On the p-Part of the Ideal Class Group
of Q({,+¢, ') and Vandiver’s Conjecture

F. THAINE

Dedicated to Paulo Ribenboim

Introduction

Let p =5 be a prime number, ¢, a primitive pth root of unity, Z, the ring
of p-adic integers, w: Gal(Q({,)/Q) = (Z/pZ)* - Z; the Teichmiiller char-
acter defined by w(k) = kmod p, and e; (0 < k < p—2) the idempotents
1/(p—1)) Ysen wk(a)o"eZp[A]. Denote by A the p-Sylow subgroup of
the ideal class group of @({,). In this article we study the orders of the «'-
components e,(A) of A, with r even and 2 < r < p—3. These components
can be identified with the w’-components of the p-Sylow subgroup of the
ideal class group of Q({,+,; ).

As is known by Mazur-Wiles theorems (see e.g. Rubin’s appendix to [4],
or [9, pp. 146, 299]), the orders |e,(A)| are equal to the orders |e,(W)| of
the w"-components of the p-Sylow subgroup W of the group of units of
Z[{,] modulo the subgroup of circular units, for r even (2 <r < p—3), and
the |e,(A)| are equal to the p-parts of the generalized Bernoulli numbers
B, ,—=(1/p) E =1 w”’(])j, for r odd (3 < r < p—2). The main motivation
for this work is the belief that there exist p-adic integers, that can be defined
in a relatively simple way, whose p-parts correspond to the numbers |e,(A)|
for r even, as do the p-parts of generalized Bernoulli numbers for r odd.

Let r even (2 <r < p—3) be fixed, and let n be a posmve integer. Call
[, the largest integer < n such that the number 8 = [T2Z](1— k)« ™' ~"”"
is a p Inth power in @(g‘p) We devote this article to the search of formulas
for p'n because as is known, if n is large enough then we have |e,(A)| =
ler(W)l =

In the ﬁrst section we show, by using the Tchebotarev density theorem,
that the global problem of determining p’» can be reduced to a set of similar
problems in the completions @({,)o of Q({,) with respect to some con-
venient prime ideals Q. For m = 1, call ®@,, the set of all prime ideals Q of
Z[{,] that are above rational primes ¢ =1 mod p" such that p'9~ V7 = ¢,
mod Q. We prove that, given m = 1 and k =1, if for each pnme ideal Qe @,
there is yp € Z[{,] such that 8 = 'yQ mod O, then g = 71’ for some y € Z[{,|
(Corollary of Proposition 1 and Hensel’s lemma).
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We also show that, given a prime ideal Q # (g“p— l) of Z[{,], the problem
of finding the largest integer /o < n such that 8 = 7Q °mod Q, for some Yo €
Z[{,], can be solved by using Kummer’s complementary reciprocity laws
stated in [3]. More precisely, we use an extension of Kummer’s results, ob-
tained in [7], to express p’e in terms of Gaussian periods of Q(¢,), where g
is the rational prime below Q (we choose a primitive gth root {, of unity for
each prime g). As a particular (and main) case we have the following result:
Let @ be the set of all prime ideals Q of Z[{,] above rational primes g = 1
mod p". For each Qe @ let s =5y be a primitive root modulo g such that
s@ VP =¢ mod Q, and define the index i(Q) of 8 with respect to Q and s
as the least nonnegative integer such that

B =s5"Pmod Q.

Clearly p'r divides i(Q) for all Qe ®. For 0 < j < D! "—1and Qe @, denote
by 1, =2,;(Q) the Gaussian periods Slashe” “‘;s’*"’ and, for0< j<p"—1
and /e Z, define 1, ,» = 5;. Then, for all Qe (P

p"—1pr—1

i(Q)= ,El 121 ko™ (I)ngng—; mod p”. (*)

(Proposition 2.)
The foregoing results allow us to give a preliminary criterion to determine
p'n, as follows.

THEOREM 1. For all Qe ®, above the rational prime q, define p'e as the
largest power of p, less than or equal to p”, that divides the number i(Q),
where i(Q) = *"" IE “kw " (I)ngne—; mod p”. Let m=n. Then ph <

pleforall Qe (P and p'n zs the smallest of all p'e such that Qe ®,,. If n is
large enough, then p' =|e,(A)| = e (W)|.

In the second section we improve this criterion using certain characteriza-
tions of Gaussian periods and cyclotomic numbers obtained in [8]. To sim-
plify matters (in the article we actually work with a situation a bit more
general), suppose that Q is a prime ideal in ®,,, above the rational prime q.
Then the primitive root s = sg modulo g can be chosen so that s = p#” " mod
g for some te Z. With that choice, which we assume from now on, the
periods 7; can be defined by n; = X, s £ with S = {x?": x € (Z/gZ)*}, and
they satisfy 5/ = 5;,, mod p for all i e Z. Also, the minimal polynomial of
7o over @ is irreducible modulo p, and p is inert in @(7,).

Let Qe ®,,. For ie Z, denote by 7; the congruence class of the period 5; =
7;(Q) (defined as before) modulo p”. The elements 7; € Z[ng, 1y, ..., Npn—11/
p"Z[n9, M, -.., 1pn—1] have the following properties:

(i) 7o, nl, ..., pn_1 are pairwise noncongruent modulo p;
(i) Zfo =0 Ve =—1;
(iii) ZL5! fkii+i = o, for all i€ Z;
(iv) 47 =1%;,, mod p for all ie Z; and
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v) 2,‘?;51 Mkfk+iflk+j = C;, j for some elements ¢; ;€ Z/p"Z, 0<i, j<
p"—1, where we use the following version of Kronecker’s delta:

5 = 1 if i=j mod p”,
“J 710 if i#j mod p”.
For 0 =i, j < p"—1, define the integers g; ; by

p"-
NN = 2 4 i)
Jj=0

and define @; 4pn jypn=a; jfor 0<i, j< p"—1and k,/e Z. We are inter-
ested in the integers a; ; because
p"—1p"—1

Q)= > 2 ko'()ay,; mod p" (**)
k=1 I=1
(formula 15, which extends a formula of Kummer given in {3, p. 100]). De-
note by g@; ; the congruence class of g; ; modulo p" and call M the matrix
(@, jlo<i, j<pn—1- The elements q; ;€ Z/p"Z have the following properties:
Forall i, j,/leZ,

(@) a,;=a;

(b) ZP7 o a ;=8 ),

©) a;j=a_;_; .

) SL20" @ k- j -5 =810 @ lx—ii—is

(e) the polynomial det(x/— M) is irreducible modulo p, and

(f) the elements @; ; are labeled in such a way that, if %, is a root of

det(xI—M) modulo p, then 74*?' = 275" a; 78 mod p for0< i <
p'—1.

There is only one Galois ring extension of Z/p"Z of degree p”, up to
isomorphism (see [5, Chaps. XV & XVI]); we call this extension ®,,. It is
isomorphic, for example, to Z[ng, 1, - .-, Npr—11/D"Z[ng, 115 + - Npn_1] =
Z[nol/p" Z[no], with Q € ®,,, above g, and »; = 7;(Q) as before. We have
®, = [F,», the field with p” elements.

Each of the following definitions will allow us to divide our problem of
finding a formula for p’ in two parts.

DEerINITION . Let fg, 4y, ..., 1,71 € &,,. We say that (49, 7y, ..., f,7—1) cOr-
responds to a prime ideal Q € @,, above the rational prime g if, for the
periods n; = 7;(Q) (defined as before), the element #; can be identified with
the congruence class of ; modulo p” for 0 <i< p"—1.

DErINITION II. For 0=, j<p”"—1let a; ;e Z/p"Z. We say that the ma-
trix [@;, jlo<i, j<p~—1 corresponds to a prime ideal Q € ®,, above the rational
prime q if, for the periods 5; = 7;(Q) and the integers a; ; (defined as before),
the element &; ;is the congruence class of a; ;j modulo p" for0=<i, j< p"—1.

Our task can be divided as follows.
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ProBLEM 1. Find, between the vectors (%g, 7y, ..., f,7-1) € R, satisfying
conditions (i)-(v) or the p” X p" matrices M = [a; ;] with entries in Z/p"Z
satisfying conditions (a)-(f), the vectors or matrices that correspond to prime
ideals Qe @,,,.

ProBLEM 2. Find all elements © = (7, iy, ..., 7 pn—1) € &, satisfying condi-
tions (i)-(v) and all matrices

M =1a; jlo<i, j<pn—1

with entries 1n Z/p"Z satisfying condltlons (a)—(f ). Then calculate the values
P ST ko™ (D i dig— and SE2T SP2T k(1) that, by formulas
(*) and (**), would be congruent to I(Q) modulo p"if © and M corre-
sponded to the prime ideal Q € @,,,.

Problem 1 is a question about p” that can be treated without reference to
Q({p)- In fact, we reduce this problem to a question of whether or not we
can lift elements 7; satisfying properties (i)-(v) to elements in an extension
of Q satisfying some simple properties (Proposition 8); or to a question on
integral solutions of a system of linear and quadratic equations (Proposi-
tions 9 and 9’). This allows us to write some improved versions of Theo-
rem 1 (Theorems 2 and 3).

We were not able, as yet, to give a complete solution of Problem 1. On the
other hand, we believe that in Section 3 we give a very satisfactory solution
of Problem 2 for n =1, the case that is relevant to the study of Vandiver’s
conjecture. In this (and last) section we consider the question of whether or
not, for a given even integer r (2 <r < p—3), the w'-component of A is
trivial. Vandiver’s conjecture is the statement that all such components are
trivial. Our aim is to answer this question with a criterion similar to that of
regularity of a prime stated by Kummer.

So we assume now that » = 1. Call F = [, » the field with p? elements. We
have ®,; = [F. We show that the field [F has a canonical (up to a cyclic permu-
tation) normal basis over [, that has, from our viewpoint, very convenient
properties. In fact, let e lF be a fixed root of the polynomial x”+x?~1—1.
Define ¢; = ¢? for 0 <i< p—1 and define €irjp=¢ for 0=i=<p—1 and
J€Z. Then the set {eg, €y, ..., €,_1} is a normal basis of [F/[F, that satisfies

p—1 p—1
> ep=—1 and 3 ey, =0;; forall i,jeZ
k=0 k=0

(Proposition 12).

Let Q be a prime ideal in @, above the rational prime gq; /et 5; =1,(Q) be
the Gaussian periods defined by ; =X, cs {;p', where S ={x?: xe(Z/qZ)%}.
There is a natural way to identify Z[%g, 91, «.-s np_l]/pZ[nO, Ny -y Np—1] With
[F (see formula (21)). Let 7; be the residue class of n; in [F. Then the 7; satisfy
properties (i)—-(v) (with n =1). Write 7o = Zk o Urx€x With u, = u,(Q) ey,
This makes a vector (ug, uy, ..., Up_1) = (1e(Q), 1 (Q), ..., up_1(Q)) € ([, )”
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correspond to Q € @, in a unique way, which allows us to give the following
definition.

DerINITION 111 Letug, uy, ..., u,_ €lF,. We say that (ug, uy, ..., u,_ 1) corre-
sponds to a prime ideal Q € (Pz above the rational prime q if 7o = X7~ 0 Uy €,
where the periods »; = 7;{Q) and their classes 7; € F are defined as before. If
(ug, uy, ..., u,_;) corresponds to a prime ideal Q € ®,,, we define u;, j, = u;
forO<i<p-—1landjeZ.

If (ug, 1y, ..., up_1) € (F,)? corresponds to a prime ideal Q € @, above the ra-
tional prime q, and if n;=7;(Q) and q; ; are defined as above, then Ek oUr=
1, Sh2) UpyiUps;=0; jforalli, jeZ, and ¢ = =3P Ui for0=j=<p-1
(formula (23)). Furthermore (by using the nice multiplication table of the ¢;
given in formula (27)), we prove that

p—1

Q1 = — D Uil g Uiy
i=0

p—1 p—1

+ > 7 2 (WUl g WUy U — WUy g Uiy )
j=1J i=0

mod p for 0 <k, ISp—I and that

Ela,k=—2mu, k+60kzlu,—1modp for 0<sk=p-—1

i=0 1=0
(formulas (30) and (31)). From this and (%) we get
p—1
Q)= - E ( > luiu;_z)l"“"’ mod p (%)
I=1\i=1

(see Theorem 4).

The preceding formulas motivate the study of the numbers 37~ iu; u;_y,
- 0=k=p—1, where (ug,uy, ..., u,_)e(lF,)? corresponds to some prime
ideal Qe ®,. It turns out that these numbers have interesting properties,
some of which are shown in Proposition 14.

Now let us reconsider Problem 2 (for the case n =1) in light of our new
formulas. It is easy to see that we can recast the problem as follows: Find all
vectors (ug, Uy, ..., up_;) € (F,)? such that

p—1
Su=1 and X upuy,; =208 ; (xxx%)
=0 k=0
then, for each of these vectors, calculate the value of the right-hand side of
congruence (**x),

Before considering the general situation, we want to show a particular set
of solutions we found after R. Kucera’s observation that #y =1 mod p and
u;=imod p for 1 <i=< p—1is asolution of (x%*x),

ProrosITION 15.  Let k be an odd number, 1 < k < (p—3)/2, and let ce Z.
Then the system of congruences 2,‘?;3 di, =1 mod p and E,’c’;(l, didyyi= 09
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mod p, for 0 <i< p—1, admits the solution dy=1 and d; = (ci)* for 1 <
i=p-—1.

This proposition allows us to prove the following theorem, which yields a
means of verifying if the component e,(A) of the p-part of the ideal class
group of @({,) is trivial for even integers r such that 2 <r < (p—1)/2.

THEOREM 5. Let k be an odd number, 1 < k <(p—3)/2, and let c be an
integer not divisible by p. Suppose that the vector (ug, uy, ..., u,_) € (F,)”?
(or a cyclic permutation of it) corresponds to a prime ideal Q € ®,, where
up=1and u; = (ci)* mod p, for1<i< p—1. Then the component e, (A)
of the p-part of the ideal class group of Q(S,) is trivial.

Let us now consider the general situation. Call G, the set of all p X p circula-
tory orthogonal matrices of determinant 1 with entries in [F,. Solving the sys-
tem of equations (***x) is equivalent to finding all matrices in G;. We prove
that M e G, if and only if M = B'B~! for some invertible circulatory matrix
B (Proposition 16) by using the idea of Hilbert’s Theorem 90. The remain-
ing task is to calculate the value of the right-hand side of equality (*¥*) for
all vectors (ug, uy, ..., u,_y) € ([F,)? satisfying (x**x). Our solution takes the
form of an explicit reciprocity law (that must be regarded as a version of
Kummer’s complementary reciprocity laws stated in [3]); this solution is the
main result of Section 3:

THEOREM 7. Let
B(X)=by+b X+--+b, 1 X\ leZ[X]

such that B(1) %0 mod p. Write B(X ~")/B(X)= X' u; X" mod (p, XP-1)
with u;€ Z (hence the vector (ug, uy, ..., U,_,) modulo p belongs to G).
Suppose that (ug, uy, ..., u,_1) modulo p corresponds to a prime ideal Q €
®,. Then i(Q) =0 mod p (i.e., TIZZ1(1 =N ™ ™ =P mod Q for some
v e Q(¢,) if and only if TIZZ] B(t¥)*"™' = a” mod p for some a e Q(%,).
This happens if and only if $8_] k't¥B'(£¥)/B(4f) = 0 mod p.

The congruences S£-1 k" tXB'(¢X)/B(¢%) = 0 mod p in Theorem 7 can be
transformed in congruences between integers. A particular case is shown in
Theorem 6, where, for the solution #y=1and u; = (a+1)a? '~ forl <i=<
p—1with aeF,—{0, 1} of (**x), we show that

2 rl
i(Q)=—— X 1”"'""a’ mod p
l1—a /5

if (ug, uy, ..., u,_1) (or a cyclic permutation of it) corresponds to a prime
ideal Q.

I am grateful to Professor Hershy Kisilevsky for his valuable comments,
and to Professor Radan Kucera for showing me his calculations on cyclo-
tomic polynomials and circulatory orthogonal matrices over Z/pZ together
with a nontrivial general example of such matrices.
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1. The Orders of the Even w"-Components of the
p-Part of the Ideal Class Group of Q({,) in
Terms of Gaussian Periods

Let p = 5 be a prime number, {, a primitive pth root of unity, A the Galois
group of Q({,)/Q, E the group of units of Z[{,], C the subgroup of circular
units, W the p-Sylow subgroup of E/C, and A the p-Sylow subgroup of the
ideal class group of @({,). Let Z, denote the ring of p-adic integers, w:

=(Z/pZ)* - Z} the Telchmuller character defined by w(k) = k mod p,
and e, (O=k=p- 2) the idempotents (1/(p—1)) X, ca w¥(o)o™! e Z,[A]. We
denote by B; the ith Bernoulli number defined by ¢/(e’—1) = (B /iNt'.
For every prime number g # p, choose a primitive root of umty g'q

Let r and n be fixed integers such that riseven (2 <r=<=p-3)and n=1.
Define

-1

B=8,,= H(l — gk

Let / =1, be the greatest integer, less than or equal to n, such that 8 = 7"/
with v € Q({,). Clearly, by Euler’s theorem, /, = min(n, /,,).

It is known that for n large enough the equality |e,(A)| =|e,(W)|=
holds (see e.g. Rubin’s appendix [4 p. 404]). Our objective in thlS artlcle is
to find convenient formulas for p’. In this section we express p’ in terms of
certain Gaussian periods of degree p”. Now, 8 is a p*th power in @(g”p)
if and only if it is a p*th power in each completion Q({,)g, Where Q is a
prlme ideal of Z[{,] (see [1, Thm. 1, Chap. 9]). Therefore we have that
p'is the smallest of all integers p’(Q) such that 8 =+v§ © with Y€ Q&)
and /p = n maximal. A corollary to the following result (which is similar
to [6, Prop. 4], whose proof is based on ideas of L. Washington and on a
theorem of R. Schoof) shows that we need not consider all prime ideals Q
(see also Thm. 3.1 in Rubin’s appendix to [4]).

PRrROPOSITION 1. Let m = k = 1 be integers, o€ Z[{,) NR ( fix an embedding
of Q(¢,) into C), and C an ideal class of Q(S,). Let ®(C, p™) be the set
of all prime ideals Q € C that are above rational primes q satisfying q =1
mod p™ and p'9~Y? = ¢, mod Q. Denote by C the class of principal ideals
and by H the Hilbert class field of Q({,). Let ¢e € Gal(H/Q(S),)) be the
automorphism corresponding to @ under the Artin map.

(i) Suppose that for all (except poss:bly finitely many) prime ideals Q
in ®(C, p"’), we have that o = 'yQ with g in the completion Q({,) 0.
Then o =6”""" for some 6 e Z[G1INR.

(i1) Suppose that for all (except possibly finitely many) prime ideals Q
in ®(C,p"YU®(Cy, p™), we have that o = 75 with g in the com-
pletion Q(%,)g. Let & be as in (i). Then Q(§,,8"7) € H®e(¢,m),
where H'®e is the fixed field of the subgroup of Gal(H/Q(%,)) gen-
erated by ¢¢.
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Proof. Let {,~ be a primitive p"th root of unity, and set ¢ = ¢¢.
We affirm that ®(C, p™) is an infinite set. In fact, we have

@(g‘p: pl/p) n@(g-p'") = @(rp)

(as follows, for example, from Kummer’s theory on abelian extensions of
exponent p) and

Q(&pm, pVPYNH = Q(8)

(otherwise @, ({,m, pYP )/@Q,($,~) would be unramified and hence by e.g.
[9, Lemma 14.4(a)] @, ({,m, p"P)/@p would be abelian). Therefore we can
extend ¢ to an automorphism ¢’ of H({,~, p"P) such that ¢'($pm) = §pm and
¢'(p'’P) = ¢, p"/P. By the Tchebotarev density theorem there exist infinitely
many prime ideals P of H({,~, p"?), unramified over @, such that the Fro-
benius map Fp for H({,m, p'?)/Q(¢,~) is ¢’ and such that the prime P’ of
Q(¢,~) below P is of absolute degree 1. For each such P, the restriction
Fp| g = ¢ is the Frobenius map for Q = PNZ[{,], and so Q € C. Since P’ is
of absolute degree 1 and unramified over Q), the rational prime g below Q is
congruent to 1 modulo p™. Finally, since the restriction Fp |@(rp, pip) 18 the
corresponding Frobenius map for Q (ie. {, p'” = (p'?)? mod QO0qys,, pey)s
we have pl~Y?=¢ mod Q. So Qe ®(C, p™). Therefore ®(C, p™) con-
tains infinitely many prime ideals Q below prime ideals P satisfying our
conditions.

Let v = o?* be the real p*th root of &, and let L be the Galois closure
of @({y,,v) over Q({,). Then L = Q({pe,v) for some e, 1 <e < k. We will
prove later that if the conditions in (i) are satisfied then L S H({,~, pP).
We assume this claim for the moment to see how it implies (i) and (ii). If the
conditions in (i) are satisfied, we have that L/Q({,) and Q({,, v)/Q({;,) are
abelian extensions. Therefore L = Q({,, v). If we set 6 = v” then the above
equality implies that é € Z[{;,]. (One way to prove this is as follows: Let a be
the smallest positive integer such that v?“ e @(¢; »)- If the affirmation is false
then a=2. Call v = 'yP"_Z. We have »” ¢ Q(¢),), yP’e Q(§,), and Q(Sp, v)
Q($p, v)- So Q($, v)/Q(S,) is abelian and {2 € Q(,, »). Therefore

[Q(&p2, v): Q($p2)I=p and  »vPe Q(§,2).

But then »”’e (Q@(52))PNAE) NR = (Q(5)*NR)?, a contradiction.
See Rubin’s appendix to [4], step III of the proof of Thm. 3.1.) We have o =
57", On the other hand, for ¢’ as at the beginning of this proof, we have
¢’(y) = . In fact, let Q € ®(C, p™), below the prime ideal P of H({,m, p'/F)
and above the rational prime g, be relatively prime with «, such that P is
unramified over @ and the Frobenius map Fp for H({,m, PP/ Q(5pm) is ¢
and such that o = 75 with yo€ Q({,)o. Then, for some integer j, g{y =
¢'(7)=v7=58“"1Py mod QO;. So {f=6“""P=~y4""=1mod Q. There-
fore g'p' =1 a’PC} ¢’(7v) = ~v. This shows that if the conditions in (i) are satisfied
then o =87"" with 6 € Z[{,]1NR and Q(S,, 87y = H(¢pm, p'/P)®7. If also
the conditions in (ii) are satisfied, then

Q(&, 87P) S H(Eym, pVPYO N H(Eym) = H O (S ym).
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Suppose that the conditions in (i) are satisfied. In order to prove that
L € H({pm, pY/P), observe first that every Q € ®(€C, p™), not dividing « and
not belonging to the finite set of exceptions, splits completely in @({),, v)
and hence in L (because X” a=XP —75" mod Q splits completely in
(ZI5,1/Q)XD).

Let M= LH(g‘pm,p“"). Since @(i‘pm)ﬂ@({p,~p1/p) = @(g‘pm,p“’i)ﬂH=
Q({p), we can extend ¢ to an automorphism ¢ of M such that ¢({,) =
¢,m and ¢(p'P) = ¢, p'P. Let G = Gal(M/H({,=, p’?)) and let fe€ ¢G. By
the Tchebotarev density theorem there exist infinitely many prime ideals P
of M, unramified over @, such that the prime P’ of @({,~) below P is of
absolute degree 1, and such that the Frobenius map Fp for M/Q(¢,m) is f.

For P as above, the restriction Fp|gy = f |y = ¢ is the Frobenius map
for Q = PNZ[{,] with respect to H/Q({,), so Q€ C. Since P’ is of abso-
lute degree 1 and unramified over Q, the rational prime g below Q is con-
gruent to 1 modulo p™. Since f(p'?)=¢,p'” we have, as before, that
pY9™ VP =¢,mod Q. So Q =PNZ[{,~] € ®(C, p™) and we can choose P so
as to avoid the finitely many exceptions and such that Q does not divide c.
But then Q splits completely in L as we already showed. Therefore f|; =
Fp|; =id. That is, fe Gal(M/L). This proves that $G < Gal(M/L). So
G < Gal(M/L), which implies that L € H({,=, p'’?) as desired. O

CoROLLARY. Let m=1and 1 < k < n. If—for all (except possibly finitely
many) prime ideals Q of Q({,) that are above rational primes q such that
g =1mod p™ and p' 9~ VY? =, mod Q—we have 8 = 'yé’k with vy € Q(S,) o5
then 3 = 7pkfor some y € Q({,).

Proof. Clearly we can assume that m = k. Let a € Z{{,]NR be such that
a = Bp?" for some pe Q(¢p) (it follows from the definition of 8 that such
an element « exists). Then the conditions on 8 in the corollary are also
satisfied by a. By part (i) of the theorem we have that o = §?“"' for some
o€ Z[gl‘p] NR. By part (ii) and Galois theory, 6P € Q(¢pm). This implies that
vo=6"Pe Q({,) (see Rubin’s appendix to [4], step III of the proof of Thm.
3.1). Therefore 8 = ap™?" = yP p™P" = v 7" for some v € Q({). O

We return to our calculation of the numbers p’ = p’. If O = ({—1) then,
for n large enough, 8 is a p*th power in Q({,)o if and only if L,(1,0") =0
mod p¥, where L,(s,w") is the p-adic L-function (see [9, Chap. 8]). We re-
call that L (1, w") = —B,‘,,n—n/rp””l mod p”. Therefore, for n large enough,
p' divides B,,n-1/rp" ",

Let Q # ({,—1) be a prime ideal of Z[{,], g the rational prime below Q,
S the inertia degree of Q/q, and F the field Z[{,1/Q. Assume that p” | g’ —1.
By Hensel’s lemma, 8 is a p*th power in Q({p)p if and only if 8 is a pkth
power in F. We have |F*|=¢qg/—1. Lets = sg be a generator of F* such that
s@’=1/P = ¢ mod Q. Define the index i(Q) = i,(Q) of B with respect to Q
and s as the least nonnegative integer such that

B=s5"Pmod Q. (1)
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Clearly p! divides i(Q). For i # 0 mod g/ —1, define &(i) as the least positive
integer such that 1—s’=s*? in F. Denote by T the trace from F to [, =
Z/qZ and by G(X) the polynomial 37752 X*¢T¢) (note that G(5,) is a
Gauss sum, so G({,) G(¢p) = g”). It follows immediately from [7, formula
(1)] that

et S U p-1 g’—1
LG()/GE)=—2 ki '+ 3 eUkp)+ X Q(—k )s‘,ﬁ‘
k=1 k=1 k=1 p
(2
mod p”. On the other hand, it is clear that
p—1 qf_l
Q= w"(k)@(k ) mod p” 3
k=1 D
(see [7, proof of Thm. 1]).
Define the function 7: Z,[{,, {1 = Z,[{,] by
p—1 A 2
T( 2—:1 aiﬁ}i) = 2_;1 a;w” (i),
where a; € Z,[{,]. It can be easily proved that
p—1 N\ lp-1 :
)= ('S SW5E) T oDV @
i= Jj=
for all y(X)e Z,[{,1[X].
From (2), (3), and (4) we obtain
p-1 \~lp-1 . . _
Q) = 1(5HG'(5)/G(8) = < El w’(i)ﬁ',i) -21 w'(J) §HG'(§3)/G(&)) &)
i= Jj=

mod p” (see also [7, Thm. 1]).
The following result extends Kummer’s formulas [3, p. 100].

PROPOSITION 2. Let Q # ({,—1) be a prime ideal of Z[{,], andlet q, [, F, s,
and T be as before. Let b be such that p" | b and b|(q”—1)/2 if q is odd, or
b|lgq/—1ifg=2. For 0<j<b—1denoteby 1; the period 2}16—1)/11—1 g‘qT(S“”’)
(so ;€ Q(¢,+¢7"), and for 0< j<b—1 and le Z define nj, = ;. Let
i(Q) be as in (1). Then

b—1b-1
Q)= kEI 12_31 kw™" (I)ngng—, mod p”.

Proof. Let H(X) =E}’=“(} nJ-Xf. With G(X) as above, we have G(X) =
H(X) mod (X?" —1). Therefore

566 _ GHH(E)
G&)  H)

= o H AT

b1 b=l  b-1b-1 o
= E k’?krp 2 nig-p—‘= 2 E knkni p !
k=1 i=0 k=1i=0
b—1 & , b=l I
= S kmem—i$p= 2 2 kneng—i§p mod p”
K=11=Kk—b+1 k=1 /=0
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So, by (5) and a known property of Gauss sums, we have
p—1 -1 p—1 b—1b-1

i(Q) = ( > w'(f)s:';) 2 o) E B kneme sy

i=1 j=1

p—1 -1p-10-1 .
=(E ’(t)g‘p) 2 Ekﬂkﬂk IE W' ()Y

= k’?k"?k j@~" (1) mod p”,
as desired. O

The following criterion to determine p’» and |e,(A)| is an immediate conse-
quence of formula (1), the corollary to Proposition 1, and Proposition 2.

THEOREM 1. Let @ be the set of all prime ideals Q of Z{{,] above rational
primes g =1 mod p". For each Q € ® above q, choose a primitive root s =
so modulo g such that s“9~VP = = ¢, mod Q; deﬁne the Gaussian periods n; =
1;(Q) by n; = =Sl st for 0= j<p"—1, and by Nj1pn =n; Jor
O<j=<p"—1and leZ Deﬁne p'e as the largest power of p, less than or
equal to p", that divides the number i(Q), where

p"—1p"—1
Q)= E 2 ko™ (I)ngnkx—; mod p".

Let m=n and let ®,, be the set of all prtme ideals Q of Z[{,] that are
above ratlonal primes q such that g =1 mod p™and pY9~V? =t mod Q.
Then p' = p'< p'e forall Qe @, and p'is the smallest of all p’Q such that
Q€ ®,,. If n is large enough, then p' = |e,(A)| = |e(W)|.

To derive more information about the numbers p’ from Theorem 1 we need
some results, on the periods 7; and on the so-called cyclotomic numbers,
that will be demonstrated in the next section.

2. Characterizations of Gaussian Periods and
Cyclotomic Numbers and the Determination of |e,(A4)|.

We preserve the notation of the first section. Let g =1 mod p” be a prime
number, s a primitive root modulo g, and 79,7y, ..., 4,7—; the Gaussian
periods of degree p” in Q(¢,) defined by

(g—1)/p"—1

= > & (6)
k=0

Define 5;4 j,» =n;for 0 < i< p"—1and je Z. For i € Z write

p"~1
NoMi = 'Eo Qj, jNjs ()
j:

with a; ;€ Z. Define a; 1 4pn jyipn=a; jfor0<i, j<p”"—1land k,leZ.
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Asis usual, for 0 < i, j < p” —1 we define the cyclotomic numbers (7, j) of
order p”" as the number of ordered pairs (k,/), 0< k,l<(g—1)/p"—1, such
that 1+s%7"+ = s?"+/ mod ¢q (see e.g. [2]).

We use the following version of Kronecker’s delta:

5 = 1 if i=j mod p”,
71 0 if i# j mod p”.

By [2, formula (6)] we have that
-1
ai,j=(i,j)—%;;,—5o,ia (8)
forO0<i,j=<=p"—1.

The following propositions—which are immediate consequences of [8],
Propositions 1, 2, and 3, Theorem 1, and formulas (12), (15), and (30)—give
characterizations of the periods 7; and of the numbers q; ; (or, equivalently,
of the cyclotomic numbers (i, j)). We shall use Propositions 3 and 6, which
have the simplest statements. Propositions 4 and 5 are included for a better
understanding of periods and cyclotomic numbers, as well as the relations
between them, and for future reference.

PROPOSITION 3. Let 04,0, ...,0,-_, be elements of a field K containing Q.
Define 0; ,y,» = 0; for 0 < j < p"—1and k € Z. Suppose that:
(i) 09,0y, ..., 0,n_, are linearly independent over Q;
(il) =50 =—1;
(iii) Ef’:o’l 0;0,+;=qdg, j—(q—1)/p" for 0= j=< p"—1; and
(iv) the numbers

1({g-1Y *&
bi,jz"(< o7 ) +,§O Or Ok +i Ok +

are rational integers for 0<i,j< p"—1.

Then 0,,0,, ...,0,-_, are (in a certain order) the periods 19,1y, ..., Npn_1 0f
degree p" in Q($,), where ¢, is a primitive qth root of 1 in the algebraic clo-
sure of K.

Conversely, if 0y, 6y, ..., 0,1_y are the periods g, 11, ..., Npn_1, then condi-
tions (i)-(iv) are satisfied and b; ; = (i, j) = a; ;+((q—1)/p")d¢,; for 0=
i,j<p"—1.

ProrosITION 4. Let ¢; ; (i, j € Z) be integers such that, for all i, j:

(W ¢, = Citpr,j = Ci,j+pms
(i) =0 cik=(g—1)/p"—qby ;; and

(lll) 2,‘::61 ck,j = —60,j.
Let 84,0, ...,0,n_, be elements in a field K containing @ such that
(iv) 69,0y, ...,0,:_, are linearly independent over Q, and

W) 0,6, =SF 5" ¢; i x—ibk for 0=<i, j< p"~1.
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Then 8,0y, ...,0,-_ are (in a certain order) the periods 19, M1, ..., Npn—1,
and c; j are the corresponding numbers a; ; = (i, j) —((q — 1)/p") 6 ;-

Conversely, if 0; =n;and ¢; j = a; ; for I, j € Z, then conditions (i)-(v) are
satisfied.

PROPOSITION 5. Let ¢; j (i, j € Z) be integers such that, for all i, j:
(i) i, j = Civpn,j=Ci j+pns
(i) =F_5' ik =(g—1)/p"—qbo,;; and
(iii) ZP2o" ek, j=—0o, ;-
Let C be the matrix [c; jlo<i, j<pn—1, 0o an eigenvalue of C, and r a fixed
integer (0=<r=<p"—1). Call v, 0,%:,15--»¥r, pn—1 the co-factors of C—6y1
corresponding to the rth row. That is,

Yrom = (=1)"F"detlc; j—6; j00lo<i, j<pm—1,ixr, jrm-
Suppose that
(iv) the characteristic polynomial of C is irreducible over Q, and
(V) 00Yr,kYrt = 2520 Clky jmkY¥r0Yr, j JOr 0<k,I < p"—1.
Then, after some reordering of the columns of C, the numbers c; ; are the
integers a; ;= (i, j)—((g—1)/p")d¢ ;-
Conversely, if ¢; ;= a; j fori, j€ Z and 0y = 7, then these conditions (i)-
(v) are satisfied, v, o # 0, and 1, = (no/%,,0)Yr,k JOr 0<s k< p"—1.

PROPOSITION 6. Let C = [¢; jlo<i, j<pn—1 be a matrix with entries in Z. De-
Jineciyypn jripn=c; jfor0=<i,j<p"—1landk,leZ. Suppose that, for all
integers i, j,| we have:
(i) ko' cix=(qg—1)/p"—qdo s
(i) ZP15" e, = 0,53
(ili) ¢, j = cjji; i
(iv) SP0" CikCrmjir—j=3E 0" € kChei 1—is and
(v) the polynomial det(xI— C) is irreducible over Q).
Then (after some relabeling of the periods g, My, -.., Npn_1) € ;j=a; ;=
(i, ))—((@—1)/p")éy,i for 0= i, j< p"—1.
Conversely, if ¢; j=a; ; for 0 < i, j < p"—1, then these conditions (i)-(v)
are satisfied.

We can restate Proposition 6 as follows.

PropPOSITION 6'.  Let C = [¢; jlo<i, j<pn—1 be a matrix with entries in Z, and
let R be the p" X p" matrix [6;+,,;1; j; that is,

010 ... 0
001 ... 0
R=|: : : - .
0 0 0 ... 1

|1 0 0 ... 0
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Denote the ith row of a matrix B by [B];. Suppose that:

(i) the sum of the elements of the ith row of Cis (g—1)/p" —qdy ;;
(ii) the sum of the elements of the jth column of C is —0y, ;
(iii) [R™CR/]; = [R7ICR"];5
(iv) [CR™/CR’); =[CR™'CR'};; and
(v) the polynomial det(xI— C) is irreducible over Q.
Then (after some relabeling of the periods n¢, 11, ..., 1pn_1)

.. g1 .
Cij=a;;=(,Jj)— PL dp,; Jor 0=<i,j=<p"—1.

Conversely, if ¢; j=a; ; for 0 <1, j < p"—1, then conditions (i)-(v) are
satisfied.

Assume now that p is not a pth power modulo q. Then there is a primitive
root s modulo g such that

s= pt?" mod g forsome teZ. 9

In fact, let s; be any primitive root modulo g. Write p =s{ mod g, with
J€Z. Since p t j, by the Chinese remainder theorem there exists j, € Z, rela-
tively prime with ¢g—1 and such that j = j; mod p”. So p=s{*** "® mod ¢
for some k € Z. Therefore s =sj* is a primitive root modulo ¢ satisfying

(9). Choose s as in (9) and let

S={xP": xe(Z/qZ)*)}. (10)
If the periods »; are defined as in (6) then, for i = 0,
ni=3 {7 (11)
XeS ‘
This implies that
7/ = ;41 mod p (12)

for all i € Z. Since {n¢, 1, ..., 1,1} is an integral basis of @(»y) and its dis-
criminant is a power of g, for any prime ideal P of Q(5,) above p we have
n; # n; mod Pif i # j mod p”". Moreover, by (12), all the roots of the minimal
polynomial of 54 over @ with coefficients reduced modulo p (roots lying in
the splitting field of the polynomial over Z/pZ) are conjugate of any given
one by powers of the Frobenius automorphism. Therefore the minimal poly-
nomial of ¢ over Q is irreducible modulo p, and p is inert in @(7,). In par-
ticular, pA nony-- npn_.

Conversely, let s be a primitive root modulo ¢ and let the periods 7; be
defined as in (6). Suppose that 5o, 9y, ..., 7,7_; are pairwise noncongruent
modulo p and that 9/ = »;,; mod p; then formula (9) holds. In fact, let u
be an integer such that p = s” mod g. Then we must have that »; .y = ;..
Therefore ¥ =1 mod p" and (9) follows.

As in Theorem 1, define @ as the set of all prime ideals Q of Z[{,] above
rational primes ¢ = 1 mod p" and, for m = 1, define ®,, as the set of all prime
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ideals Q of Z[{,] above rational primes g such that ¢ =1 mod p” and
pY Y7 = ¢ mod Q. Note that if Q € ®,, is above the rational prime ¢ and
if s satisfies (9) then s“~7 = ¢, mod Q.

These observations are summarized in the following lemma, which allows
us to label the Gaussian periods in a way suitable for their use in formulas
for i(Q) (as in Proposition 2 and Theorem 1), where Q € @, is a prime ideal
above g.

LEMMA 1. Let g =1mod p" be a prime number, s a primitive root modulo
q, and v; the Gaussian periods defined in (6). Then s = pt?" mod q for some
te Zifand only if ng, my, ..., npn—) are pairwise noncongruent modulo p and
nf = ;41 mod p for all ie Z. In that case the periods u; can be defined by
(10) and (11), the minimal polynomial of v is irreducible modulo p, and p
is inert in @(no).

There is only one Galois ring extension of Z/p"Z of degree p”, up to iso-
morphism (see [5, Chap. XV & XVI]); we call this extension ®,,. It is iso-
morphic, for example, to Z[ng, 91, --., Mpr—11/P"Z{ngs 01 - .., Mpr_1] =
Znl/p"Zlne]l, where g=1 mod p” is a prime such that p is not a pth
power modulo g and the y; are as in (11). (All properties of ®, that we shall
use can be easily deduced from this representation.) Note that & = [, », the
field with p” elements.

The next proposition shows implications between certain properties satis-
fied by the residue classes modulo p” of the periods 5; defined in (11) when
g =1mod p?"

ProposiTioN 7. Let 0,0y, ...,0,-_, be elements of ®,. For 0<i< p"—1
and k € Z, define 0, y,» = 0;. Suppose that:

(i) 6y, 51, .. 0pn_1 are pairwise noncongruent modulo p;
(ii) 5= 9k= —1;
(iii) Ek 010,(0k+, =0¢,; forallie Z;
(iv) 67 = 6,+1 mod p forall ie Z; and
(v) Ekno 0k0k+,9k+j—c, j Jor some elements ¢; ;e Z/p"Z, 0<i,j<
p'—1.

Write C—;,'_*_kpn’j_'_lpn =¢; jfor0<i,j<p"—landk,leZ, and call C the ma-
trix [C; jlo<i, j<pn—1- Then, for all integers i, j and I:

(VI)BG—Ek EIEJ ik— Iek’ _ _
(vii) det(xI—C) = (x— 00)(x 0))(x—0,1_,);
(viii) ¢ ;=053
(ix) c,,—c_,J i
(x) Ekno Ci,k = —00,i;
(xi) Zf- olckf"'”‘SO,j; o
(xil) ZE_5" i kCrejit—j = 2k= olCJ kCk—i,i—i> and
(xiii) the polynomial det(xI—C) is irreducible modulo p.
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(xiv) Define

'71',;' = (_I)H-j det[éu, v 6u, véo]Osu, v=p—1luzi,v£j"
Then ’7[,0 #0 modp and g,' = (60/71,0)71’,'.

Let Q € @;, above q € Z, and let v; be as in (11). Define the integers a; ;as
in (7). Put (R,, = Z[T]Q, Ny oees T[pn_ll/an["ﬂo, My oees np"—l]' Ifé, and Ei,j are
respectively the images of n;in &, and of a; jin Z/p"Z, then all conditions
(i)-(xiv) are satisfied. (Note also that, since q =1 mod p*", by formula (8)
we have a; ;= (i, j) mod p".)

Proof. (For more details on this proof see [8], where we show similar re-
sults over Z.) The last affirmation follows directly from Lemma 1, from [2,
formula (14)], and from Propositions 3-6 (see also [2]).
Suppose that §; € ®,, and c", k € Z/p" Z satisfy conditions (i)-(v). Then
pr-1 pi-1p

E cj i, k— zek—'kzo IE 0f01+j I01+k 10k

- E 0[01+j i 2 0I+k Iak_ E 0[01+J 16 j 66

This proves (vi). From (v1) and the commutative and associative laws of
multiplication in ®,, we obtain (ix) and (xii) (for the last one expand the
equality (806,)8; = (8,0;)0;). From (v) we get (viii). From (ii), (iii), and (v)
we get (x). From (viii) and (x) we get (xi).

Let T = (69,0, ...,6,»_)" and let R be as in Proposition 6’. We can write

(vi) as

(C—0,)RFT =0 (13)
for all k€ Z. In particular, 84,8, ...,0,_; are eigenvalues of C and by (i)
they are distinct modulo p; so we have (vii) (use Hensel’s lemma). From (i),
(iv), and (vii) we get (xiii). In fact, by (iv), all the §; modulo p are conjugate
of 6, over Z/pZ; by (i) there are p” distinct such conjugates and by (vii)
they are the roots of det(x/— C) modulo p.

To prove (xiv) fix / and observe first that, by (xiii), 4, o #0mod p. CallT'=
(¥1,0 Y1, 15 -+ Y1, pr—1)"- We have (C—0,1)T = 0. Also, by (13), (C—6,1)T =
0. Since, by (xiii), C— 6’01 modulo p has rank p"—1, for some Ae Z/p"Z
we must have that 0y, 6;, ... p"—l) = AY1,05 1,15 - V1, pn—1)- Therefore A=
00/71,0and §; = (00/71,0)%’,1- O]

We will need the following lemma, similar to Lemma 1, to label the cyclotomic
numbers in a way suitable for their use in formulas for i(Q), where Qe @,.

LEMMA 2. Letq=1mod p” be a prime number, s a primitive root moduloq,
n; the Gaussian periods defined in (6), a; ; the integers defined in (7), and Q@
the matrix [a; jlo<i, j<pn—1- Thens = ptP" mod q for some t € Z if and only if
det(xI— Q) is irreducible mod p and for one ( for each) of its roots 6, we have

oL+P" = E a; k90 mod p (14)
JorO0=i<p"—1.
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Proof. By Lemma 1, if s= pt?" mod g for some f € Z then det(xI— Q@) is
irreducible modulo p and »f = %;,, mod p. So (14) holds for any root 8, of
det(xI— @) (these roots are just the periods 5;). Conversely, suppose that
det(x/— @) is irreducible modulo p and that (14) holds for one of its roots
6. From formulas (7) and (14) and from the fact that 6o/ — @ modulo p has
rank p” —1, we can deduce that there is some / € Z such that »; = §; ., mod p
for all i € Z. Therefore ¥ = 5;,; mod p and, by Lemma 1, s = pt?" mod ¢
for some te Z. O

The following definitions will each allow us to divide the problem of find-
ing formulas for the numbers i(Q), Q € ®,, and for the numbers p’ defined
in Section 1, into two problems. Problem 1 consists of the search, between
vectors in ®R2” or p” X p" matrices with entries in Z/p"Z satisfying certain
congruence conditions, of the vectors and matrices that “correspond” to
prime ideals Q € @,. Problem 2 consists of the search of all vectors or ma-
trices satisfying those congruence conditions and of the values obtained by
formally substituting the coordinates of the vectors (or the entries of the
matrices) into the formulas for i(Q)—that is, the values that will yield i(Q)
when the vectors or matrices actually correspond to prime ideals Q.

DEFINITION 1. Let g, 7y, ..., ,7—1 € &, and let m = n. We say that (7, 71,

.., 71pn_) corresponds to a prime ideal Q € @, above a rational prime g if,
for the periods 7; defined by (10) and (11), the element 7; can be identified
with the congruence class of #; modulo p” forO0<i=< p”"—1.

DerFINITION 2. For 0<i,j=<p"—1, let @; j€e Z/p"Z and m = n. We say
that the matrix [@; ;j1o<;, j<p»—1 corresponds to a prime ideal Q € @, above a
rational prime g if for the periods 5; defined by (10) and (11), and for the
integers g;, ; as in (7), the element &; ; is the congruence class of a; ; modulo
piforO0=<i,j=p"—1.

From Propositions 3, 6, and 7, and from Lemmas 1 and 2, we derive the
following criteria for recognizing when a vector (7;)o<i<p7—1 With 7€ &,,
and a matrix [@; jlo<;, j<pn—1 With @; j€ Z/p" Z, correspond to a prime ideal
Q € (PZn-

ProposiTION 8.  Let 04,0, ...,0,n_, be elements of ®,. If (00,01, .., 8pn_y)
corresponds to a prime ideal Q € ®,,,, then the 0; satisfy:

(a) 8y, 51, ..., Opn_1 are pairwise noncongruent modulo p;

(b) =ho Bk = -1

(c) 2%-= 51 010 =8¢, ; forall ie Z;

(d) 67=40 ,+1 mod p for all ie Z; and

(e) Ekno 9k0k+:9k+1 = ¢;, j Jor some elements ¢; ;e Z/p"Z, 0<i,j=<

pi—1,

where we define 6; j,n=0; for 0<i=<p"—1and jeZ.

Conversely, suppose that the 0; satisfy conditions (a)-(e) (so these elements
satisfy, together with the ¢; j€ Z/p"Z, all conditions of Proposition 7).
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Then (8,0, ...,0,n_,) corresponds to a prime ideal Q € ®,, above a rational
prime q if, for some prime q = 1 mod p "and for 0 < i< p"—1, the elements
6; are the congruence classes modulo p” of elements 0; in some field extension
of Q (i.e. §; is the image of 6; in Z[0¢, 0y, ..., 0,n_11/p"Z[0¢, 0, ..., 0,n_;])
that satisfy:

(i) Shoo. O =—1;
(ii) ZF0" 0kbisi =qdo,i—(q—1)/p" for 0<i<p"—1; and
(iii) the numbers

1//g—1\* »!
bi,j=—((p ) E Or Ok + Ok 4

q
are rational integers for 0 <i, j< p"—1,

where we define 0, j,»=6; for 0<i<p”"—1 and jeZ. (Observe that by
Proposition 3 the 0; are the periods of degree p" of Q({,).)

Proof. If (6y,8,, ...,0,n_;) corresponds to a prime ideal Q € ®,,, then the
6; satisfy conditions (b), (c), and (e) by Proposition 3, and conditions (a) and
(d) by Lemma 1.

Now suppose that the 6; satisfy conditions (a)-(e) and that they are the
congruence classes modulo p” of elements §; in some field extension of @
that, for some prime g = 1 mod p2”, satisfy conditions (i)-(iii). Conditions
(a)-(e) imply, by Proposition 7, that 8y, 8}, ..., 8,-_, are linearly independent
modulo p; hence 6y, 6, ..., 6,»_, are linearly independent over Q. Therefore,
by Proposition 3, Lemma 1, and Definition 1, we have that (6, 0y, ..., 0,:_)
corresponds to a prime ideal Q € @,, above q..

PROPOSITION 9. Let ¢; j, 0<i,j=<p"—1, be elements in Z/p"Z. If the
matrix C = (¢ jlo<i, j<pn—1 cOrresponds to a prime ideal Q € ®,,, then the
C;, j satisfy:

(a) C: j = c_,',n

(b) =275 Ck,j = —00, 3

(c) c,J—C-,, Y

) ZP25" G xCujyimj =Zheo € kCi,i—i Sor alli, j,1€ Z;

(e) det(xI—C) is irreducible modulo p,

where we define C; ypn j11pn =G jfor 0=<i,j<p"—1and k,le Z; and
(f) the elements ¢; ;are labeled i in such a way that, if 6, is a root of
det(xI—C), then 637" =321 ¢ 168 mod p for 0<i=< p"—1.

Conversely, suppose that the ¢; ; satisfy conditions (a)-(f). Then the ma-
trix C corresponds to a prime ideal Q € ®,, above a rational prime q if, for
some prime q = 1 mod p*" and for 0 < i, j < p" —1, the elements C; jarethe
congruence classes modulo p" of integers c; ; satisfying:

(i) Ek =0, Ctk“(q 1)/p"—qdy, ;;
(ii) Ek =0 ij =8y, j3
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(iii) ¢;, ,—lc_, j—is and
(iv) SP2o i kChoji—j=Zhes' CjxChiy—i Soralli, j,1€Z,
where we define i ypn jripn=¢; jfor 0=<i,j<p"—landk,leZ.

Proof. If the matrix C = [¢; jlo<i, j<pn—1 corresponds to a prime ideal Q€
®,,, then the ¢; ; satisfy condition (a) by formula (8), conditions (b), (c),
and (d) by Proposition 6, and conditions (¢) and (f) by Lemma 2.

Now suppose that, for some prime ¢ = 1 mod p?"and for0 < i, j< p"—1,
elements ¢; ; satisfying conditions (a)-(f) are the congruence classes modulo
p" of integers c; ; satisfying conditions (i)-(iv). Note that, by condition (e},
det(x/— C) is irreducible over @. Then, by Proposition 6, Lemma 2, and
Definition 2, we have that the matrix C corresponds to a prime ideal Q € ®,,
above gq. O

We can restate Proposition 9 in a more suggestive way as follows.

ProposiTION 9'.  Let ¢; j, 0=<1i,j< p"—1, be integers such that 0<¢; ;<
p"—=1.If the matrix C = [¢; jlo<i, j<pn—1 modulo p" corresponds to a prime
ideal Q € ®,,, then the c; ; satisfy:

(a) cu—c“modp ;

(b) ZL251 6 j=—8 ; mod p";

(c) Ctj—'c-zj i mod p";

d) =£55'e; kCr~j,1- =3P 6 kCk_i—i mod p" for all i, j,1€ Z;

(e) det(xI—C) is irreducible modulo p,
where we define C; ypn jiipn=C; j for 0<i, j< p"—1land k,le Z; and

(f) the elements ¢; ; are labeled in such a way that, if 8y is a root of

det(xI—C), then girP =3r e ¢ k08 modp for0<i<p"—1.

Conversely, suppose that the integers ¢; ; (such that 0 < ¢; ; < p" —1) sat-
isfy conditions (a)-(f). Then the matrix C modulo p" corresponds to a prime
ideal Q € ®,,, above a rational prime q if there exist integers t; ;, 0<1i,j<
p"—1, such that

(i) L5 1,y = —(U/p")(ELLG" &, 5+ 8o, )3
(ii) tjl t: j+((q 1)/p2n)(60 1_60 j)s
(111) f,',J t—t,_} i and

i, j»

pﬂ_l pn_l
. - - n —
(iv) X CiuCr—ji—j+DP" 2 Cixli—ji~j
k=0 k=0
-1 p”—l
+p” 2 Ui kCh—j,1— J+P > tiklk—ji-j
k=0 k=0
p"—1 p"—1
kE C kck i1— 1+p E Cjktk iI—i

pr—1 pr—1
+p” E 4 kCr—i1—i+D*" E i klk—i—i Jorall i, j,leZ,

where we define t;  xpn jripn =1 jfor 0<i,j<p"—landk,leZ.
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Proof. The first statement is clear by Proposition 9. For the converse, with
integers ¢; ; and f; ; satisfying the above conditions write ¢; ; = ¢; j+ p"%; ;.
Then the integers ¢; ; satisfy all conditions of Proposition 9 (to better under-
stand condition (ii), see formula (8)). Therefore the matrix C modulo p”
corresponds to a prime Q € @,. 0

The next result is an improved version of Theorem 1. More precise infor-
mation for the case n =1 is given in Section 3 where we study Vandiver’s
conjecture.

THEOREM 2. Let V, be the set of all p"-tuples (8¢, 0,, ..., 8,-_y) of elements
in ®,, that satisfy:

(a) 50, 51, o 6 n 1 are pairwise noncongruent modulo p;

(b) 22510, =~

(c) Ek 6'0k0k+, = 60 ;forallieZ;

(d) 67 = 0,+1 mod p for all ie Z; and

(e) Ekzo 016 +i0x+; = Ci,;j for some elements ¢; ;e Z/p"Z, 0<i,j<

p"-1,

where we define 0, j,» = 8; for 0 <i < p"—1 and j € Z (therefore these ele-
ments satisfy, together with the ¢; je Z/p"Z, alI conditions of Proposition
7). Let U, be the set of all p"-tuples (0, 8,, ..., 0,=_) of elements in &, that
correspond to prime ideals Q € ®;, (see Deﬁmtzon 1 and Proposition 8).
Forall © = (,,90,, .. 0pn_1) e (R, )p call u(e) the greatest power of p, less
than or equal to p", that divides X2 7' P kw ™" (1)8,6;_,. Then U, SV,
and p'» = min{r(6): 6 € U,}.

Proof. The proof is immediate from Theorem 1, Definition 1, and Proposi-
tion 8. .

Let O be a prime ideal of Z[{,] above a rational prime g =1 mod p”, and
let s be a primitive root modulo g such that s“~17 = {, mod Q. Define the
periods n; and the integers a; j as in (6) and (7). Let i(Q) be asin (1) By Prop-
osition 2, we have z(Q) ,l “kw™"(I)ngne—; mod p”". Therefore
Q=P 'SP T kw™ (I)nonknk_, mod p". Taking traces (from @(s,)

to @) and applylng Propositions 3 and 6, we get

pi—1 pn—1 q__] q_l)Z)
—_ ko™ (]
i(Q) E 2 w” ()(qakk 1+Q( p ) <pn

p —lp -1 -1 p"—1

=—q > 2 koT'(DNagj_1=— E S kw™"(l)a_i, —; mod p".
k=1 [=1 k=1 I=1

Therefore
pn_l p”—l
Q)= > > ko (l)ag,; mod p” (15)
k=1 I=1

(see also the Kummer formulas in [3, p. 100]). This result can be used to ex-
press p’n in terms of rational integers as follows.
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THEOREM 3. Let Y, be the set of all matrices C =[¢; jlo<i j<pn—1 OVer
Z/p"Z such that:

(a) C: S cj i

(b) Ef o Ci,j = —do, j;

(C) C[, --I Jj— i’

(d) 220"k Chmjimj =28 0" 6 kCri i forall i, j,1€ Z;

(e) det(xI—C) is irreducible modulo D,
where we define C; ypn j1ipn=C; j for 0<i, j<p"—1land k,le Z; and

(f) the elements c; j are labeled in such a way that, if 6, is a root of

det(x/—C), then gy P = Ek"“l ¢ k0§ modp for0<i<p"—1.

Let X, be the set of all matrices (C; jlo<; j<pn—1 Over Z/p"Z that corre-
spond to prime ideals Q € ®,,, (see Definition 2 and Propositions 9 and 9’).
For each matrix &= (¢; jlo<i j<pn—10ver Z/p"Z, deﬁne u(a) as the greatest
power of p, less than or equal to p", that divides 2§ _ 2” ko™ )Ck, 1
Then X, € Y, and p’» = min{u(a): & € X,}.

Proof. The proof is immediate frbm formula (15), Definition 2, and Propo-
sition 9. O

3. On Vandiver’s Conjecture

As before, let r be an even integer such that 2 < r < p—3. In this section we
investigate whether or not |e,(A4)| = |e, (W) is trivial. We preserve the nota-
tion of the previous sections but now we need only consider the case n = 1.
In fact, if B = 8, = TIZZ}(1—¢5)*" ™" then, by the results mentioned at the
beginning of Section 1, we have that p divides |e,(A4)| if and only if 8, is &
pth power in Z[{,]; that is, if and only if p’ = p" > 1. So take n =1 and let
m be an integer = 1.

Recall that (for n = 1) @ is the set of all prime ideals of Z[{,] above ratio-
nal primes ¢ =1 mod p, and @, is the set of all prime ideals Q of Z[{)]
that are above rational primes g = 1 mod p™ such that p?~D” = ¢, mod Q.
For every Q € ® above the rational prime g, choose a primitive root s = sg
modulo g such that s'9~Y? = ¢ mod Q and define i(Q) as in (). Define also
the Gaussian periods of degree p of Q(¢,) and\ the integers a; ; by

(g—1)/p—1

m= X o (16)
J

forO=i=p-—1; 94),= n,for0<z<p land je Z;
Noni = E a; inj 17)

forO<i=p-l;anda; 4p, jr1p=a; jfor0<z J=<p—1landk,/eZ. By Prop-
osition 2 and formula (15), we have

-1 p—1 p—1 p—1

Q)= 2 Eklp = 3 E kiP~'""g, ymod p.  (18)
k=1 i= k=1 i=

These are Kummer’s formulas (see [3, p. 100]).
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The following propositions give important information about the indices
i(Q) modulo p. Proposition 11 is a particular case of [7, Cor. 3 of Thm. 2].
Recall that if p’ > 1 then p divides the Bernoulli number B,.

ProrosiTiON 10. Let Q€ ®@, and let a be an integer not divisible by p. Let
0, € A be the automorphism such that 0,({,) = §5. Then i(3,(Q)) = a?~"i(Q)
mod p.

Proof. Call 0 =0,. Let g be the ratlonal prime below Q. Let s and s, be
primitive roots modulo g such that s~ ={, mod Q and sV =g,
mod ¢(Q). Since s(Q" D/p - = {; mod o(Q) we have sU(Q) :thf” mod q for
some ¢, € Z. On the other hand, 8, = s§9 mod Qand g, = 5.32Y mod o (Q).

So a(B,) = s’Q(Q) mod ¢(Q) and, since o(8,) = 8% «” for some a € Z[§p], we
have s§’ Tlie@N+12p = g 2oy O =5[9*5P mod ¢ for some ¢,, t; € Z. There-
fore a”~1li(6(Q)) = i(Q) mod p. O

ProposITION 11. Let Q,, Q,, and Qs be prime ideals in ®. Suppose that
p|B,. Then: If Q, is a principal ideal, i(Q,) = 0 mod p. If Q, and Q, are in
the same ideal class, i(Q,) = i(Q,) mod p. If Qs in the ideal class of Q,0,,
i(Q3) = i(Q)) +i(Q>) mod p.

We intend to use Theorems 2 and 3 to obtain information about p’. One
pleasant fact about working with » =1 is that now ®, = [F,», the field with
p? elements, that we call [F from now on. The field F has a canonical (up to
a cyclic permutation) normal basis with nice properties, as we shall show.
Let e € F be a fixed root of the polynomial x?+x?~'—1 and let o = ¢7".
For0<i< p—1definee; =€, and for 0 < i< p—1and je Z define €ivjp=
¢;. By the Artin-Schreier theorem we have that F =[F,(«) =[F,(¢), where [, =
Z/pZ. Recall that now we use the following version of Kronecker’s delta:

5 = 1 if i=j mod p,
1 0 if i j mod p.

PROPOSITION 12.  The set {eg, €y, ..., €51} is a normal basis of F/F,. More-
over, we have

(i) ZfZge=—1and
(ii) 2]1:;6 €k+i€k+j = 6,',ij1' all i, JE Z.

Proof. Clearly the first affirmation is a consequence of (ii). Since ¢y, €y, ..,
€p—1 are the roots of xP+xP~1—1 we have (i). To prove (ii), observe first
that «” —a—1=0, so

a?P+a?+1=-2aP 1 =2aP+2a =0 and (a?)?—2(a?)P*D2414%2-1=0.

Therefore, since the conjugates of o? are a2, (a+1)% ..., (a+p—1)% and
since these are distinct elements, we have

xP—2xP2 L x—1=(x—a?)(x—(@+1)?)--- (x—(@+p—1)?).
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Hence, for all ie Z,

(x+i2)P=2(x+i?) P2 x4 j2 1
= (x—(a? =) x—((a+1)?=i?) - (x = ((a+p—1)*=i?)).
Taking logarithmic derivatives of both sides of the preceding equality and
substituting x = 0, we get
iP=1_1 p—1 1 p—1

= == €r_ ;€ [ *
2P —2iPp*t14j2—1 2o (a+k—i)(a+k+i) k§0 S

Property (ii) follows from this equality. O

Now we show properties of the coordinates of certain special elements of [F
with respect to the basis {e, €, ..., €, 1} (see Proposition 8).

PROPOSITION 13. Let 6;, i € Z, be elements of [F such that:

(a) 67 = ,_+l (so, in particular, 6;., , = 0;);
(b) Efléq =—1; and
(c) SPl0:0;,i=0¢; forallieZ.

(d) 60 = 2/‘?;5 dkek with dke I]:p,
and define d,-+jp =d; forO<i<p—landjeZ. Then:
i) =7 _0 dy=1,
(i) X2¢Z dk+,dk+j—5,1for alli, je Z; and
(iii) ¢ = Ek Z08j—kb for0=j=p—1.

Proof. (i) Take traces (from I]_: to ) of both sides of equality (d).
(ii) By (a) and (d) we have 0_; = X220 di; €, SO

_ -1 p—1
0_;0_;= 2 Edk+1d1+/€’k€1

k=0 I=
Taking traces, we get 6; ; = 27— DY dk+,d1+J 6k 1 =2k=0 dk+,dk+J
(iii) By (ii), the circulatory matnx D (di_ili,j» 0=<i,j=p—1, is such
that DD = I; that is, D' = [d;_;]; ;. Equality (iii) follows immediately.
O
Given Q€ ®,, above the rational prime g, we have s VP =¢ = p@=b/p
mod Q. So s = pt” mod ¢q for some t € Z, and we can write formula (16) in
the form
=Y £, where S={xP: xe(Z/qZ)*}, (19)

xe§
for i = 0. Therefore
nip =i+1 mod p (20)

for ie Z. This implies that p is inert in @(n,). It is easy to verify that the
number no+29;+---+(p—1)9,_, is a root modulo p of the polynomial
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x? —x—1. Weidentify Z[ng, ny, ..., 1p—11/PZ[n0, M15 .-, 1p—1] With [F by iden-
tifying no+2n,+ - +(p—1)n,_, modulo p with «. Call 4; the congruence
class of 5;in . Since e = a ™! = «?~!—1, we have

1
€= — v —— = (fo+ 27+ +(p—Di,_2)P ' =1. (2
ot 20+ +(p—Di, No+21; pP—Di,_» (21)

With this identification, we can associate with each Q € ®@,,, in a unique way,

a vector (U, Uy, ..., U,_1) = (Up(Q), u(Q), ..., up_1(Q)) € (F,)?, the coordi-
nate vector of 7, with respect to the basis {eg, €, ..., €, 1} of F/[F,. That is,

p—1
o= 2 Ui€;. (22)
i=0

DErFINITION 3. Let ug, uy, ..., u,_ € [F,. We say that (uo, 4y, ..., 4,_;) corre-
sponds to a prime ideal Q € ®@,, above the rational prime g if equality (22)
holds, where the periods 5; are defined by (19) and #; is the congruence class
of n;in . If (ug, uy, ..., u,_;) corresponds to a prime ideal Q € ®@,,, we define
Uiy jp=U; for0<z<p land jeZ.

If (ug,uy, ..., up_y)€(F,)? corresponds to a prime ideal Qe @,, then by
Propositions 8 and 13 (w1th 7i; as in Definition 3 and 6; = ;) we have that
E U, =1,
k=0
p—1
> Ugyitgy;=0;; forall i,jeZ, and (23)
k=0
p—1

= 2 Ui_xi for 0=j=p-1
k=0

From (21), (22), and Proposition 12, we obtain the following formula for
the u; = u;(Q), 0<i< p—1, when Qe ®;:

N
T . 24
u; r[F/nfp(ﬁ0+2ﬁl+...+(p__1),7p_2> (24)

Now we study the multiplication table for the basis {eq, €}, ..., €,_1}. Since

ax=¢ 11 satlsﬁes o =a+1, we have o =a+k for k=0 and therefore

ke?*"' = e —¢P”". This yields
1 1
EOEk:?EO—EEk for 1=sk=<p-1. (25)
On the other hand, by Proposition 12 the trace etel+ e =,

Write €2 = xgeq+X €1+ - +xp,_1€,-1 wWith x; € [F,. Then by (25) we have
—e=c(e+eP+ -+

1 1 1 2
=<XO+1+“2—+‘+ p_1)6+(x1—1)ep+(x2-—i>ep

1 p—1
+---+(xp_1—-p_l)ep s
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hence xo = —1 and x; = 1/i for 1 <i < p—1. Therefore

-1
d=—cot3 1 (26)

i=1
Formulas (25) and (26) give the multiplication table of €g, ¢, ..., €,_;. In

matrix form, if

R
1 -1 0 0 0
1 0o -+ 0 0
ml — 2 2 .
1 g o -1 0
|51 0 0 0 —7
then
[ ey | [ e |
o [ |=m| ¢ (27)
| €p—1 | €p—1 |
Let §; and d; be as in Proposition 13. Then §, = 7' d;¢; and so
_ bl
6]\': E di—-kei for 0<k=p-1. (28)
i=0

We want to find the multiplication table of the normal basis {6y, ;, ..., 6,_]
of [ over [,. By (25), (26), and (28) we have

o p—1 p—1
b = > die; 25 dj_ye;
i=0  j=0
p—1p-1
= did; j—k€i€itj
i=0 j=0
p—1 2 p! p—1 p-1 ;
= > didi_x(§)? + X X didiyj_i(eo€))?
i=0 i=0 j=1
p-1 p-1 1 p" p-1 p-1 1 1 pf
=X didi—k<—€0+ > "61‘) +3 X didi+j—k(—.60"—.fj)
<0 =1 1 i=0 j=1 J o J
p—1 p-—1 1
——E did;_je;i+ EO 12 did;_y FEi+
1=
p—1p-1 - - 1
+E 2 ddt+j k 2 E J+j —k 5 €i+j
i=0 j=1 J i=0 j=1 J

p—
=2[ d;d;_ k+2 _(d—j i—j— k+ddl+j k—di_ jdl k)]ex
i=0

J_

So, by Proposition 13 (iii) we have 8,0, = E,=0 C, ,0,, where
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p—1

|
Ck,1 = _20 di—-![—didi—k"' El 7(di—jdi—j—k+didi+j—k—di-jdi-k)]
i= j=

p—1
= —_E d;id;_yd;_;

-1 1 2= 1
+El _] 'Eo(dt jd—j kdz 1+ddl+_] kdl i dl jdl kdz I)
j=1J i=
Therefore 630, = =/ . ,0, for 0 < k < p—1, where
p—1
Ck,1 = —_E didi_di—;

-1 1 2= 1
+El J %(d dt de-J I+ddi+j kdl 1~ ddt+j kd1+j 1) (29)
Jj= i=
Call Dk,-E dd, xdi—;. By (29), we have
-1 1 2= 1
Elck,l— Eleﬂ'E Zlez y
=0 _f 1 .I 1=0
-1 1 p—1
+El E le -Li E E le -hl—j
J' =
pP—
—2 Dy + E E(H'J)Dkl
j=1 J i=o

+E Ele -l E E(l"i'.])Dk —il

—1 —1 - plpl
=—21Dk,1+2_2Dk1+2 > Dy,
= j=1J I1=0 ;11=
P‘-l - -1 p-—1
+E Ele i Elszk = E”EDk il
=1J I= Jj=
pP—

=—[201Dk,1_6k,0 2 Ok, j = 2 [Dy,—1

p—1 p—1 p—1
=—2 didi_y 2 ldi_;—1= 2 did;_ 2 (I—i)d,—1

i=0 1=0 i=0 [=0
p—1 p—1
- E I.d,'di_.k+50,k E ld[—l.
i=0 =0
In particular, if (ug, u;, ..., u,_) € ([F,)? corresponds to a prime ideal Q € @,
above the rational prime g, and if 9; and q; ; are as in (19) and (17), then

p—1
Qg1 = — D Uil Ui
i=0
p—1 1 p—1
+ 2 = 2y U g Ui — Wy g Wiy ) (30)

j=t J i=0



On the p-Part of the Ideal Class Group of Q($,+¢;™") 337

mod p forO0<k,/<p—1, and

p—1 p—1
i {

p—1
D lay == iuju;_p+6gx > luyy—1mod p for 0<k=p-1. (31)
From formulas (18) and (31) we obtain

p—1/p-—1
i(Q)=— 2( > iuiui—l)lp—l—r mod p. (32)
I=1\i=1
We summarize some of these results and their relation to our study of
|e,(A)] in the next theorem.

THEOREM 4. Suppose that (ug, uy, ..., u,_1) € (F,)? corresponds to a prime
ideal Q € ®, above the rational prime q (see Definition 3). Then the ele-
ments u; satisfy E,f;é u,=1and Ef;& Ul ;=09 ; for 0<i=< p—1. With
the Gaussian periods v; defined by (19) and the integers a; ; defined by (17),

we have
p—1

A, = — 20 Willi_j Ui
i=0
p—1 p—1
+ X 7 E(uiui-—kui+j—l+uiui+j—kui—1—ufui+j—kui+j—l)
j=1J i=0

modp for0<k,l<p-—1, and

p—1 p—1 p—1/p—1
Q=Y X kP 'a,=— 2( > iuiui—-l)lp_l—r mod p,
k=1 I=1 I=1\i=1
where i(Q) = i,.(Q) is defined by (1) for a primitive root s modulo q such
that p = st? mod q for some teZ.

Let m=2. If p|i(Q) for all Q€ ®,, then the component e,(A) of the p-
Sylow subgroup A of the ideal class group of Q(},) is nontrivial. Further-
more (by Proposition 11), if p divides the Bernoulli number B, and p|i(Q)
Sor an arbitrarily chosen prime ideal Q € ®,, in each ideal class of A, then
e.(A) is nontrivial. If pX B, or p X i(Q) for some Qe ®, (or Qe ®), then
e (A) is trivial.

OBSERVATIONS. (1) The value of Theorem 4, and of the other theorems
in this section, relies on our ability to recognize whether or not a given
(ug, Uy, ..., up,_y) € (F,)?, with 2,’(’;5 u,=1 and E,f;(l) Uply ;= 0, j, COITE-
sponds to a prime ideal Q € @,. To enable such recognition we can use Prop-
ositions 8, 9, and 9’, together with the following fact (a consequence of for-
mulas (28) and (29), Proposition 7, and Definition 3): Let 8, = 2{’;01 Uj_ €y
O<k=p-—1,andlet

p—1

Ch,1 = — 20 Uildi_yUj_g
i=0
p=11 p=l
+ '21 7 ‘Eo(uiui—kqu—l""uiui+j—k“i—1—uiui+j—kui+j—1)
j= i=
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for 0<k,/=< p—1. Then (uo,ul, ..., Up_1) corresponds to a prime ideal
Qe ®,if and only if (8,, 0, ... »—1) corresponds to Q; that is, if and only if
(¢, jlo<i, j< p—1 corresponds to Q See Definitions 1 and 2.

(2) We can strengthen Theorem 4 as follows: If p|B, and p|i(Q) for an
arbitrarily chosen prime ideal Q € @, in each ideal class from a set of classes
that generate e,_,(A), then e,.(A) is nontrivial. In fact, by Proposition 11,
the functioni: ® —» Z/pZ, defined by i: Q — i(Q) mod p, is then a class func-
tion that induces a homomorphism /: {ideal class group of Q(¢,)} — Z/pZ.
This homomorphism is trivial on ideal classes of order nondivisible by p
and on ideal classes in e;(A) for 1 <= k< p—1, k # p—r, as follows easily
from Proposition 10. If 7 is also trivial on a set of generators of e,_,(A),
then [ is the zero function; that is, i(Q) = 0 mod p for all Q € ®. Therefore
e,(A) is nontrivial.

Theorem 4 and formula (31) motivate the study of the numbers E{’z"ol v u;_ g,
0=<k=p—1, where (ug, u, ..., u,_,) € (F,)? corresponds to some prime ideal
Q € @,. It turns out that these numbers have interesting properties based on
the relations 3223 u, =1 and P25 ity s = 0o,; for 0<i=< p—1. In par-
ticular we obtained the following result, which will prove to be useful in our
study of |e.(A)|.

ProrosiTION 14.  Let G be the group of all p X p circulatory orthogonal ma-
trices (i.e., matrices M = [d;_;]; ; such that MM t'=1T1), with entries in s
that we represent by their first rows (dy, d,, ..., d,_;). Equivalently, let G be
the group of all vectors (dy, d,, ...,d,_,) € (F )”such that 38_ dkdk+,-—60 ;
forO<i<p—1, where wedeﬁned,ﬂp d,-(for0<t<p—1 andjeZ), with
the operatlon (do, d,, ..., dp_1) *(dp, di, ...,dp 1) = (dg, df, ..., dp_ 1), where
di=%2F_ d d, ;- Then themapf G - (F )”deﬁnedbyf(do,dl, vy dp_1) =
(dg, di, ...,d,_y), whered| = > tididi_— 8,1 272 Ojd for0 < l<p 1,is
a homomorphzsm

The elements T3 id;d;_y— 8¢ x 7=, jd;€F,, 0<k < p—1, are invari-
ant by cyclic permutations of dy, d,, ..., d,_,, and we have Ef’z_o‘ idid;_; =
S tVididi, for0<k=<p—1.

Let G, be the subgroup of G of matrices of determinant 1. Equivalently,
let G, be the subgroup of G formed by the elements (dy, d;, ..., d,_,) such
that 34 - dk—l Then G =G, ®D(1)G,;.

Proof. Let (dy,d), ...,dp_1),(d}, di,...,d,_1) € G and let df' = 37~ d dj_;
forO0</=< p—1. Then
p—1

p—1
kEOkd,:’ K1 = Ed Ed Ekdk idi—i—j

p—1

1 pei
A_Y ; d; E(l+k)dkdk+1 I—j
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- - p-1 p—1

20 2 [ (2 d,zd,:+,-_,_,-)+(k20kd,:d,z+,-_,-,«)]
i= j=0 = =
p—l - p—1 p-1

S 2( > d,-d,-+,-) > kdydi_,_;
z=0 j=0 i=0 k=0
= —1 p—1
= > idid;_;+ 2 8o, j X kdidi—i—;

i=0 j=0 k=0
p—1

kE kdydy_+ E kdidj_,.

This proves that f is a homomorphism.

We have f(0,1,0,...,0) =(0,0,...,0). Since f is a homomorphism, this
proves that the elements E{’;OI id;d;_y, 0 < k < p—1, are invariant by cyclic
permutations of the d;. Also

p—1 p—1 p—1 p—1 p—1
2 ididi_y= 2 (i+k)didi = 3 ididisp+k 2 didiy = 2 ididi
i=0 i=0 i=0 i=0 i=0
forO0<k=p-1.

Finally, note that if M€ G then det(M) = +1. Hence G=G,®(—1)G,. Also,
the determinant of a mrculatory pXpmatrix M =[d;_;]; ; (sublndlces mod-
ulo p) over [, is P dk So M e G, if and only if Me G and 2§ dk =1.

O
The following nontrivial solution for the congruences ¥7_)d; =1 and
2 R—0didryi= 8¢ ;mod p (0=<i= p—1) was shown to me by R. Kucera:
dy=1and d; =i for 1 =i=< p—1. Kucera also calculated all the solutions
for this system of congruences for p =5 and p =7, and a few solutions for
p = 11. A study of the reason why Kucera’s solution works leads to the fol-
lowing generalization.

ProposiTioN 15. Let k be an odd number, 1 <=k <(p—3)/2 and ce Z.
Then the system of congruences S?-3d,=1mod p and P2} didi,i = 80,
mod p (for 0 <i< p—1) admits the solution dy =1 and d; = (ci)* for 1 <
i=p—1.

Proof. With the values above we have 377 d? = 14+ ¢2* P71 i** =1 mod
p and
p—1 p—1
Y didiyy = () = () + 3 () (c(i+1)*
i=0

i=0

p-l k
— 2k ke k— _ 2k _ . 0
cot Y i+ (p_l_k)(cl) 0 mod p

i=0

We now show a way to verify if the component e,(A) of the p-part of the
ideal class group of Q({;,) is trivial for r evenand 2 <r < (p—1)/2.
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THEOREM 5. Let k be an odd number, 1 < k < (p—3)/2, and let ¢ be an
integer nondivisible by p. Suppose that the vector (ug, uy, ..., u,_1) € (F,)?,
where uy=1and u; = (ci)* mod p for | <i<p—1(ora cyclzc permutatton
of this vector), corresponds to a prime ideal Q € ®, (see Definition 3 and
Proposition 15). Then the component e, |(A) of the p-part of the ideal class
group of Q(¢,) is trivial.

Proof. For 0 </< p—1 we have

p—1

S iuju = —lu_;+c** E itk (i+ ¥
i=0 i=0
— ckjk+1 4 o2k i k+1 E( >-j1k—j
i=0 Jj=0
k
_ kpk+1_ 2k 2k+1 _ . kpk+1
"7 — / =c"l d p.
c c (p—2—k> c mod p

Therefore, by Theorem 4,

p—1 p—1
i(Q) =i (Q) = —c* 120 [kHyp=1=-r=_ck IE 1P*%=" mod p.
= =0

Hence i (Q)=c*# 0mod pifr=k+1,and i (Q)=0mod p if r # k+1. In
particular, by Theorem 4, e, (A) is trivial. O

We can use the idea of Hilbert’s Theorem 90 to characterize the p X p circu-
latory orthogonal matrices of determinant 1 with entries in [F,. Denote by G,
the group of all such matrices, as in Proposition 14.

PROPOSITION 16. M e G, if and only if M = B'B~! for some invertible cir-
culatory matrix B.

Proof. Let Me G,. Then B = I+ M'is invertible and circulatory, and MB =
B'. Conversely, if B is invertible and circulatory and M = B‘B~!, then M is
circulatory, MM" = I, and det(M) = 1. O

Let R be the p X p matrix [§;,;, ;]; j; that is,

01 0 ... 0
0O 01 ... 0
R=|: : : - :|. (33)
0 0 0 ... 1
(1 00 ... 0]

The DX p cuculatory matrices with entries in [, are precisely the matrices
=" ka with b, €F,. Note that for such a matrix B we have that
=(b0+b1 b, 1)1 and so B™'=(bo+by+ - +b, ) 'BP7!if
b0+b1+"'+bp._| #0.
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If B=R—al where aelF,— (0,1}, then
BB '=(1—-a) Y (RP'—al)(R—al)?!
=(1+a)a?2I+(1+a)a’ >R+ ---

+(1+a)aR? 3+ (1+a)RP~24+RP],
Therefore, if

M,=I+1+a)a’ >R+ (1+a)a?3R*+.--+(1+a)RP! (34)
then M, e G, for aeF,—{0, 1}.
ProposiTiON 17. Let aecF—{0,1,—1}, let M, be as in (34), and let f:
G — (F,)? be the homomorphism defined in Proposition 14. Then

1
a—1

f(Ma):( (a"“’+a’—60,,(a+1)))

O<i=<p-1

Proof. Call dy=1 and d; = (1+a)a” " for 1<i=< p—1. Then f(M,)=
(do, ..., dp_y) where, for0=</=< p—1,

p—1 p—1 |
di= Y idid;_;—d¢,; 2 jd; '
i=0 j=0
-1 . .
=3 jla+1)a? a4+ 1)a' "+ la+1)aP !
Jj=1
pA-t i i a+1
+ (+j)a+D)aP " a+1)a?™! T—b0.1——
j=1 -

a+l1
a—1

" -1 . p—1 .
=(a+D|(a+1)a’! Elja"21+la"+(a+l)a’ ; lja‘zf]—%,,
L. _I= j= +

[ T AR L S Ly a+l

=(a+D)|(1—a%)a'"" > ja—la' '+ (a+1)a' ) ja~ f}—fio,xa 1

| j=1 j=1 -
1 _ a+1
=—a—_—_——1~(a1 ’+a1)—60,,a_1.

Here we have used the identity
! I+1
— - -X
X42X2 4+ (-1 X" = (X DIX (X ) O

(X-1)?

If, in particular, the matrix M, defined in (34) (or, better, if its first row)
corresponds to a prime ideal Q € ®,, then the index i(Q) is essentially a
Mirimanoff polynomial in a, as is shown in the next theorem.

THEOREM 6. Suppose that the vector (ug, uy, ..., u,_y) € ([F,)? (or a cyciic
permutation of it) corresponds to a prime ideal Q € ®, (see Definition 3),
where, forsomeaeF,—{0,1},uo=1andu; = (a+1)a” "' "' fori<i<p-1.
Then
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p—1
2a S 177 "q! mod p.
—a oy

Q) = 1

Proof. By (32) and Proposition 17, if ae F,— {0, 1, —1} we have

p
_.__E lp——l—r (ap I+a1)_
=1 a
1 (S 1— ! I—r 1
E P~ TgP~ ¢ E 1P~ ""a
1— =1 =1
2

=1 IE 17~1="g" mod p.

The result is trivial if a = —1. O

By using the logarithmic derivative it can be shown that, for a e Z,

p—1

S 1P g =0mod p

=1
if and only if TI2Z}(5f —a)*"™' = «” mod p for some & € @(S,,). This sug-
gests that Theorem 6 can be generalized to give a criterion for the divisibility
by p of the indices i(Q), for all Q € @,, in the form of an explicit reciprocity
law. In order to obtain such a criterion we need the following proposition.

ProrosiTION 18. Let R be as in (33), and let doI+d\R+---+d,_|RP” !
be m S (wzth d;eF,). Call D(X) =X dX' Then XD'(X)/D(X) =
(Ep id.d;_ ,)X’ mod X?P—1. Thatzs

p—1 -1
RD'(R)(D(R))™" = E( Y id;d;_ ,)R’
1=0\i=0
Proof. Since (D(R))™'=D(R)' = d RJ (subindices modulo p), and

smce X?—1 is the minimal polynomlal of R, we have that (D(X))'=
> dp ;X" mod XP—1. Therefore

XD’(X) p—1 -1
= X J
" D(X) i§0 td E o-i%
p—1/p—1
= 2( D id,-d,-_,)X’ mod X7 —1. O
I1=0\i=0

Now we can prove the main result of this section, which must be combined
with Theorem 4, Observation 1 (following Theorem 4), and Proposition 16.

THEOREM 7. Let B(X) = by+ b X+ - +bp 1X?~'e Z[X] such that
B(1) #0 mod p. erte B(X"~ 1)/B(X) =3P u,X' mod (p, X?P—1) with
u;e Z (hence 377} o u;R" modulo p belongs to G,). Suppose that the vector
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(ug, Uy, ..., U,_y) modulo p corresponds to a prime ideal Q € @, (see Defini-
tion 3). Then i(Q) =0 mod p (i.e. TIZZ1(1— 5% =+? mod Q for some
v € Q(Sp)) if and only if I12Z) B({k)* ™' = a? mod p for some o€ Q)
This happens if and only if E,‘f;ll k" kB'($X)/B(5K) = 0 mod p.

Proof. (We identify the integers u; with their congruence classes modulo p.)

Call U(X) =X -0 u; X". Since R™! = R’ we have, by Proposition 16, that

U(R) = B(R)'/B(R) € G,. So, by Proposition 18, we have XU'(X)/U(X) =
;”;01(2{’;0' iu;u;_) X' mod X?—1. On the other hand,

XU(X) _ X&(B(X')/B(X))

U(X) B(X~1)/B(X)
_ Xgx(BX™) _ XF%(B(X))
B(X™) B(X)

B(X™ B X

=-Xx"! - .
B(X™ B(X)
Therefore
25 gk BXD ISk BT A ey B
k=1 B(X% & B(X~%) 2 B(Xk)
p—1 U’(Xk) p—1 p—l(p—l )
= k' = k ivu;_ ) XK
k§=:l U(X*) kgl "120 Eo el
p—

1 p—1 p—1
=S kx5S 1P S juu;_ mod XP—1.
k=1 1=0 i=0

Hence, by (32),

P ek BXH

2 k§1 KX B(Xk)

Since (&, —1)P 7' IZRZ; k" ¢k, it follows from formula (35) that i(Q) = 0

mod p if and only if =) k"X (B'(§5)/B(¢¥)) = 0 mod (¢,—1)?~", if and
only if $FZ) k"¢5(B'(55)/B(45)) = 0 mod p.

The fact that TT?Z} B({,ﬁ‘)k"' = «” mod p for some o € Q(¢,) if and only

if 77| k"X (B'($F)/B(55)) =0 mod p can be easily proved by using the

logarithmic derivative.

-1
= i(Q) pz k"X* mod (p, XP—1). (35
k=1
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