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1. Introduction

A basic question in the theory of minimal surfaces in 3-dimensional mani-
folds is to decide which embeddings of surfaces can be realized by minimal
surfaces. Fundamental results were obtained in the case of Riemannian met-
rics of positive curvature in [Fr], [L1], and [SY] for sectional, Ricci, and
scalar curvatures, respectively. In [R1] a fairly complete description was ob-
tained of the topology of embeddings of minimal surfaces in 3-manifolds of
positive scalar curvature.

Seifert fiber spaces are an important class of examples of 3-dimensional
manifolds that admit 1-dimensional foliations by circles. Thurston [Th] has
proposed a geometrization program for classifying closed 3-manifolds by
decomposing them into pieces that admit eight geometries. Six of the eight
geometries occur on Seifert fiber spaces. Moreover, the natural metrics are
compatible with the Seifert fiber structure, in the sense that (possibly after
passing to a double cover) the isometry group of the metric has an SO(2)
component with orbits the circle fibers.

In [Ha], Hass studied the topology of m-injective minimal surfaces in
Seifert fiber spaces. In Section 3 we obtain a topological classification of
arbitrary embedded minimal surfaces in such 3-manifolds, extending [Ha).
Finally in Section 4, using the minimax technique developed in [Pi], [PR1],
[PR2], and [HPR], examples of interesting minimal surfaces in Seifert fiber
spaces are constructed. Note that, throughout this paper, the only restric-
tion on the Riemannian metric is that the SO(2) action of the previous para-
graph be by isometries.

We are pleased to thank the referee for helpful comments.

2. Seifert Fiber Spaces

For details about Seifert fiber spaces, a good reference is Orlik {Or].
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Let D? denote the unit disk in the complex plane. A standard foliation of
the solid torus D2 x S! by circles can be described by gluing together the ends
of a cylinder D? x [0, 1] using the map ¢, ¢(z, 0) = (exp(2wig/p)z, 1), where
|z|<1and p, q are relative prime positive integers. The foliation of the cylin-
der by intervals {z} X [0, 1] induces a foliation of the solid torus D?x [0, 1]/¢
by circles.

A Seifert fiber space is a 3-manifold M that has a foliation by circles,
where each circle has a closed regular neighborhood filled by leaves described
by D?x [0, 1]/¢. The base space (or leaf space) of M is the closed surface S,
obtained by identifying each circle with a point, endowed with the quotient
topology. There are a finite number of exceptional fibers where the solid
torus neighborhood has p > 1. All other fibers are called ordinary.

A vertical surface is tangent everywhere to the ordinary fibers of M. Let
C be a simple closed curve in S missing the exceptional points that are the
images of the exceptional fibers. Then the fibers over C form a surface that
is either a vertical torus or a vertical Klein bottle. Any vertical surface is
the union of vertical tori and vertical Klein bottles. A horizontal surface is
transverse everywhere to the fibers of M. A = -injective surface I is a closed
surface embedded in M such that the map m;(X) — (M) induced by the em-
bedding is one-to-one and I is not a 2-sphere or a projective plane. A prin-
cipal result of [Ha] is that a m;-injective minimal surface in a Seifert fiber
space must be vertical or horizontal. (In fact, this is shown for immersions,
but we only deal with embeddings here.) For future reference, note that if
¥ is 2-sided, nonseparating, and horizontal, then the closure of M—ZI is
homeomorphic to £ X [0, 1], so M has the structure of a Z-bundle over S'. If
L is 1-sided and horizontal, then M has the structure of two copies of N(X),
a regular neighborhood of L (i.e., a twisted line bundle over ¥), glued to-
gether along the boundaries dN(X).

For many purposes it is more convenient to work with an SO(2) action
rather than a foliation by circles. Next we describe the double cover M of
M that will be needed if M does not already admit such an action. Define a
homomorphism =;(S)— H(S) —» Z, by assigning 0 to a closed curve Cin S
if the fibers over C form a torus and 1 if the surface is a Klein bottle. Unless
all vertical surfaces in M are tori, this induces a double covering S of S and
M of M, specified by the kernel of the homomorphism. In this case, M has
an SO(2) action in which the orbits are fibers. In case there are only vertical
tori, it is easy to see that M admits an SO(2) action for which the orbits are
fibers. In both cases we assume for the remainder of the paper that the SO(2)
action preserves the Riemannian metric on M, or the induced metric on M.

We now state a useful lemma about minimal surfaces in Seifert fiber
spaces. We recall that a minimal surface is stable if its second variation of
area is nonnegative; otherwise it is unstable. The nullity of a minimal sur-
face is the dimension of the eigenspace belonging to zero of the second-
variation elliptic differential operator.
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LEMMA. Let L be a closed connected 2-sided embedded minimal surface in
a Seifert fiber space M that is endowed with an SO(2) action. If ¥ is hori-
zontal, then ¥ is stable with nullity(X) =1. If X is vertical, then ¥ can be
stable or unstable with nullity zero or nonzero in either case. If ¥ is neither
vertical nor horizontal, then ¥ must be unstable.

Proof. If I is horizontal, then the SO(2) action on M foliates M by isomet-
ric translations of X, from which the conclusion follows. Easy examples of
various minimal vertical tori, both stable and unstable, are shown in Sec-
tion 4.

We assume now that X is neither horizontal nor vertical. Let E be the ve-
locity vectorfield induced by the SO(2) action on M. Near £ we may write
E = N+T, where N |z is normal and T |y is tangential to £. Rotation under
the SO(2) action is an isometry, so 0= 62L(E)=62L(N+T)=62L(N). This
last equality follows from a straightforward calculation much like that in
[L2, Chap. 1, Sec. 4]. Since L is neither horizontal nor vertical, N# 0on £
and N must vanish for at least one point in £. This would not be possible if
¥ were stable, since in that case N |z would have to be a nonzero multiple of
the everywhere nonvanishing eigenvectorfield belonging to zero, a contra-
diction. O

3. Topology of Embeddings

In this section we give a topological classification of embeddings of minimal
surfaces in Seifert fiber spaces.

Recall that a 2-sided surface £ embedded in a 3-manifold M is called com-
pressible if there is an embedded disk D in M, with DNY =4D and dD a
noncontractible loop in E. If no such compressing disks D can be found,
then X is called incompressible. 1t follows from Dehn’s lemma and the loop
theorem (see [He]) that, for 2-sided surfaces, incompressibility is equivalent
to being mj-injective.

A handlebody is a compact 3-manifold W with connected boundary oW =
Y having g handles (g=1), so that there exist g disjoint properly embed-
ded compressing disks Dy, D,, ..., D, for L in W and the closure of W —
(D\U---UD,) is a 3-cell. Note that W is not necessarily orientable. If W is
nonorientable, then £ has 2g cross-caps.

A hollow handlebody is a compact 3-manifold W that has two or more
boundary components dW =X UE;U ---UX,, none of which are spheres or
projective planes. There are also disjoint properly embedded compressing
disks Dy, ..., D; with s =1 and boundary curves on I, and the closure of
W—(D,U---UDj) is a collection of products homeomorphic to ;X [0,1]
for 1 =i < k. One notes that hollow handlebodies may likewise be non-
orientable.

We now state the main theorem, which gives a topological classification
of embeddings of minimal surfaces in Seifert fiber spaces.



528 JoN T. PiT1s & J. H. RUBINSTEIN

THEOREM. If L is a closed connected embedded minimal surface in a Sei-
Jfert space M, then the embedding of ¥ is one of three (mutually exclusive)
types, as follows.
(1) X is a vertical torus or a vertical Klein bottle.
(2) X is horizontal and w-injective. As noted in [Hal, there are three dis-
tinct subcases.
(a) X is 2-sided and nonseparating in M. The closure of M — X is homeo-
morphic to a product of ¥ and an interval.
(b) X is 2-sided and separates M. M is the union of two twisted line bun-
dles N(A) over A and ¥ = dN(A) is a double cover of A.
(c) ¥ is 1-sided in M. The closure of M —N(X) is another copy of N(L).
Here N(X) is a small regular neighborhood of ¥ in M.
(3) XL is neither vertical nor horizontal. There is a (possibly empty) disjoint
Jamily 3 of vertical minimal tori and Klein bottles in M—X. The closure
of M—X —\U3 has j components that are handlebodies or hollow handle-
bodies; the rest are Seifert fiber spaces with boundaries on\J 3. Here j =2
if Xis 2-sided in M and j=1if X is 1-sided in M.

Proof. The proof proceeds in six steps.

Step 1: Cases (1) and (2) are considered in [Ha]. Thus we assume through-
out the proof that T is neither vertical nor horizontal. We assume for the
time being that M has an isometric SO(2) action compatible with the Seifert
fiber space structure. We shall show how the general case follows from this
at the end of the proof.

Step 2: Assume X is a 2-sided embedded minimal surface. Split M along
¥ to form a compact 3-manifold with boundary M’ such that dM’ consists
of two copies of L. If £ is separating then M’ has two components, while if
Y. does not separate then M’ is connected. Consider a copy L’ of X in M.
By Dehn’s lemma and the loop theorem, either this surface is m-injective
(incompressible) in M’ or there is a maximal family of disjoint nonparallel
compressing disks Dy, D5, ..., Dy, properly embedded in M, with boundaries
on X'’

In this step we examine the case that if N(D;) are small disjoint regular
neighborhoods of D; in M’ and N(X’) is a small neighborhood of £’ in M,
then L = 3(N(X')UN(D)U --- UN(D,)) consists of 2-spheres, projective
planes, and ¥’

If a Seifert fiber space M has a 2-sided projective plane or an essential em-
bedded 2-sphere (i.e., which does not bound a 3-cell), it is easy to show that
M is homeomorphic to one of S'x S2, S'x RP2, RP3#RP?, or S'% S?,
where the latter is the nonorientable sphere bundle over S!. In all cases, M is
foliated by minimal 2-spheres and projective planes. By the maximum prin-
ciple, no minimal surface £ in M can be disjoint from such a projective plane
or essential 2-sphere, unless I is itself a 2-sphere or projective plane and is
part of a foliation as in (2) of the theorem. Otherwise we conclude that all
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the components of L are 2-spheres that bound 3-cells. If all these 3-cells lie
in M’, then clearly £’ bounds a handlebody in M, as in the theorem.

Suppose a 2-sphere component J of L bounds a 3-ball containing X, but is
essential in M". In this case, by [MSY1, J can be isotoped to obtain a mini-
mal 2-sphere in M". (This uses the maximum principle—note that ¥ forms a
barrier and stops J from shrinking to a point.) Denote this minimal 2-sphere
by J again.

Let p: M — S denote the projection to the base or orbit space of the Seifert
fibering. If we apply the SO(2) action to J, by the maximum principle it fol-
lows that all the translates of J are disjoint from X. Hence p(J)Np(X) = 0.
But then FNJ = @ whenever F is any fiber projecting to a point in p(X), so
F lies in the 3-cell bounded by J. But no fiber of a Seifert fibering is contract-
ible, unless the space is the 3-sphere (see [Or]), in which case J bounds a 3-
cell disjoint from ¥ as required. This completes the argument that if L con-
sists of 2-spheres and projective planes then £’ bounds a handlebody.

Step 3: We continue studying L, the result of compressing £ as much as
possible in the complement of £. Assume L has a component L, that is not a
2-sphere or a projective plane, but has genus less than L’. As in Step 2, since
L, is incompressible in M’, by [MSY] and the maximum principle L, can be
isotoped to a minimal surface in M’, which will again be denoted by L,. Ap-
plying the SO(2) action and the maximum principle, it follows that p(L,) is
disjoint from p(X).

Recall that each fiber F of M has a neighborhood of the form D x[0,1]/¢,
where ¢(z, 0) = (exp(2wig/p)z,1). The positive integer p is called the mul-
tiplicity of F. There are finitely many fibers F for which p = 2; such fibers
are called exceptional (see [Or}]).

Now choose a small regular neighborhood N(p(%)) of p(X) in S, so that
N(p(X))is disjoint from p(L,). Let Sy be the component of S —Int(N(p(X)))
that contains p(L,), and suppose S is a disk with the projection of at most
one exceptional fiber. Then p~!(S,) is a solid torus containing Ly. But L is
a m-injective surface in M. This is a contradiction, as p~!(S,) is contained
in M'. We conclude that either S, is not a disk or else S, is a disk containing
at least two exceptional fibers.

Let C be a boundary curve of S;. Then the torus 7 of fibers over C is m;-
injective in M, since if not then 7 would bound a solid torus in M’. Conse-
quently, by [MSY] and the maximum principle, there is a minimal vertical
torus isotopic to 7 in the complement of I, which we denote by 7;. Note that,
by construction, either (a) 7; is incompressible in M or (b) 7; bounds a solid
torus D2 x S! containing £ and 7] is incompressible in M —Int(D2x S!). In
both cases, if we split M along L and choose a boundary component £’ of
M, then all the compressing disks for £’ can be selected to be disjoint from
7). In other words, if the Seifert fiber space M is split along 77, we can work
in the component M, containing X. M, is a Seifert fiber space with minimal
vertical tori boundary.



530 JoN T. Pi1tTs & J. H. RUBINSTEIN

The procedure can be iterated; if a component of L is not a 2-sphere
bounding a 3-cell or parallel to a boundary torus of M, then we can find
another minimal vertical torus 7 disjoint from X and not isotopic to 7;. The
procedure clearly stops after a finite number of steps. In fact, each time the
Seifert fiber space is split along such a vertical torus, either the orbit surface
has a disk with at least two exceptional fibers removed, or a handle is cut
open along a nonseparating simple closed curve, or an annulus with at least
one exceptional fiber is cut out.

In conclusion, there is a family J of disjoint minimal vertical tori such that
the result L of compressing £’ is a collection of 2-spheres bounding 3-cells and
copies of tori in 3. Hence £’ together with 3 bounds a hollow handlebody.

Step 4: Suppose L’ is incompressible in M’. According to the lemma, X is
unstable and can be isotoped to a surface L of strictly less area lying entirely
on one side of £. We can now minimize area among surfaces in the isotopy
class of L in Int M". By [MSY ], this yields a new minimal surface Z* isotopic
to L’ in Int M".

The same technique as in Step 2 and Step 3 can be applied to show that
either p(X)Np(X*)=0 or there is an isometry in SO(2) taking £ to X* In
the latter case, it is easy to see that either M is foliated by parallel disjoint
copies of ¥, or M is a union of two copies of twisted line bundles N(A), where
L is a horizontal incompressible surface that double covers A. In the for-
mer case, by choosing a small regular neighborhood N(p(X)) disjoint from
p(Z*)in S we find that p~'(AN(p(L))) is a collection of vertical tori separat-
ing X* from L. By standard 3-manifold theory (see e.g. [He]), since L’ and
L* are incompressible and parallel in M, it follows that £/, £* and I are ver-
tical tori.

Step 5: Suppose that I is a 1-sided embedded minimal surface. Then there
is a natural choice of double covering M of M for which I lifts to a con-
nected double covering minimal surface L. In fact, define a homomorphism
(M) - H{(M) — Z, by taking intersection number modulo 2 of closed
curves in M with I. The kernel of this homomorphism then specifies M. The
prevxous discussion (Steps 1-4) now applies to the 2-sided minimal surface
Lin M.

If L is a vertical torus, then clearly I is a vertical torus or a Klein bottle.
If ¥ is nonseparating, horizontal, and m,-injective, then I is also horizontal
and 7 -injective. Note that here M is formed by gluing together two copies
of N(X), a twisted line bundle over X. This case actually does not occur for
our choice of double covering £. If £ separates M into two twisted line bun-
dles over A, then A is homeomorphic to ¥ and again M is formed by gluing
together two copies of N(E). Suppose £ together with a family J of vertical
tori decomposes M into two hollow handlebodies and a collection of Seifert
fibered pieces. The two sides of ¥ are flipped by the covering transformation
for the projection of M — M. Consequently we can replace the decomposi-
tion of one side with the image of the splitting induced on the other side via
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the covering transformation. Then J is converted into an equivariant fam-
ily 3 of vertical tori that projects to a family (which can be denoted again
by J) of vertical minimal tori in M. The complement of a regular neighbor-
hood of ¥ in M is decomposed along 3 into a hollow handlebody and Sei-
fert fibered pieces.

Step 6: It remains to justify the assertion in Step 1. We know that the the-
orem holds for minimal surfaces in M, and we wish to prove it in M. The
argument is very similar to Step 5 and is left to the reader. Note that it is
easy to check that a hollow handlebody glued to some Seifert fibered pieces
along incompressible boundary tori can only double cover another hollow
handlebody plus Seifert fibered pieces. (This follows either by Dehn’s lemma
and the loop theorem, or by the characteristic variety theorem in the quo-
tient manifold; see e.g. [Ja].) This completes the proof of the theorem. (]

COROLLARY. Suppose that ¥ is a closed connected embedded minimal sur-
Jace in a Seifert fiber space M, and that there is a disjoint family 3 of verti-
cal minimal tori and Klein bottles, as in part (3) of the theorem. Then all the
minimal surfaces in 3 can be chosen to be wy-injective, unless L is a 2-sided
Heegaard surface in a vertical solid torus.

Proof. Note that, in the proof of the theorem, if any torus 7 bounds a solid
torus in M’, then we can add this solid torus to fill in part of the hollow han-
dlebody bounded by £’. On the other hand, if 7 bounds a solid torus D?x S?
not in M’, then L is contained in D? x S'. It is easy to check that the proof of
the theorem establishes that X is a 2-sided Heegaard surface for this solid
torus; that is, X splits the solid torus into a handlebody and a hollow han-
dlebody with boundary YUT. O

4. Examples

In this section we show methods for constructing minimal surfaces as speci-
fied in the theorem.

First of all, vertical or horizontal incompressible surfaces can be isotoped
to stable minimal surfaces by [MSY]. A compressible vertical 2-sided torus
clearly bounds a solid torus. It is easy to choose an SO(2)-invariant metric
on M for which T can be realized by a stable minimal surface also. If S is the
orbit surface and C is a contractible simple closed curve with T lying over
C, then one chooses the induced metric on S so that C is a “neck”. On the
other hand, for the standard geometries on Seifert fiber spaces, if 7 is a min-
imal torus bounding a solid torus, then 7" must be a Heegaard torus and M
is a lens space or S>. The reason is that for geometric metrics, the induced
structure on S is hyperbolic, spherical, or Euclidean, with cone points at the
exceptional fibers (cf. [Sc]). If the metric is hyperbolic or Euclidean, then it
does not admit simple closed contractible geodesics C, except if C bounds a
disk D containing at least two cone points. But then p~!(D) is not a solid
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torus. If the metric is spherical, then a geodesic C must bound two disks with
at most one cone point. Hence T is a Heegaard torus, separating M into two
solid tori. :

We now turn to the construction of unstable minimal surfaces T as in part
(3) of the theorem. We use methods similar to those of [HPR]. Assume for
simplicity that M admits an SO(2) action with orbit surface S that is orient-
able of genus = 1. Choose a simple closed noncontractible loop C on S that
pulls back to a vertical minimal torus 7. Suppose first that C is nonseparat-
ing. Choose a dual simple closed curve C’on S that crosses C transversely in
a single point. Let C” be the loop obtained by Dehn twisting C twice about
C'. There are two choices of twisting, giving C” homologous to C+2C". We
can similarly find a minimal vertical torus 7” over C” by isotoping C” to a
geodesic.

We define a sweep-out between 7 and 7" using a nonorientable surface L’
of genus 4. One attaches a tube running from one side of T to the other,
which projects onto a small regular neighborhood of C”, Starting with 7 (the
tube having been pinched out), one expands the tube until it compresses to
become two vertical annuli (cf. [PR2, Fig. 2]). This is really a compression
of X’ along a disk with two boundary arcs on the tube and two on 7. By ap-
plying the minimax technique of [Pi; PR1; HPR] to this sweep-out, one ob-
tains a minimal surface that is either a nonorientable surface L of genus 4 or
a torus 7* Note that a Klein bottle cannot occur, since we are assuming that
T and T are tori. It is then easy to show that any compression of L’ can be
carried out in a neighborhood of TUT”, which does not contain Klein bot-
tles. Furthermore, the case of a torus 7* can be excluded if we use a geom-
etry of type [SL(2, R)]” or H?>X R (see [Sc]), since in these cases it is easy to
show that any minimal torus is vertical and strictly stable. The minimax sur-
face, on the other hand, must have either nonzero index or nonzero nullity.

One notes that if Cy = aN(CUC") is a simple closed curve in the boundary
of a small regular neighborhood of CUC"’, then there are two possibilities,
depending on whether or not C is contractible. If the genus of Sis 1 and C,
is contractible with at most one exceptional fiber in the disk bounded by C,,
then it is easy to see that L is a 1-sided Heegaard surface (cf. [R2]) and so the
complement of N(X), a small regular neighborhood, has closure a handle-
body. If the genus of S is greater than 1 and either C, is noncontractible or
C, bounds a disk with at least two exceptional fibers, then deforming Cj to a
geodesic gives a vertical minimal torus 7T, over C,. We can choose the sweep-
out in the complement of 7j; then in the theorem J = {7} and dN(X)UT,
bounds a hollow handlebody.

This example can be perturbed to give an orientable 2-sided minimal sur-
face £ by taking the natural double cover M of M for which I lifts to £,
which has genus 3. If L is a 1-sided Heegaard surface, then ¥ is an ordinary
Heegaard surface. On the other hand, if the genus of S is greater than 2 then
it is easy to see that 7, lifts to a pair of disjoint tori 75 U7y and that both
£ UTg and £UTY bound hollow handlebodies.
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Suppose next that C is a separating curve. One chooses a nonseparating
simple closed curve C’ that is disjoint from C. Now run a tube in M from T
back to itself so that, if N(C) is a small regular neighborhood of C, then the
projection of the tube together with N(C) has boundary curves homologous
to C, C"=C+C’, and C". As in the previous paragraph, one constructs a
sweep-out from T to two disjoint tori 7’ and T” over C’ and C”, respectively.
By the same technique as in [HPR], assuming that M has a geometric metric,
we obtain that the minimax surface I is unstable and orientable of genus 2.
Note that in this case TUX and 7°UT”UZX bound hollow handlebodies.

Finally, if the orbit surface S is a 2-sphere and if there are at least five ex-
ceptional fibers, then one can choose two simple closed geodesics C and C’
that are disjoint and bound an annulus with exactly one exceptional fiber. It
is easy to construct a sweep-out from 7 to 7", the tori over C and C’, by a
surface L’ of genus 2. Applying the minimax construction, one again ob-
tains an unstable orientable minimal surface L of genus 2, with EUT and
X UT’ bounding hollow handlebodies.

Take a product of the circle and a nonorientable surface of genus 3. Con-
sider an orientation-preserving nonseparating simple closed curve C on the
surface. There is a torus lying over C, and if a small open regular neighbor-
hood of C is removed from the surface then the result is a Mobius band with
an open disk removed. Consider a tube running from one side of the vertical
torus over C to the other and projecting to a strip joining the two boundary
curves of the punctured Mobius band. This gives a nonorientable surface of
genus 4 in M. By expanding the tube, the surface can be collapsed onto an-
other vertical torus lying over a curve representing the result of Dehn twist-
ing C twice along a dual simple closed curve C’ meeting C once. The mini-
max procedure of [HPR] can be applied to obtain a nonorientable minimal
surface of genus 4. Lifting to the orientable double covering manifold A7,
T lifts to £, which is orientable of genus 3 and isotopic to a surface that is a
pair of nonseparating vertical tori joined by two tubes. It is easy to see that
¥ is nonseparating, but together with a vertical torus bounds two hollow
handlebodies.

There is also an interesting class of examples related to the corollary. Note
that, by the discussion at the beginning of this section, for geometric struc-
tures on Seifert fiber spaces we cannot find minimal surfaces inside vertical
solid tori unless the manifold is a lens space and the minimal surface is a
Heegaard surface for the lens space.

Consider the class of minimal surfaces X; in the 3-sphere with its standard
metric (described in [PR3]) with the property that, as i — o, E; converges in
the varifold metric to a copy of the Clifford torus with multiplicity 2. Of
course there is an SO(2) action on S3 for which the Clifford torus is a vertical
minimal surface. Let F be a great circle in S> at maximal distance x/4 away
from the Clifford torus. Let N(F') be a small SO(2)-invariant neighborhood
of F. Remove N(F) and glue in a Seifert fiber space M with a boundary torus
7. The metrics on S —Int(N(F)) and M can be chosen so that T is parallel
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to a stable minimal vertical torus 7. (Of course, we require the metric on M
to be SO(2)-invariant so that the SO(2) actions on 7 and dN(F) match up.)
Now, for i large enough, it can easily be shown that £; N N(F) = 0. Thus Z;
gives a minimal surface inside the vertical solid torus S — Int(N(F)).
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