Essentially Normal Multiplication
Operators on the Dirichlet Space

JAROSLAW LECH

1. Introduction

Let U be the open unit disk in the complex plane C. The Dirichlet space D
is the Hilbert space of analytic functions f(z) = X 5-¢ a,z" on U such that
2 a2 4 < 2
F@=0 and |fIp=[ |S@P L =3 nla,P <<,
U n=1
where dA denotes the usual area measure.

An analytic function ¢ on U is called a multiplier of D if oD C D. The set
of all multipliers of D will be denoted by M (D). Each multiplier generates
a bounded multiplication operator M, on D defined by M,, f = ¢f for fe D.

Multiplication operators on D are almost never normal (they are normal
only for constant multipliers). In [AS], Axler and Shields asked whether the
self-commutator M_M,— M, M is compact for ¢ € M(D); that is, whether
multiplication operators on D are normal in the Calkin algebra. A Hil-
bert space operator whose self-commutator is compact is called essentially
normal.

This paper answers negatively the question of Axler and Shields. An ex-
ample of a multiplication operator that is not essentially normal is given in
Section 3. Section 2 contains a description of essentially normal multipliers
that is used throughout the rest of the paper.

A few more definitions are in order. The harmonic Dirichlet space Dy, is
the Hilbert space of functions f on the unit circle 7 for which

1713, =1/ OP+ Z |n|lf(m)|? <o,

n=-—oo

where (f(n)) is the sequence of Fourier coefficients of f. It can be shown that

1715, = L F@P+ [ [vPLrIp 42
U

_ |f(0)|2+J;21rL27r
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where P[f] denotes the Poisson integral of f. (The first of these equali-
ties follows from an easy computation; for the proof of the second see [Do,
pp. 307-311].) Since each function in D can be identified with its boundary
values, we may think of D as being a closed subspace of D,. This allows us
to consider the projection map P: D, — D.

The Bergman space B is the Hilbert space of all analytic functions f(z) =
Sr=0@,2" on U such that

171 = 171

It is well known that for the Bergman and Hardy spaces the set of all mul-
tipliers is equal to H*(U) (the set of all bounded analytic functions on U).
Nice characterizations of the multipliers that generate essentially normal
multiplication operators have been found for both of these spaces (see [Ax,
Prop. 3 &« Thm. 7] for the Bergman space case and [Sa, Chaps. 4, 5, & 9] for
the Hardy space case). In particular, it can be shown that every multiplication
operator by a function in D+ C on the Bergman and Hardy spaces does have
a compact self-commutator. It is also known that M(D) & H*(U) N (D + C)
(see [Ta, Thm. 9]). An easy application of the product rule shows that

peM(D) ifandonlyif o€ H*(U) and ¢'D C B.

2dA °° I“nlz
n= 0n+1

< 00

Hence (using the closed graph theorem) if ¢ € M(D) then the operator M,
D — B of multiplication by ¢’ is bounded. It turns out that the essential nor-
mality of M,, is equivalent to the compactness of M,,.. This is the main result
of the next section. The main fact behind the conversion of our problem to
the one about M, is the existence of the natural unitary operator R: D — B
that takes f to f".

2. Multipliers with Compact Self-Commutators

We begin by showing that if ¢ is a multiplier of D, then ¢ multiplies D into
the harmonic Dirichlet space. As usual, ||¢||o £ sup;cy|e(z)|.

LEMMA 1. If oe M(D) and fe D, then gfe D,,.

Proof. By assumption, ¢ € M(D) 50 ||¢|l < . We have
lo(e®) f(e?) — p(e®) f(e')|?
< 2|p(e?) f(e®) — p(e®) f(e%)|* +2|p(eP) f(et) — p(e) f(e)?
<2|l¢|2]f(e®) — fle®)P+2|(p(e”) —p(e™)) fe™)?
< 2| e[| fe”®) - fle™®)|?
+2(2[l 3] f(e™) — f(e™®)*+2|0(e®)f(e) — p(e) f(e™)]?)
=< 6|le|5| f(e?) = f(e®)*+4|o(e®) fe?) —p(e™) f(e®)],
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and hence
f wa | p(e)f(e) —p(e™)f(e) |* dbf ds
2r p27) ey — f(e') |2 df df
s6||<,o||§,f0 fo o0 ok 2r 2w
2= 027 p(e”)f(e”) —p(e™®)f(e™) |* db d
+4f0 fo ol _oit 27 21

Since ¢f and f are in D, both integrals on the right-hand side are finite,
and hence ||&f | p, < 0. O

For ¢ € M(D), Lemma 1 allows us to define an operator 7;: DD by T; f =
P(&f) where P is the projection map from D, to D.

LEMMA 2. Let o € M(D).

(@) The operator T is unitarily equivalent to the adjoint of multiplica-
tion by ¢ on B.

(b) M;—T,=M}.R, where M.: D— B is multiplication by ¢’ and R:
D — B is a unitary operator.

Proof. (a) Let
2
e,(z) = -j_ﬁ and eB(z)=+vnz""! for zeU, n=1,2,....
It is easy to check that (e,),;—=; form an orthonormal basis in D and that
(eBy>_, form an orthonormal basis in B. Let R be the unitary operator from
D to B which takes f to f*, and let N, denote multiplication by ¢ on B,
Finally let ¢, )p and {, )5 be the inner products in D and B (respectively)
and let o =X _ga,z"€ M(D).
Direct computation shows that

ma, _p,

if m<n,
(T;e,, emdp ={Pse,, endp=< Vnvm (1)
0 if m>n,
and
mén—m .
—— if m=<n,
<R*N;Ren’ em)p ={Re,, pRe,,)p = <er?’ Soerg)B = ‘/’_”_\/ﬁ
0 if m> n.
Hence
T, = R*N/R. )

(b) Part (a) gives
<(M:—7;3)f’ g)D = (f) Sog)D_ (f,: ‘Pg’>B = (f’s ¢,g)B = (M:'Rf: g)D

as desired. O
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We need the following lemma, whose proof can be found in [AS, Thm. 9].

LEmMMA 3. Let ¢ be a holomorphic function on U and let M,,: be the oper-
ator of multiplication by ¢’.

(@) If M, D— B is bounded then

) 1 172
sup IqD (Z)I(log T:TZ—I?) (1 —lzlz) < "M(pr”.

|z|<1

(b) If M,.: D— B is compact then

1/2
Iso'(z)|<log ) (1-|z]»—>0 as |z|-1.

1-|z|?
The proof of Theorem 1 uses the following form of Fuglede’s theorem: Let
a, b, c be elements of some C*-algebra. If a and b are normal and ac = cb
then a*c = cb*. (For a reference see [Ru, Thms. 12.16 & 12.41].)

Now we are ready to prove the main result of this section.

THEOREM 1. Let o € M(D). Then M, is essentially normal if and only if

M,.: D— B is compact.

Proof. Since ¢ € M(D), M,.: D— B is bounded; by Lemma 3(a),
l¢’(2)|(1—|2[>)—0 as |z|-1.

Tﬁis, as was shown by Axler [Ax, Prop. 3 & Thm. 7], implies that the oper-
ator N, of multiplication by ¢ on B is essentially normal.

Sufficiency: By Lemma 2(b), M,—T; = R*M,.; hence our assumption,
Lemma 2(a), and the remark made above imply that M, is a compact per-
turbation of an essentially normal operator.

Necessity: Denote K = R*M,,., where R is the unitary operator taking f
to f’. By Lemma 2(b),

M;—-T;=K* 3)
and
M,T} =K. @
We clearly have
N, M, =M, M,,
and thus ’
R7'N,RR'M, =R'M_ M, (5)
Since R ™! = R*, (2) and (5) imply that
T;K=KM,,.

By assumption, Lemma 2(a), and the remark made at the beginning of
the proof, both T; and M, are normal in the Calkin algebra. Thus, using
Fuglede’s theorem,
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T;K=KM; and K'T;=M_,K"* inthe Calkin algebra. (6)
Equations (3), (4), and (6) imply that in the Calkin algebra
0=M;M,—M,M;
= (T +K*NTZ3+K)— (T + K)(T; +K*)
=\(7;7:5*—-7}*7}0)J+(YZ;K—KT;)+(K*T;—T},*K*)—}-(K*K—KK*)

0
= K(M}—T;) + (M, — T7)K*+ (K*K — KK*)
L v J v J
K* K
= KK*+K*K.

Since both KK* and K*K are positive, they must be 0 in the Calkin algebra;
hence K is compact, which forces M. to be compact. O

REMARK. Brown, Douglas, and Fillmore [BDF] studied essentially nor-
mal operators and proved the following: If S is essentially normal and if
ind(S—A7Z) <0 for all A outside the essential spectrum of S, then S is uni-
tarily equivalent to a compact perturbation of a subnormal operator. Here
“ind” denotes the Fredholm index.

Notice that M,—AI=M,_), has trivial kernel (if ¢ is nonconstant), so
ind(M,_,;) <0 for all A not in the essential spectrum of M,. Theorem 1
states that if M, is essentially normal then M, is compact, and since M, =
R*N,R+R*M ., M, is unitarily equivalent to a compact perturbation of the
multiplication on B—one of the main examples of subnormal operators.
Thus Theorem 1 gives an explicit example of the phenomena discovered by
Brown, Douglas, and Fillmore.

In [St, Thms. 1.1 & 2.3], Stegenga found a description of all analytic ¢ such
that ¢’D C B in terms of boundary behavior of ¢. His result says that M.
D — B is bounded if and only if

f |¢'| d4 = O(Cap(U 1)),
Us())

where (;) is any finite collection of disjoint subarcs on the circle, S([)
denotes the “square” in the disc with side 7, and Cap denotes the logarithmic
capacity.

In [RW, Cor. 3.1], Rochberg and Wu proved that compactness of M, is
equivalent to a “little-o” version of the Stegenga condition. This, together
with Theorem 1, yields the following corollary.

CoroLLARY 1. Let o € M(D). The operator M, is essentially normal if and
only if

f |¢’|* dA = o(Cap(U 1)),
Us)
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where (I;) is a finite collection of disjoint subarcs on the circle and S(I) is
the “square” in the disc with side 1.

3. Multipliers with Noncompact Self-Commutators

In this section we will show that there are multipliers of D for which the cor-
responding multiplication operator is not essentially normal. By Theorem 1,
it is enough to construct ¢ € M(D) such that the operator M,: D— B of
multiplication by ¢’ is not compact. We will do this in two steps. Theorem 2
shows the existence of a function ¢ holomorphic on U, with M,.: D—B
bounded and

1 172
ISDI(Z)I(log I—-ZW) (1“’2'2)‘/’0 as |ZI“’1

For such a ¢, the operator M, is not compact (see Lemma 3). A method of
making ¢ bounded without losing any of its properties is given by Corol-
lary 2. As a result, we will get a multiplier ¢ with noncompact M.

The extended Dirichlet space O is the Hilbert space of all analytic func-
tions f(z) = X ,—0a,2" on U such that

’ 2 dA 0
| lr@r S <.

The norm on D is defined by

(o]

27
1715 = f |f(e™)? §—9+ f @R = 3 (nt)]a,l,
0 T Ju T n=0

where df denotes the usual Lebesgue measure and f(e™) is the nontangential
limit of f (d@ almost everywhere). It is clear that O and D differ only by one
dimension and that the norm || ||, restricted to D is equivalent to || || p. Thus,
the operator M- from D to B is compact (bounded) if and only if it is com-
pact (bounded) as an operator from D to B. For technical reasons, the next
theorem uses O instead of D.

THEOREM 2. Let 0 < c < 1. Then there exists ¢ analytic in U, as well as a
sequence (z,) C U converging to 1, such that:
(1) |@(z)|(log(1/(1—|z,|*))"*(1 =|z4|*) = ¢ as n — o0; and
(2) | M ||lo-p =<1, where | |- p denotes the norm of M, as a multipli-
cation by ¢’ from D to B.

We will need a few more lemmas before proving Theorem 2. We will adopt
the following notation:

1 1 1
=—1 d Ky(2)=—->.
k=gl ad A= 0"5

It is easy to check that
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JwW)=<{f, kg forall feD
and

Jw)=<{f,K,)s forall feB.

The functions k,, and K|, are called the reproducing kernels for D and
B, respectively. It is not hard to see that, for any finite set of distinct points
Wi, Wy, ..., W, in U, the corresponding families (k) and (K,,) are linearly
independent and that the norms of k,, and K,, are

l&wlln = (& w)"? = L (1og — v
" " |w] 1—|w|?

and
1

I=|wp”

1Kulls = (K, (w))'"? =

Notice that if
1Kz, I8
14z, llo

for some sequence (z,)) C U converging to 1, then condition 1 of the theorem
is clearly satisfied. Moreover, if M,.: D — B is bounded then

<M€:'Kw, o =LK, ¢’ =<o'f, Ky\)p = o' (W) f(W) = o' (W), kw)o
='Wk, o
for all fe D, and hence

|¢I(Zn)| =c

M}K, = o' (Wk,.

This suggests that we may specify the values of ¢’ using the operator M.
More precisely, we will construct a sequence (z,,) C U converging to 1 and an
operator A°: B— D with |A°|| <1 and

XNK, = c"—KZ—""—Bkz forn=1,2,3,...
kgl
in such a way that A° = M for some ¢. This will give us a function ¢ and a
sequence (z,) with all the required properties. The idea just described, as
well as many techniques used in the proof of Theorem 2, come from the pre-
print of Marshall and Sundberg {MS].
First we prove the following lemma.

LEMMA 4. Let 0 <c<1. Then there exists a sequence (z,) C U such that
2, — 1 and the operators A5, : span(Ky,, ..., K; ) = span(ky,, ..., k; ) defined by

K
ASK, = cl—li’llﬁkzi fori=1,2,...,n
%2 llo
satisfy ||AS,|| <1 for all n.

Proof. Notice that if the families (f;)7-, C B and (g;)’-; C D are linearly
independent, and if
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L: span( fy, f2, ..., Ju) = Span(gy, €2, ..+, &n)
is defined by Lf; = a;g;, then
IL]| =<1

- |{(Eea),=

n n n n
<2 b; fi, E )B“< D biaigi, X biaigi> =0 forall ()]-;CC
= i=1 D

i=1 i=1

2
for all (b;)}-,CC

3

n n
e 21 _EIKJ';,JS')B‘“aiﬁj(gi, go)bib;=0 for all (b)j=; CC.
— J=

.

Hence
ILI|=1 e (fi, f;Y8—aid;{8i» 8D}, j=1,2,..., n IS POsitive semidefinite,  (7)

and all that remains is to find a sequence (z,) C U such that z,,— 1 and the
matrices

2 ”Kz~"B "sz"B }
c L Ckyy ko)
lkzllo kzllo ® i j=1,2,.n

(Kz's Kz->B 2 <kz-a kz->:D
— K, B"K ' B( i J —C i J
{" lslKe o\ TR ¢ Thalolkals /i jmrs

are positive semidefinite for all n =1, 2, ... . Because the matrix

UKzl sl K830, j=1,2, ...,

is a Gramian (hence positive semidefinite) and since, by Schur’s lemma [HJ,
Thm. 7.5.3], the entry-by-entry product of positive semidefinite matrices is
positive semidefinite, it will be enough to construct a sequence (z,,) C U such
that z,, — 1 and the matrices

{ (Kz;,sz)B 2 <kz,-skzj>:0 }
—C
1Kz Bl KMz kzllollkzllo )i =12,

are positive semidefinite foralln=1,2,3, ....
We shall define inductively a sequence (z,) for which1—-1/n < z,, <1 and

<Kz~s Kz -)B 2 (kz ’ kz~):D I
d t{ A —c L~/ >0 (9)
"Kz,-”B”Kz,"B ” kz,—"ﬁD"kzj":D ihj=1,2

for all n. This implies that the matrices of type (8) are positive semidefinite
for all n by standard linear algebra [HJ, Thm. 7.2.5].
For n =1, let z, be any real number between 0 and 1. Then a 1 X1 matrix
of type (8) consists of the single entry 1—c?, and (9) is clearly satisfied.
"Suppose we construct 2y, ..., Zy_; such that 1 —1/i < z; < 1 and condition
(9) is satisfied for eachn =1, 2, ..., N—1. For any real z, we can expand by
minors along the last column to obtain

{(Kz,s Kz,-)B -

8)
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d t{ <Kz"KZI)B _c2 (kz;'!ij)fD }
1K NslKo e Thzllolksllo dijra,... N
=(1—c2)det{ (Ko, Kep _ 2 Sk ke

c
1Kz |8l Kzl 5 "kzillﬁ)”kzj"ﬁ)}i,j=l,2,...,N—-l
where A is the sum of terms each of which contains a factor
(Kz,-, KzN)B a2 (kz,-s kz~>3)
IKlslKalls Nk llol&eyllo
_(1-z)Ha-z8) , log(1/(1-2z,zy))

C
(1—z:20)? og 1 172 oy 1 172
127 *1-22

forsomei=1,2,..., N—1. Each of those factors can be made as small as we
want by making z, sufficiently close to 1, so there is a zy such that 1 —1/N <
Zy<land

+A,

(Kz'-, KZ})B —C2 (kZ," kZJ>:D }
1Kzl Kzl lkzllollikzlls Jij=1,2,...n-1
This implies (9) for n = N. . O

4| < (1-c?) det{

The next lemma helps us to extend the operators AS, and will play a crucial
role in the proof of Theorem 2.

LEMMAS. Let 2,23, ..., 2, be any sequence of complex numbers in U. Sup-
pose the operator

§: span(Ky, Kz,, ..., Kz, ) = span(ky, kz,, ..., kz ),

defined by SK, =rk;, for i=1,2,...,n and some collection of complex
numbers ry, ry, ..., ry, satisfies |S||< 1. Then for each ze U there exists a
complex number r for which the operator

Srispan(K;, K, ..., K, ,K,;)— span(kz,, kz,, ..., kz,, K;),
defined by S,K,, = rik;, fori=1,...,n and S,K, = rk,, satisfies ||S,|| < 1.

Proof. Fix zeU. The map ¢ —||S,|| is continuous on C and goes to « as
|¢| = oo. Thus there exists r € C such that

S,|| = inf || S,|l.
157 = inf /[
Denote by HZ the subspace of span(K;, K,, ..., K;,, K;) orthogonal to K,
and by H? the subspace of span(ky,, kz,, ..., k; , k;) orthogonal to k,. Let
P8 span(K,,K,,, ..., K, ,K,)— HP,
P®:span(ky, ke, ..es ke, k) = HP

be the orthogonal projections, K, = P?K, fori=1,2,...,n and &, = Pk,
fori=1,2,...,n. It is easy to see that
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5 (K, K2)p

K, =K, — K, and k, =k, ——2> "k

(Kzs Kz)B (kzy kz)‘.D
Let S: HZ - H? be defined by
SK, =rik,, for i=1,2,...,n.

Using the same argument as in [MS, Lemma 9], one can show that if |S| < 1
and ||S| =1 then there exists an r such that ||S,|| < 1. The ideas behind the
proof of this claim are due to Agler [Ag]. Thus we need only prove that
S|l = 1. By (7), ||S|| = 1if and only if the matrix

KK, K yp—rifkkz, kododij=1.2, .0

is positive semidefinite.
Set zo = z. For simplicity we will use the following notation:

K,‘j = (Kzi, KZJ-)B and k,'j = <kZi’ kzl)g) for l,j = O, 1, 2, ..oy H.
An easy computation shows that
(kz,-; KAZ_,'>B - rifj<lez,-’ Ez,)ﬁ)

KioK; kiok;
kiolzj0>+ kiok;o (KOOKij _ KEOI_?jO)
kookij Koo \ kookij  kiokjo
Because || S| <1, (7) implies that

=K;j—

= (KU —I’;I-'jk,'j)(l -

{Kij—riFikij}i j=1,2,...,n

is positive semidefinite. Marshall and Sundberg ([MS, Lemmas 10 & 11], see
also [Qu, Cor. 5.3]) have shown that

{1 B ki()iéjo}
kookij )i, j=1,2,...,n

is positive semidefinite. The matrix

{kiOEjO}
Koo Jij=1,2,....n

is a Gramian and hence positive semidefinite, so by Schur’s lemma we need
only prove that

{KOOKU _ KEOI_?J'O}
kookij  kioKjo )i,j=1,2,...n

is positive semidefinite.
Let
1

—1
w(z) = ((1—z2)-;— log —1—_—z>
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and w;; = w(z;z;) for all i, j =0, 1, ..., n. Clearly
_ KnK:: K:oK:
J

so we need to show that

{Woo Wi —WioWjoli, j=1,2,....n
is positive semidefinite.

Write w(z) =X ;-0 a,z" (notice that w has a removable singularity at 0,
which is the main reason for using O instead of D in the statement of the
theorem). One can easily prove that a,> 0 for all n =0,1, 2, ... (see [MS,
pp. 22-23]). Using the argument from the proof of [MS, Lemma 10], we get

o0
_ —k__ skyeok_ ok _
Woo Wi — WioWjo = Woo 2 ax(Zi —Z0)(2/ —20) — (Woo — Wio) (Woo — Wjo)-
k=0

Thus, for any complex numbers by, b,, ..., b,,

o0 n k 2 n 2
=Woo 2 x| 2 bi(Zi —Z5)| — |2 bi(Woo—Wio)
k=0 i=1 i=1
) n ‘ ‘ 2 n ) P . 2
=Woo 2 x| 2 bi(Zi—Z5)| — |2 bi 20 axz5(ZF —Z0)| -
k=0 |i=1 i=1 k=0
\ Y J \ ~ J
Sl Sz

Notice that, since @, >0 foralln=0,1,2,..., both S, and S, are nonneg-
ative and by Holder’s inequality

oo n 2
172 k[ 172 —k =

Sy =| X (ax ZO)(ak > bi(z; —20))
i 2~ < k 2

< Y @|zo|™ X a| X bi(ZF—Z0)

o n X B 2
= woo X ax| 2 bi(ZF—Z5)| =S
k=0 |i=1
Hence S;— S, = 0, as needed. ]

We now prove Theorem 2.

Proof of Theorem 2. Fix ce(0,1). Let (z,,) be a sequence of complex num-
bers promised by Lemma 4. Fix n and consider the operator A, defined as in
Lemma 4. Let {z,,1,2,42,2n+3, ---} be any countable dense set in the disk.
Lemma § allows us to extend AS, to an operator

Lg;: span(Kzl, cesy Kzn, KZ;,+]’ Kz;+2, --.)'—) Span(kzl, ooy kzn, kz"H_l, kz;l+2’ .-.)

in such a way that
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LYK, = " z'"”k for i=1,2,3,...,n
“ Tl
LKy =Tk for i=n+1,n+2,n+3, ...,
and
L5 = 1.

Because span(Xy, K;,, ..., K;,, Kz, , Kz, ,,...) is dense in B, Lj, extends by
continuity to a bounded operator from B to . Moreover, for each zeU,
L, K, = rk, with r;, = c(|K;,|| g/ ||k, || ) k2, for i =1,2,3, .... Define y,(z) =

r,. Then |
(Lfl*f)(z) = (L(l:‘l*f’ Kz)B = (f’ 'lbn(z)kz)S) = llln(Z)f(Z)

for each fe D and z e U. Thus L{* is a multiplication by y,,. In particular y,,
is analytic, and if ¢, denotes any antiderivative of y, then L = M. The
norms of L$* are uniformly bounded by 1, so there is a subsequence of (L$*)
that converges weak* to some operator L*. Clearly there exists ¢ analytic
in U with L°* = M,,.. Thus |M |- p=<1and

(LA
%zl

Now we can answer the question discussed in the introduction.

le’(z,)| = ¢ for i=1,2,3,.... O

COROLLARY 2. There exists a function y € M(D) such that M is not essen-
tially normal.

Proof. Let ce(0,1) and let ¢ be the function constructed in Theorem 2.
Then M,,.: D— B is bounded,

1 172
lgo’(zn)I(log—z) (1—|z4>)>c as n—o
1—|z,]|

for some sequence (z,) C U converging to 1, and ¢’(z,) — . Let K be a com-
pact set of positive area measure contained in the complement of ¢(U) (there
is one since ¢ € D). By the result of Uy [Uy, Thm. 4.1], there exists a func-
tion g analytic and bounded on the complement of K with respect to the ex-
tended plane and such that g’is bounded and g’(c0) > 0. Let = goe. Then
y is bounded, M. is bounded, and

1/2
]1//’(zn)|<log |1 |2) (1—|z,]>)#»0 as |z,|—1.
n
Thus ¥ € M(D) and M. is not compact. O

Axler and Shields [AS] showed that M(D) is nonseparable in the operator
norm. Let W be the space of all holomorphic functions ¢ in U such that
M,.: D — B is bounded with the operator norm. It is no surprise that W also
turns out to be nonseparable.
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COROLLARY 3. The space W is nonseparable.

Proof. Fix ce(0,1). A minor modification of Lemma 4 and the proof of
Theorem 2 lead to a sequence (z,) in the unit disc with |z,|>1/2 and z,— 1
such that, for any sequence (a,) consisting of 1s and —1s, there exists a func-
tion ¢ € W satisfying
1Kz, |5
¢'(2p) = cap7—5—.
! "z lo
Let (a,) and (b,) be any two different sequences of 1s and —1s, and let ¢, ¢
be the corresponding functions in W with

| Kz, ll5
%z, |

42,0

¢'(z,) = ca, and ¥’(z,) = cb,

Then, by Lemma 3,
1 1/2
1M, — My || = sup|e’(z,) —tﬁ’(zn)I(log 1—_|—Z—T2-) (1—|z,]»
n

= sup c|z,||a, — by = c.
n

Because the set of all sequences of 1s and —1s is uncountable, W must be
nonseparable. a
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