,
for every i, there is a j > i such that X\Uj; is null-homotopic in X \U;. It fol-
lows that the direct sequences

H(X\U;, X\U)) = H(Z,Z\V})
and
HJ(X\U) = HE(U)
have isomorphic limits. O

REMARK 1.9. Let Y be a locally compact polyhedron. If L is a field, then
HEF(Y)= H¥(Y)* (the right-hand side is the dual of compactly supported
cohomology). More generally, if L is a PID, then the universal coefficient
theorem provides a short exact sequence:

0 - Ext(H (Y); L) » HF(Y) » Hom(HX(Y); L) — 0.

1.4. Rigidity of Global Cycles in Boundaries

The following proposition imposes restrictions on the nature of the local
topology of a boundary of a group.

ProposiTIiON 1.10. Suppose that L is a countable field, and that Z is a
boundary of G.

(1) If H7*Y(G;LG) is finite-dimensional, then
HY*NG;LG)* = Hyf (X) = H(Z) > H(Z, Z\{z})

is injective for every z€ Z.
(2) If there is a point z € Z such that the local homology module
H,(Z, Z\{z}) is countable, then H 9+Y(G; LG) is finite-dimensional.

Proof. Let U; be as in the proof of Proposition 1.8 with 4 = {z].
(1) Observe first that, for every i, the inclusion-induced homomorphism

HITWU) - HIT (X))
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is surjective. Indeed, since dim; HZ +*1(X) < oo, there is a compact set KC X
such that each element of a basis of HZ"!(X) has a representative cocycle
with support in XK. By axiom (4) of Definition 1.1, there is a group element
g € G such that g(K) C U,. Since g induces an isomorphism of HZ*!(X), it
follows that g(KX') contains the support of representative cocycles of a (pos-
sibly different) basis of HZ*!(X), and the claim is established.

By taking duals, we see that H(X) — Hy$(Uj) is injective for each i.
Taking the limit as i/ — oo implies (1).

(2) Consider the inverse sequence {HJ (A ; of vector spaces. Then either
(a) for every i there is a j > i such that Im[HZ*!(U;) » HZ*'(U))] is finite-
dimensional, or (b) the direct limit of the sequence {Hom(HJ+(U)), L)}; is
uncountable. This direct limit can be identified with H,(Z, Z\{z}) by Prop-
osition 1.8 and Remark 1.9, and thus the former statement must hold. In
particular, we can find i such that s:= dim; Im[HZ*'(U)) » HI*Y(X) =
HI*Y(G;LG)] < . If dimy HZ*!(X) > s, then choose linearly independent
classes xy, X5, ..., Xs41€ HIT1(X). There is a compact set K C X such that
each x; has a representative cocycle with support in K. Let g € G be a group
element such that g(K) C U;. By the choice of s, the g-translates of the x;s
are linearly dependent in H41!(X), contradicting the fact that g induces an
isomorphism of HI*!(X). O

Thus, in the presence of finite dimensionality of global homology of Z, all
global cycles are “hung up” on each point of Z; that is, the support of a
nontrivial global class cannot be a proper subset of Z.

The following corollary was proved in [ BeMe] for Gromov boundaries of
hyperbolic groups. The proof there uses the dynamics of the action of the
group on the boundary and does not apply in the nonhyperbolic setting.

COROLLARY 1.11. Let L be a countable field. Suppose some H? 1 (G;LG)
is nontrivial and finite-dimensional over L. Then Z does not contain a cut
point, that is, Z cannot be written nontrivially as the wedge of two compact
spaces.

Proof. Suppose that Z=AUB and AN B = {z}, with A and B compact and
not singletons. Then H,(Z)= H,(AY®H,(B) and thus one of H,(A) or
H,(B), say H,(A), is nontrivial. But then cycles in /,(A4) are not hung up
on points in B\{z}. O

ReMARK 1.12. In all examples known to the author, it is true that if
dimg HIt1(X) <

then FIq(Z) — H,(Z, Z\{z}) is an isomorphism for every z € Z. In particular,
the local homology sheaf 3C, of Z is constant. (See [Br]; to an openset V' C Z
the sheaf JC, assigns H,(Z, Z\V'), and the stalk over ze Z is H,(Z, Z\{z})).
This is the case if the compactly supported cochain complex of X is regu-
lar (see Definition 2.5).
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REMARK 1.13. There is an analog of Proposition 1.10 where one assumes
only that L is a countable PID and that H*(G;LG) is finitely generated as
an [L.-module.

(1) goes through with no changes. By construction, HZ*(U;) - HI*(X)
is a split surjection. This implies that

Hom(HZ*!(X), ) » Hom(HZ*'(U)), L)
and
Ext(HZ*(X), L) - Ext(HZ*'(U), L)
are injective, and then Remark 1.9 and a diagram chase show that
Hc}{l(X) - HqL-El(l]i)
is also injective.
(2) is more technical. A theorem of Mitchell {Mit] states that if L is a

countable PID and if {P;}; is an inverse sequence of countable L-modules,
then the following two statements are equivalent:

(a) for every i there is a j > i such that Im[P; — P;] is finitely generated,
(b) lim Hom(P;, L) and lim Ext(P;, L) are countable.

Applying this to the sequence {HZ*1(U})}; we see that either (a) for every
i there is a j > i such that Im[HCq“(UJ-) ——>HC"+1(U,-)] is finitely generated,
or (b) one of lim Hom(HJ4*!(U;), L) and lim Ext(HZ*'(U}), ) is uncount-
able. In the first case we conclude that every finitely generated submodule of
H"Y(G;LG) embeds into a fixed finitely generated module. For example,
when L = Z, this implies that H9+(G; ZG) is the direct sum of a finite abe-
lian group and a subgroup H of a finite-dimensional vector space over the
rationals. (There are also restrictions on the kind of subgroups A allowed.
There must be a finitely generated group of automorphisms of A such that
every element of H can be transformed into a fixed lattice by one of the auto-
morphisms in the group; e.g., if tk # =1 then H = Z{r,, ..., r,,] for some
s ..., rm € Q.) In the second case we conclude, by Remark 1.9, that either
H,(Z,Z\{z}) or H,_\(Z, Z\{z]}) is uncountable.

The dual statement to Proposition 1.10(1) about cohomology goes through
for PIDs with no change.

ProPOSITION 1.14. If H?"YG;LG) is finitely generated as an LL-module
and g > 0, then each class in HY(Z) is carried by every nonempty open set U.
That is,

HYZ,Z\U)- HYZ)

is onto. In particular, if H?*Y(G;ILG) and H *Y(G;ILG) are finitely gener-
ated, q,r >0, and ue H{(Z) and ve H'(Z), then uUv = 0.

If HI%Y(G;LG) is not finitely generated, then for every nonempty open
set UC Z the image of HU(Z, Z\U) - H(Z) contains an isomorphic copy
of every finitely generated submodule of H*\(G; LG). In particular, if L is
a field then this image is infinite-dimensional.
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Proof. Let h;: X — X be a small deformation of the identity to a map that
misses Z. Use a deck transformation g € G to translate cocycles representing
a finite subset of H7*!(X) close to a point in U. The inverse image under A, of
the compact supports of these cocycles intersects Z in a subset of U and rep-
resents the carrier of the g-translates of the finite collection in HZ*}(X) =
HYZ). O

Proposition 1.14 immediately yields Corollary 1.11 in the more general situa-
tion when L is a PID.

ExaMmpLE 1.15. The Cantor-Hawaiian earring (= the reduced suspension
of the Cantor set) is a boundary of BS(1, 2). It is not locally connected, and
has a cut point.

The amalgamated product of two surface groups over Z has a natural
boundary (coming from the CAT(0) structure) made up of circles. In par-
ticular, there are separating arcs. Collapse one to obtain a boundary with a
cut point. This construction is not equivariant.

COROLLARY 1.16. For every nonempty open set UC Z,
dimu_(U) = dlm[L(Z) (= Cdg_G—l).

Proof. If n = cd(G) then H"~(Z) = H"(G; LG) # 0. Thus every U carries
a cohomology class in H"~!(Z) and its dimension (over L) cannot be smaller
than n—1. 0

1.5. Axiom H

Consider the following axiom. A sequence U; D U, D --- of open sets in X
is basic for ze Z if there is a sequence W, D W, D --- of neighborhoods of
z€ X forming a basis at z so that sequences {W; N X'} and {U}} are cofinal in
each other.

AxioM H. For every z € Z there is a basic sequence {U;} such that, for every
n > 1 and every compact set K C X, there exists g € G such that

(a) g(UUK)C U, and

(b) g(U,) D U, for some m > n.

The letter H stands for “hyperbolic” (see Proposition 1.18). For example,
Axiom H fails for the standard boundary of Z” for n > 1.

ProrosiTION 1.17. Let Z be a boundary of G and assume Axiom H. If L is
a countable field, q = 0, and z € Z, then one of the following holds.
(1) The natural map H,(Z)— H,(Z, Z\{z}) is an isomorphism and the
two vector spaces are finite-dimensional.
(2) H (Z,Z\{z}) is uncountable.

Proof. Let {U;} be a basic sequence at z as in Axiom H. Either there is
an n > 1 such that V=Im[HZ"(U,) » H?*!(U,)] has dimension s < o, or
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H,(Z,Z\[z}) = lim HJZ*Y(U;) is uncountable. We show that (1) is implied by
the former possibility.

We may assume that » is chosen so that s is as small as possible. By the
argument of Proposition 1.10, we conclude that dim HZ*!(X) < s (for other-
wise s+ 1 linearly independent classes could be translated into U, and would
yield s+ 1 linearly independent classes in V) and that HI*(U;) -» HIT(X)
maps V onto HI*!(X). We now claim that V maps isomorphically onto
H271(X). Indeed, if not then there is a compact set K C X such that the
inclusion-induced homomorphism ¥ —» HZ*!(U,Uint K') has nontrivial ker-
nel and image of dimension < s. By Axiom H, there is g€ G and m > n such
that U, C g(U,) C g(U;Uint K) C U; and hence H¢*Y(U,,) - HZ*(Uy) has
image of dimension < s, contradicting the choice of n.

If i > n is given, by Axiom H there is a j > i such that HZ*}(U;) » HI*'(U})
has image of dimension < s (since we can interpolate inclusion g(U,) C g(U;)
into U; C U}). But this image maps onto HJ +1(X) as before. Thus the se-
quence {HZ+1(U})} is pro-isomorphic to HZ*!(X) and (1) follows. O

ProrositioN 1.18. If G is word-hyperbolic and Z the Gromov boundary,
then Axiom H holds.

Proof. To explain the idea, we first focus on the case when G is the fun-
damental group of a closed hyperbolic manifold M and Z is the sphere at
infinity of the universal cover M. For a given z € Z, choose a geodesic ray r
in M that converges to z. For each point x on the ray, consider the half-
space U, determined by the ray [x, z), namely, the set of points y in M such
that 2yxz < w/2. For a sequence of points x; approaching z along r, these
half-spaces U; := Uy, form a basic sequence for z (this would not be true in
Euclidean space). Since the unit tangent bundle 71M of M is compact, we
can choose such a sequence of points x; so that the unit direction vectors at
X; pointing toward z are close when projected to 7M. In particular, there is
a covering transformation g; that carries x; close to x; and the unit direction
vector at x; close to the one at x;. If X and U, are given, for all sufficiently
large i we will have g;(U;UK) C U, and g;(U,)) will contain some U,,;,. Thus
we have verified Axiom H in this case.

The general case follows similarly by the “deltafication” of the foregoing
argument. Let G be a word-hyperbolic group and I' its Cayley graph. Recall
that by definition of word-hyperbolicity there exists é such that for every geo-
desic triangle ABC in T the side AB is contained in the §-neighborhood of the
union AC U BC of the other two sides. In particular, note the following con-
sequence. If Q is a point on a geodesic segment PR and if d(P, Q) > 26 and
d(Q, R) > 24, then for every SeI' we have d(Q, S) < max{d(P, S), d(R, S)}.
(Proof: Apply the definition to the triangle PRS to conclude that Q is within
6 of a point 7 in PS or RS, say PS. Since d(P, Q) > 26, it follows by tri-
angle inequality that d(P,7T) > é and hence d(S, Q) <d(Q,T)+d(T,S) <
6+d(T,S)<d(P,T)+d(T,S)=d(P,S).)
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Now recall that the Rips complex M is the simplicial complex with vertex
set G, and that a collection of vertices spans a simplex if the pairwise dis-
tance between the vertices in the collection is < d, where d is a large integer.
The Cayley graph I' is naturally contained in M. A point z in the Gromov
boundary is determined by a geodesic ray r, which may be taken to be con-
tained in I'. Instead of unit tangent vectors we will consider pairs of vertices
(x,x’) in M at a fixed distance L > 26 (measured in I') from each other. The
half-space U, - is defined to be the interior of the subcomplex of M spanned
by the vertices y in M that are closer to x’ than to x.

Now choose a sequence of vertices x;, Xi, X2, X3, X3, X3, ... along r occur-
ring in that order so that d(x;, x/) = L and d(x/, x;,;) > 26. By passing to
a subsequence we may also assume that there are group elements g; with
gi(x1) = x; and g;(»)) =¥;. Let U;= Uy, ,,. By the preceding fact we have
U; D U;,,. We now argue that the sequence {U;} is basic for z. This follows
from the two following claims. )

Claim I: If y is a vertex that is closer to x; than to x/, then for all n >
the distance between x; and any geodesic segment [x,, y] does not exceed
6+d(x1, .X,'_H).

Indeed, let P and Q be points on [x,, yY]U[y, x;] at distance < 6 from x;
and Xx;, respectively. If one of P, Q belongs to [x,, y] we are done, so assume
that they both belong to [y, x;]. Since d(x;, x;;) > 44, it must be that P is
between y and Q and d(P, Q) > 26. Now we have d(y, x;;1) <d(y,P)+6 =
d(y,Q)—d(P,Q)+é=<d(y, x;)+6—d(P, Q)+6<d(y, x;), contradicting the
fact established before.

Claim 2: If y is a vertex that is closer to x/than to x;, then for all n > i the
distance between x; and any geodesic segment [x,, y] is at least d(x;, x;) —0.

Indeed, let P be a vertex of [x,, y] closest to x;. Let R and S be points in
[x,, PIU[P, x,] at distance < é from x; and x; ., respectively. If one of R, §
belongs to [P, x;] we are done, so assume that they belong to [x,,, P]. Since
d(x;, x; 1) > 486, the triangle inequality shows that R is between P and S and
d(P,S) > 26. We now have d(y,x;) <6+d(R,y) =56+d(S,y)—d(S,R) <
6+d(x;41,y)+6—d(S,R) <d(xj.1,¥), a contradiction.

Because g;(U,) = U;, Axiom H follows. t

ExampLE 1.19. A “dendrite” made up of a null-sequence of 2-spheres with a
dense collection of cut points is not an Axiom H boundary, for it has points
where local first homology is trivial, and other points (the cut points) where
it is nonzero and countable.

2. The Boundary of a Poincaré Duality Group

DEFINITION 2.1. A compact metrizable space Z of finite covering dimen-
sion is said to be a homology n-manifold over L if H.(Z, Z\{z}) =
H.(R", R"\{0)}) for all ze Z. Further, Z is a homology n-sphere if in addi-
tion H,(Z) = H.(S").
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DEFINITION 2.2. A group G is a Poincaré duality group of dimension n
over L (or a PD"-group) if it acts freely, properly discontinuously, and co-
compactly on a contractible cell complex Y with H}(Y) = H*(R"). The in-
duced action of G on H}(Y'), that is, the homomorphism p from G into the
group of units of L, is the orientation character.

ExaMPLES 2.3. Every PD"-group over Z is a PD"-group over any field.

There exist groups that are PD” over some fields but not over others. One
way to construct such groups is to start with a closed PL-manifold M n=1
that is a homology sphere over some fields but not over others (e.g. a lens
space), and then hyperbolize [CD; DJ; Gr] the suspension of M.

2.1. Regular Chain Complexes
Fix a group G with a Z-structure (X, Z), and let X = X\ Z.

DEeFINITION 2.4. Let
C=(0-C>C_1—= -+ 2Cy1 2 C—0)

be a chain complex of finitely generated free LG-modules. The subscript
denotes dimension. For every C;, choose an LLG-isomorphism ¢; between C;
and the free abelian group on points in finitely many distinct orbits in X (the
latter is an LG-module via the natural action of G). The support of ce G,
denoted Supp(c), is the finite subset of X consisting of those points in the
selected orbits that have nonzero coefficient in the expression of ¢;(c) in the
basis.

Note that if Supp’ is the notion of support with respect to different choices
of orbits and ¢;, then there is a constant M > 0 such that, for any ¢, any
point in Supp(c) is connected to a point in Supp’(c) by a chain of fewer than
M fundamental domains, and vice versa.

DEFINITION 2.5. We say that C is regular if, for every z € Z and every open
set UC X containing z, there exists a smaller open set ¥ C X containing z
such that, for all J, if ce Im(d: C; . — C;) and Supp(c) is contained in ¥ then
there exists a d € C; such that ¢ = dd and Supp(d) is contained in U.

In light of axiom (4) of Definition 1.1, the notion of regularity does not de-
pend on the choice of ¢;s.

Topological interpretation: LetY be a CW complex such that G actsonY
freely, cellularly, and cocompactly, and let Y, be an equivariant subcomplex
of Y. We can compactify Y as in Lemma 1.4 by Z. To say that the relative
cellular chain complex of (Y, Y;) is regular means that if a relative cycle near
a boundary point z bounds in all of Y, then it bounds near z. In general, of
course, there will be cycles near z that do not bound at all.

ExXAMPLES 2.6. (i) Suppose X is a cell complex and G acts on X cellularly.
Then the cellular chain complex (C;(X)) is regular. The reason is that c € C;
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from the definition can be identified with a (reduced) i-cycle near a boundary
point ze Z. Since X is locally contractible at z, we can cone off c, staying
close to z. Further, since Z is a Z-set, we may assume that the cone misses Z
and thus can be interpreted as a chain in C;; with boundary c.

(ii) If C and D are homotopy equivalent (and both are free and finitely
generated), and one is regular, then so is the other.

ProposITION 2.7. Let (X,Z) be a Z-structure on an orientable Ijoincaré
duality group G of dimension n (over ). Also assume that X = X\Z is a
cell complex and that G acts cellularly. Then the cellular cochain complex

0-CHX)->CHX)> > CI(X)—0

is regular (where m = dim X).

Proof. First assume that m = n. The two resolutions of the trivial LG-
module L,

0-CUX)->CHX)> - > CIHX)->L-0
and
0-C(X)>Cp_i(X)— > Co(X)—>L—0,

are homotopy equivalent. Since the cellular chain complex is regular, so is
the compactly supported cochain complex.

If m > n then, using the standard cell-trading arguments, one trades away
cells of dimension > n and constructs a chain complex of finitely generated
free LG-modules,

0 CUX) > CHX)— - > CIHUX) - CI (X)) - CHX) —0,

homotopy equivalent to the compactly supported cochain complex (shifted
m —n places). This complex is a free resolution of L and thus is regular,
since it is homotopy equivalent to the cellular chain complex of X. Thus the
compactly supported cochain complex of X is also regular. ]

2.2. The Boundary of a PD"-Group

In the proof of Theorem 2.8 we must assume that the image of the orienta-
tion character is finite (i.e., that G is virtually orientable).

Questions: Is there a PD"-group (say, over @Q) such that the image of the
orientation character is infinite (or at least has more than two elements)? Is
there an orientable @-homology manifold Z and a homeomorphism Z — Z
that acts on the fundamental class by doubling it?

THEOREM 2.8. Let G be a Poincaré duality group of dimension n over L
such that the image of its orientation character is finite. If Z is a boundary
of G, then Z is a homology n-manifold over L and moreover Z is a homol-
ogy (n—1)-sphere over L.
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Proof. Fix a Z-structure (X, Z) on G. By passing to a subgroup of finite
index, we may assume that G is orientable (i.e., that the orientation character
is trivial). First, H,(Z) = HLE,(X) (by definition of the Steenrod homology
and axioms (1) and (2) of Definition 1.1) and hence H.(Z) = H.(S"™!) by
the universal coefficient theorem.

Let ze Z be an arbitrary point, and choose a nested sequence of basic
open sets U; at z in X. Let U;= XN U,. We claim that the inverse sequence
{HX(U)}; is pro-trivial when k # n and that it is pro-isomorphic to L when
k = n. The theorem then follows from Proposition 1.8 and Remark 1.9.

By axiom (4) of Definition 1.1, for every compactly supported cocycle ¢
in X there are elements g € G that translate ¢ arbitrarily close to ze Z. By
assumption, these translated cocycles represent the same class as c¢. Thus, to
prove the claim, it suffices to show that whenever x is a compactly supported
cocycle in X with support near z that cobounds a compactly supported co-
chain in X, then it cobounds a compactly supported cochain with support
near z. That this is true is the content of Proposition 2.7. O

REMARK 2.9. Since homology manifolds of dimension < 2 are manifolds
[Wi], Z is homeomorphic to S”~! when n < 3. Thus the previous result gen-
eralizes a theorem in [BeMe]. When n > 3, Z may not be homeomorphic to
S"=1 (or even locally simply connected). The examples stem from the work
of Davis [Da; DIJ].

3. Questions

3.1. Existence

There seems to be no systematic method of constructing boundaries of groups
in general, so the following is probably hopeless.

Question: Does every group G with finite K(G, 1) have a Z-structure?

Chapman and Siebenmann [CS] have developed an obstruction theory for
compactifying noncompact /*-manifolds to compact /®-manifolds. By a
theorem of Edwards, a product of an ER and 7* is homeomorphic to 7%, so
the vanishing of Chapman-Siebenmann obstructions for X X I is a neces-
sary condition for the existence of a Z-structure. One way to state this con-
dition is to say that X is proper simple homotopy equivalent to the mapping
telescope of an inverse sequence of compact polyhedra.

3.2. Uniqueness

In general, a boundary Z is not uniquely determined by G. For example,
take the standard Z-structure for Z”" in which Z = $"~!, and then quotient
out a cell-like subset of Z. When n > 3 we can choose the subset so that the
decomposition space is not even a manifold. Even more disturbing is the
following example.
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ExaMpLE 3.1. Let G have a Z-structure (X, Z) and fix a proper map h:
X —[1, ). Compactify X X R by the suspension Z X [—o0, 0]/~ of Z so that
a sequence (x;, ¢;) converges to [z, 7] if and only if ¢;/h(x;) = 7 and (x; >z
or 7= +o00). If A is chosen so that the variation of 4 over translates of a
compact set forms a null sequence, then this yields a Z-structure on G X Z.

Now let f: G — G be an automorphism. Denote by X, the universal cover
of the mapping torus of the map X/G — X/G induced by f. There is a natu-
ral map X;— R whose point preimages are copies of X, and the covering
translation corresponding to f descends to translation by 1. There is a proper
homotopy equivalenge fi X r — X X R which is given by f ¥ on the point pre-
image of k. Using f, we can pull back the compactification of X X[R. To
obtain a Z-structure on the semidirect product G, of G and Z via f, we need
to ensure that orbits of compact sets are null-sequences. This can be done
by choosing / to have very small variation near infinity. For example, & ~
log log(word length) will do.

In particular, if G is a free group of finite rank and f: G — G an automor-
phism such that G, is word-hyperbolic, then the latter group has two very
different boundaries, namely the Gromov boundary (which looks like it ought
to be the 1-dimensional Menger curve) and the boundary coming from the
previous construction (homeomorphic to the suspension of the Cantor set).

Questions: 1f Z, and Z, are boundaries of G, then is there a compactum
Z and cell-like maps Z— Z; and Z— Z,? If so, can Z be chosen to be a
boundary of G?

Other obstructions to uniqueness come from the work of Bowers and Ruane
[BR]. Thus it seems reasonable to restrict our attention to boundaries satis-
fying Axiom H.

Questions: 1If Z, and Z, are Axiom H boundaries of G, then is there a
compactum Z and cell-like maps Z — Z, and Z — Z,? If so, can Z be chosen
to be an Axiom H boundary of G?

Question: If Z is an Axiom H boundary of a word-hyperbolic group G,
is Z (equivariantly) homeomorphic to the Gromov boundary of G?

3.3. Regularity

In general, regularity fails for arbitrary Z-structures. Let G = BS(1, 2) X Z.
Then G has boundary equal to the suspension of the Cantor-Hawaiian ear-
ring. We may collapse the arc through the cut point, resulting in a cut point.
The cut point has uncountable local H,;, while other points have trivial local
H,. Thus there are compactly supported 2-cocycles supported near the cut
point that do not vanish near the cut point.

However, observe that, in any Z-structure, any compactly supported 1-
cocycle supported near z € Z that cobounds in X also cobounds near z. The
same is true for compactly supported n-cocycles provided » =cdg G and
dimg H"(G;LG) < .
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Questions: Let G be a hyperbolic group and Z the Gromov boundary. Is
every chain complex of finitely generated free LG-modules regular? Is the
compactly supported cochain complex regular?

3.4. Local Homology and Local Connectedness

As pointed out earlier, the following two questions have a negative answer
in general. The first fails for BS(1,2) X Z, and the second for BS(1, 2). But
the author does not know the answer under such additional hypotheses as:

(a) Z is the Gromov boundary of a hyperbolic group G; or
(b) Axiom H; or
(¢) G acts on Z as a convergence group.

Question: If H?*!(X) is finitely generated over L, is
H(Z)—> Hy/(Z,Z\(z})
an isomorphism for each ze Z?

The preceding question is equivalent to the regularity question for the com-
pactly supported cochain complex.

Question: 1f H¥(G;ILG) = 0 for k < m+1, is Z locally homologically m2-
connected? That is, for every ze Z and every neigllborhood AofzinZ,is
there a smaller neighborhood B such that H;(B) — H;(A) is trivial for i < m?

4. Dictionary between Groups and Compacta

There are some striking analogies between group theory and the theory of
finite-dimensional compact metrizable spaces.

ExamrLE 4.1—Hopf theorem on number of ends versus local H,.

A theorem of Hopf [Ho] states that if G is a finitely generated and infinite
group, then H'(G;LG) is either 0 (G has one end), L (G has two ends), or
infinitely generated (G has infinitely many ends).

This can be compared to the elementary fact that if Z is compact and
metrizable and z € Z, then Hy(Z, Z\{z}) is either L (if z is an isolated point),
infinitely generated (if there is a sequence of distinct components of Z con-
verging to z), or 0 (otherwise).

EXAMPLE 4.2—Farrell’s theorem on H?(G; ZG) versus Whyburn’s theorem
about cut points.

THEOREM [Wh]. Let Z be a compact metrizable space. Then Z has at most
countably many local cut points of order > 2.

TueoreM [F1]. Let G be a finitely presented group. Then H*(G;ZG) is
either 0, Z, or infinitely generated.
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The boundary of a group G with H*(G; ZG) = Z X Z (say) would (in the
presence of regularity) be a space with all points local cut points of order 3.

ExampLE 4.3—The Conner-Floyd characterization of homology manifolds
versus Farrell’s characterization of PD"-groups.

THEOREM [CF; Br]l. If Z is a connected finite-dimensional compact metriz-
able space, if all local homology groups H.(Z,Z\{z}; Z) are finitely gen-
erated, and if the local homology sheaves are (locally) constant, then Z is a
homology manifold.

THEOREM [F2). If H*(G; ZG) is finitely generated as a Z-module, then G
is a Poincaré duality group over Z.

ExAMPLE 4.4—Farrell spectral sequence versus Bredon spectral sequence.

Assuming that the compactly supported cochain complex of X is regular,
the local homology sheaf JC, is constant and equal to H,(Z) whenever the
latter is finite-dimensional. The Bredon spectral sequence [Br]

EY?=H"(Z;3C_) = H_,_,(Z)

contains the finite-dimensional pieces of the limit (except in dimension 0)
in the first column. Deleting those, we obtain a spectral sequence very much
like the Farrell spectral sequence [F2],

EY?= HP(G; Hom(HY(G; LG), LG))

and converging to L in dimension 0 and to 0 in other dimensions.
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