Nontriviality of the Abel-Jacobi Mapping
for Varieties Covered by Rational Curves
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1. Introduction

The existence and structure of families of rational curves on projective vari-
eties has played a key role in Mori’s program to classify higher-dimensional
complex varieties. One of the early results in this program showed that if X
is a Fano variety (i.e., the anticanonical bundle —Ky of X is ample) then X
is covered by rational curves (see [6]). In this paper it will be shown that if a
smooth projective variety X is covered by rational curves, then these rational
curves, together with their degenerations, generate the middle-dimensional
primitive cohomology of X via the “cohomological” Abel-Jacobi mapping.
When X is a threefold this result will be reinterpreted to give a surjectivity
result for the Abel-Jacobi mapping of Griffiths into the intermediate Jaco-
bian of X. In particular, it follows that for Fano threefolds the images of
the families of rational curves C on X with (—Kx-C) < 4 generate the inter-
mediate Jacobian of X. This result validates the general principle espoused
by Clemens in [4] that the intermediate Jacobian of a threefold X which is
covered by rational curves is generated by algebraic cycles on X.

The literature on this subject is vast, but to the author’s knowledge the
results just described have only been obtained for low-degree rational curves
on special Fano varieties. For example, the result is known for the families
of lines on several generic complete-intersection Fano threefolds [2; 14; 5]
and for generic hypersurfaces of degree n in [P” [12]. It is also known for
conic bundles [1] and for the families of conics on a generic quartic threefold
and sextic double solid [11; 3]. In each case, the arguments used to obtain
nontriviality of the Abel-Jacobi mapping use specific facts about the family
of curves in question or their degenerations, and for this reason do not carry
over to more general situations.

The cohomological Abel-Jacobi mapping is defined as follows. Let X be
a smooth complex projective variety of dimension »n, and let F be a smooth
projective variety parameterizing a family of proper subvarieties of dimen-
siondonX.Let E={(C,x)eFXX:xeC},andlet p: E->Fandq: E—»X
be the natural projections. The cohomological Abel-Jacobi mapping is the
morphism of Hodge structures of type (—d, —d) defined by the composition
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H*X,C)%Ls H*(E,C) 2> H*24(F,C).

Note that, when E is not smooth, p,: H*(E,C) - H* 2%(F,C) is defined via
a desingularization n: £ — E of E and given by the composition

H*(E,C) =» H*(E,C) 2™, g*-24(F,C),

where (pe 7). is the Poincaré dual of (p-w), on homology. It can easily be
checked that this is independent of the choice of desingularization, since
any two desingularizations of E can be mutually dominated by a third. Here
we will be interested only in the case where F is a family of curves whose
general member is a reduced irreducible rational curve (i.e., the image of
P! under a nontrivial morphism into X). If D is an ample divisor on X then
we denote by H*(X,C)° the primitive cohomology of X with respect to the
divisor D. The main result is as follows.

THEOREM 1.1. Let X be a proper smooth variety of dimension n that is
covered by a family of rational curves, and let D be an ample divisor on X.
Then there exist families of rational curves on X parameterized by a smooth,
possibly disconnected, nonequidimensional projective variety F of dimen-
sion < n—1, as well as a diagram

E -2 FxXP' * F

T

X

such that E — F is flat with generic fiber a rational curve, ¢ is birational, and
the cohomological Abel-Jacobi mapping

(mod)eq*: H"(X,C)°—~ H"~*(F,C)

is injective. Furthermore, each component of F parameterizes either the
original covering family of rational curves or degenerations of these curves.

To see that it is necessary to include families occurring as degeneratigns
of the curves in the covering family, let X be a smooth cubic threefold and
fix a generic line L in X. Consider a generic projection centered along L,
7.2 X—L—P?, and let E be the variety obtained by blowing up X along
L. This gives a family 7, : E —[P? of conics on X that are coplanar with
L. By [13, Prop. 1.25], the fibers of n; are smooth except along a smooth
plane curve C € [P? of degree 5, where the conics degenerate into the sum of
two distinct lines. Since H'(IP%, C) = 0, the covering family of conics does
not generate any of the cohomology of X. On the other hand, the lines
occurring as degenerations of the smooth conics in this family are parame-
terized by an étale cover C of C of degree 2, and Theorem 1.1 asserts in this
case that the cohomological Abel-Jacobi mapping H3(X,C)—» H(C,C) is
injective.
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This work is an expanded version of some results in the author’s dissertation
completed at the University of Utah. The author would like to thank Herb
Clemens for suggesting this problem and for many helpful conversations.

2. Proof of the Main Theorem

To clarify the exposition, we will divide the proof of Theorem 1.1 into sev-
eral steps.

Step 1: Since X is covered by a family of rational curves, there is a quasi-
projective variety W’ of dimension n—1 and a morphism

W'xP'- X

such that the image of w x [P!in X is a rational curve in X for each we W. This
induces amap W’ — Hom(P!, X). Let W be the image of W’in Hom([P!, X).
Since Hom(P!, X) is represented as an open subset of Hilb([P!x X) and
the connected components of Hilb(P! x X) are projective, the closure F’
of W in Hilb([P! x X) is projective. Then there exists a closed subscheme
E’'c F’x[P!'x X such that E’ is flat over F’ and hence also a diagram

E' % FrxP! 5> FY
)
X.

By construction, ¢’ restricted to (¢’)” /(W x[P!) is an isomorphism onto
W x P!, so that ¢’ is birational. Let U = mD be a sufficiently ample divisor
on X such that U intersects each curve parameterized by F’ properly, and let
F be a desingularization of (q’)"'(U ). By base extending, we can replace F’
by F, E' by E=F X E’, and ¢', ', ¢’ by the corresponding maps ¢, =, g,
respectively. Then wo¢: E— F is flat and 7: F X P! - F has a section s given
by the composition
FlaxJ, idx j
where id: F — F is the identity map and j: F - ¢~ (U) € E’. This gives a
diagram as in the statement of the theorem with dim F = n—1 and such that
F x[P! - F has a section s, where s(F) is mapped onto a multiple of D.

E=FXmE' 2 FxP!,

Step 2: Consider the composition

H™(X,C)° L H(E,C) ¥ H"(F x P\, C).

Let p: E— E be a desingularization of E. Then gop: E— X is a surjective
map of proper smooth varieties of dimension n,.so that p*-g* and hence g*
is injective. As in the introduction, ¢, is defined by the composition

H™E,C) 25 H"(E,C) %P, g7 (F x P, C).
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Then ¢, is surjective, since ¢,o¢* is the identity on H"(F xP!,C). How-
ever, it is possible for the composition ¢.°g* to have a nonzero kernel K; €
H"(X,C)°. Suppose this is the case.

Let W F be an open set such that ¢~ ': W x P!> E is a morphism and
Y=F—WisadivisoronF. Let Y’ = (wo¢) ' (Y)and let W’ = (zwo¢) "} (W) =
W xPL. To simplify notation, we will drop the coefficient group C in all
cohomology groups. By Poincaré-Lefschetz duality, H"(E,Y’) = Hl'(W")
and H"(F x P, Y x P') = H*(W x [P!), where the “c” denotes cohomology
with compact support. With these identifications, the long exact sequences
in cohomology for the pairs (E, Y’) and (F x P!, Y x P!) give a commutative
diagram:

HH(X)O

| \

H'W') — HYE) — H'Y)

-1 o |

HMW xPYYy — HMF xP!y — H"(Y xP).

In what follows, some standard facts from the theory of mixed Hodge
structures will be used. These results can be found in [7; 8; 9]. The nota-
tion Gr,(H"(M)) will be used to denote the kth graded piece of the mixed
Hodge structure on H"(M), where M is any complex variety. The image of
H"(F xP) in H"(W xP") is Gr,,(H"(W xP')), the lowest-weight piece of
the mixed Hodge structure on H"(W x P'). By duality, this says that

Gr,(H' (W xPYY) - H(F x P

is injective. Since X is smooth and proper, H"(X)° has a Hodge struc-
ture of pure weight n and so H"(X)° maps injectively into Gr,(H"(E)).
Referring to the previous diagram, if w is a nonzero cohomology class in
K, = ker(¢«°q*) then g*w € Gr,,(H"(E)) is nonzero and could not be in the
image of Gr,,(HJ(W")), since otherwise ¢.(g*w) % 0 by the injectivity of the
composition

Gr, (H"(W')) = Gr,,(H(W xP')) - H"(F x[P!).

Thus K; € H"(X)° is mapped injectively into H"(Y").
Let Y’ be the normalization of Y’. Then the composition

K, - Gr,(H"(Y")) - Gr,(H"(Y"))

is injective. Since ¥'is normal, the generic fiber of ¥’ — Y must be nonsingu-
lar and hence a disjoint union of P's. For each connected component ¥
of Y7, let Y; denote the irreducible component of Y dominated by Y; and let

N\

Vi — Y,



Nontriviality of the Abel-Jacobi Mapping 549

be the Stein factorization of ¥/ — ¥;. Then ¥/ — V; has connected fibers that
are generically irreducible rational curves. It follows that, after a base ex-
tension, there is an open subset W; C V; and a morphism W; x P! — ¥/ such
that the image of w x P! under the composition

WxP' ¥/ Y cESLH X
is a rational curve on X for each we W,.

Step 3: This is the situation we started with in Step 1, except that now
each W, is of dimension n —2. Repeating the argument of Step 1 for each W
and setting F and E equal to the disjoint unions of the resulting F; and E;,
one obtains a diagram as in the statement of the theorem. The only missing
ingredient in continuing this process is the injectivity of

H"(X)° - H"(E).

However, this map restricted to K| is injective. To see this, notice that through-
out the construction of Step 1 the family of curves in X being parameterized
does not change. Thus in the end we obtain some projective variety £ and
a morphism E — X such that the image of E and the image of ¥’ in X are
the same variety Y € X. Since K, - Gr,,(H"(Y")) is injective and ¥’ — X fac-
tors through Y, the map K; — Gr,,(H"(Y)) is injective. Now E =Y is surjec-
tive and Y is proper, so Gr,(H"(Y)) - Gr,(H"(E)) is injective. Thus K; -
Gr,(H"(E)) is injective.

Knowing this, one can replace H"(X)° with K; and repeat the argument
of Step 2 with the lower-dimensional F and E constructed above. In this
case we set

K, =ker(¢.q*: K;— H"(F x P!, C))
and construct some E and F of still lower dimension such that the mapping
K, - Gr,(H"(E)) is injective. Continuing in this way, E will eventually have
dimension < n/2 so that K, = 0 for some r. This gives a filtration

H'(X)=Ky2K;2---2K,=0
such that, for each i, there exist £ and F such that
K; =ker(¢«q*: K;_,— H"(F xP).

By taking disjoint unions of all these £ and F, we obtain an E and F as in
the statement of theorem such that

b.q*: H'(X)° — H"(F xP")
is injective.
Step 4: To complete the proof of the theorem, it is enough to show that
Tt H'(F X Py —» H"2(F)

is injective when restricted to the image of H"(X)° in H"(F x[P!). By the
Kiinneth theorem, H"(F xP'Y= H"(FY® H"*(F)Uv, where v is the Poin-
caré dual of a section of 7: F X P! - F. By construction, w: F x[P! - F has a
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section s such that s(F') is mapped into a multiple of D in X. Since H"(X)°
has cup product zero with the cohomology class of D, it follows that the
image of H"(X)° in H"(F x[P') has cup product zero with v. If x+yU
ve H'(F)Y@H" *(F)Uv is in the image of H"(X)° and m(x+yUv) =
y =0, then xUv =0 and thus x = 0. This means that =, maps the image
of H"(X)°® injectively into H"~2(F). Thus the cohomological Abel-Jacobi
mapping

(rod)eq*: H'(X)° — H""*(F)

is injective, completing the proof of Theorem 1.1. O

Notice that nothing in Steps 1-3 depended on the fact we were only consid-
ering the primitive cohomology of X in dimension . Thus, this argument
actually shows that there exist £ and F' as in the statement of Theorem 1.1
such that

.q*: H*(X,C) - H*(F x[P\,C)
is injective.

There are certain situations in which the parameter space F of Theorem
1.1 can be taken to be equidimensional. Suppose that X is a hyperplane sec-
tion of a smooth projective variety Y, and that the covering family of ratio-
nal curves for X deforms generically with X in a Lefschetz pencil { - T =
P! of hyperplane sections of Y containing X. The construction of Theorem
1.1 can then be carried out over T to yield a diagram

&> FxP' I §
7] |
x >»T
such that, for all 7 in some open subset U € T, the fibers &,, §,,F, of X, E,F
over ¢ satisfy the requirements of Theorem 1.1. In particular, it is possible to

choose F so that the fibers of & are equidimensional and, for generic f €7,
the Abel-Jacobi mapping

H"(X,,C)° - H""%(;,C)

is nonzero. For each e U, let K, denote the kernel of this map. Then X,
is a proper subspace of H"(9,,C)° that is invariant under the action of
monodromy. If H"(C,,C)° is generated by the vanishing cycles of H"(X,,C)
or, equivalently, if H"(Y)° =0, then by classical Lefschetz theory H"(X,, C)°
will be a simple module under the monodromy action. For details, see [10].
Thus K, = 0 and the Abel-Jacobi mapping is injective for generic t € 7.

3. Applications

In this section we will show that when X is threefold, Theorem 1.1 also gives
a surjectivity result for the Abel-Jacobi mapping of Griffiths into the inter-
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mediate Jacobian of X. Let X be a smooth projective variety of dimension
n. The (n—d)th intermediate Jacobian of X is the complex torus

(H2d+1’0(X,0:)® .. -@Hd+l’d(X,C))*
H2d+l(X’Z) |

Denote by J"~9(X)° the subtorus of J”"~%(X) generated by the primitive
cohomology of X. When d =0, J"(X) is the Albanese variety of X, denoted
Alb(X). Let Ch%(X) be the Chow group of rational equivalence classes of
algebraic cycles of dimension d on X that are homologous to 0. The Abel-
Jacobi mapping

JUX) =

Aly: ChA(X) - J"~9(X)

is then defined as follows. If Z is an algebraic cycle of dimension d that is
homologous to zero, then there is a topological (2d+ 1)-chain I"' on X such
that ' = Z. Integration over I' then defines AJx(Z)e J"~9(X), which is
independent of the choice of I" and the choice of Z in its rational equivalence
class.

Let F be a smooth projective variety parameterizing a family of curves on
athreefold X. Let E={(C,x)e F X X:xeC},andlet p: E—-Fandgq: E—- X
be the natural projections. Then the dual of the cohomological Abel-Jacobi
mapping

p«q*: H(X,C) » H'(F,C)

induces a homomorphism ®: AlIb(F) — J2(X). Note that it is not necessary
to assume F is connected. This map is also often called the Abel-Jacobi
mapping, and is related to the Abel-Jacobi mappings AJy and AJg by the
commutative diagram

Ch4(F) 25 Ch}(X)
AJFl lAJX
AIb(F) 2 J2%(X).

The following is an immediate reformulation of Theorem 1.1.

THEOREM 3.1. Let X be a smooth projective threefold that is covered by
rational curves. Then there are families of rational curves on X parameter-
ized by a smooth projective variety F such that J*(X)° is contained in the
image of

®: Alb(F) - J*(X).
Furthermore, F can be chosen so that each component of F parameterizes

either the original covering family of rational curves or degenerations of
these curves.

CoROLLARY 3.2. Let X be a smooth projective threefold that is covered by
rational curves, and assume H3(X,C)° # 0. Then the group of one-dimen-
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sional algebraic cycles on X that are algebraically equivalent to zero modulo
those that are rationally equivalent to zero is nontrivial even modulo torsion.

CoRrOLLARY 3.3. Let X be a smooth projective threefold that is covered by
rational curves. Then J*(X)° is contained in the image of

Aly: Chi(X) - J3(X).

Proof. Since AJg: Chl(F)— Alb(F) is surjective, this follows from Theo-
rem 3.1 and the preceding commutative diagram. O

If X is a Fano threefold, then it is a theorem of Mori and Kollar [6] that X
can be covered by rational curves C satisfying the inequality (—Kx-C) <4.
In this case, it follows from Kodaira vanishing that H3(X,C) = H3(X, C)°
so that J2(X) = J%(X)°. Combining this with Theorem 3.1 gives our next
result.

THEOREM 3.4. Let X be a smooth Fano threefold, and let F be a smooth
variety that parameterizes all rational curves C on X with (—Kx-C) <4.
Then ®: AIb(F) — J*(X) is surjective.

References

[1] A. Beauville, Variétés de Prym et Jacobiennes intermédiaires, Ann. Sci. Ecole
Norm. Sup. (4) 10 (1977), 309-391.

[2] S. Bloch and J. Murre, On the Chow group of certain types of Fano threefolds,
Compositio Math. 39 (1979), 47-105.

[3]1 G. Ceresa and A. Verra, The Abel-Jacobi isomorphism for the sextic double
solid, Pacific J. Math. 124 (1986), 85-105.

[4] H. Clemens, Some results about Abel-Jacobi mappings, Topics in transcen-
dental algebraic geometry (P. Griffiths, ed.), Ann. of Math. Stud., 106, pp.
289-304, Princeton Univ. Press, Princeton, NJ, 1984.

[5] H. Clemens and P. Griffiths, The intermediate Jacobian of the cubic threefold,
Ann. of Math. (2) 95 (1972), 281-356.

[6] H. Clemens, J. Kollar, and S. Mori, Higher dimensional complex geometry,
Astérisque 166 (1988).

[7) P. Deligne, Théorie de Hodge II, Inst. Hautes Etudes Sci. Publ. Math. 40
(1971), 5-57.

[8] , Théorie de Hodge III, Inst. Hautes Etudes Sci. Publ. Math. 44 (1974),

5-717.

[9] P. Griffiths and W. Schmid, Recent developments in Hodge theory: a discus-
sion of techniques and results, Discrete subgroups of Lie groups and applica-
tions to moduli (Internat. Colloq., Bombay, 1973), pp. 31-127, Oxford Univ.
Press, Bombay, 1975.

[10] K. Lamotke, The topology of complex projective varieties after S. Lefschetz,
Topology 20 (1981), 15-51.

[11] M. Letizia, The Abel-Jacobi mapping for the quartic threefold, Invent. Math.
75 (1984), 477-492.



Nontriviality of the Abel-Jacobi Mapping 553

[12]} J. D. Lewis, The Hodge conjecture for a certain class of fourfolds, Math. Ann.
268 (1984), 85-90.

[13] J. P. Murre, Algebraic equivalence modulo rational equivalence on a cubic
threefold, Compositio Math. 25 (1972), 161-206.

[14] A. N. Tyurin, Five lectures on three dimensional varieties, Russian Math. Sur-
veys 27, no. 5 (1972), 1-53.

Department of Mathematics
Bemidji State University
Bemidji, MN 56601






