Rational Subgroups of
Cubed 3-Manifold Groups

LAWRENCE REEVES

1. Introduction

In [6, §4], Gromov initiated the study of nonpositively curved polyhedral
complexes. Aitchison and Rubinstein made an extensive study of cubed 3-
manifolds in [1}, where they described the structure of canonical immersed
surfaces in such manifolds. The existence of these surfaces imply strong
structural properties. For example, it follows from the work of Hass and
Scott [7] that manifolds which are homotopy equivalent to such manifolds
are actually homeomorphic.

The main results contained in this paper are that the fundamental group
of a closed 3-manifold which admits a cubing of nonpositive curvature is bi-
automatic (Theorem 2.8) and that the subgroups corresponding to canonical
immersed surfaces are rational with respect to this bi-automatic structure
(Theorem 3.5), where the terms used are explained below. The first builds on
work of Skinner [12], who has shown that such groups are automatic. The
additional information of bi-automaticity implies, by the results of Gersten
and Short [5], that infinite cyclic subgroups as well as various other sub-
groups are rational. A recent result of Mihalik [9] implies that covers which
correspond to these subgroups can be compactified, thus verifying Simon’s
conjecture (see {8, p. 112]) for the canonical surface groups.

We consider only closed 3-manifolds. Bounded 3-manifolds, as well as
the case of cusped manifolds, will be dealt with in a sequel. The cubings con-
sidered here are cubings of nonpositive curvature. Some examples of such
cubings are given in the final section. It is clear that many of the results carry
through to higher-dimensional cubed manifolds. We shall assume a slight
familiarity with [4] and recall some results due to Skinner [12].

Special thanks are expressed to G. A. Swarup for suggesting the problems
addressed, and to him and I. R. Aitchison for their advice and encouragement.

2. Fundamental Group of a Cubed Manifold
is Bi-automatic

We begin by introducing some definitions and recalling some known results.
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Let M be a closed 3-manifold. The definition of a cubing of nonpositive
curvature is given in [1, p. 5] and also in [12, §10.1, p. 193]. Basically, M ad-
mits such a cubing if it can be obtained from a finite number of identical
regular Euclidean cubes by identifying faces via isometries. This is done in
such a way that the geometry on M is locally Euclidean except along a co-
dimension-2 complex where the curvature is nonpositive; that is, for each
point v the polyhedral link contains no embedded geodesic loop of length
less than 27. As we have a cubing, this condition on the links can be verified
in terms of a no-triangle condition [6, p. 122] (i.e., the polyhedral link of a
vertex contains no bigons and no triangles that do not comprise a face of
the link). This can be achieved by insisting that each edge belongs to at least
four cubes and by disallowing certain types of edge identifications (see [1,
p. 5]). From such a cubing one can construct canonical immersed incom-
pressible surfaces in M [1, §3, p. 14]. Such a surface may be built in the fol-
lowing way: Begin with three squares embedded in a cube (Figure 1) and
then extend to adjacent cubes in the decomposition of M via the face identi-
fication maps.

There is an induced cubing on the universal cover M of M. A component
of the canonical surface lifts to a totally geodesic embedded plane in M.
Denote by II the family of such planes, the union of which forms the full
pre-image of the surface. It is shown in [1] that II satisfies the 4-plane, 1-line
conditions of Hass and Scott [7]. The cubings of M and M give decomposi-
tions of each, from which we denote by LM and L, the collection of i-cells in
M and M, respectively (following notation in [12]). We regard the edges in
the decomposition as being directed, and for each edge e we label as —e the
same edge with the opposite orientation. Let G be the groupoid whose ver-
tices are the elements of L}! and whose morphisms are homotopy classes of

Figure 1 Section of canonical surface
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edge paths in M. G is sometimes called the fundamental groupoid of LY.
Let @ = LY U(—L¥). Then @ is a finite set of generators for G, and we de-
note by @* the free monoid on @. We want to define a regular language £
over @ such that (®, £) gives a bi-automatic structure for G. The concept of
a bi-automatic groupoid is defined below in a fashion analogous to that for
groups. Let I" be a graph with a metric d obtained by declaring each edge to
be of length 1. Two paths w;, w,: R - T are said to be k-fellow travelers if
d(w;(t), wo(2)) < k for all £. There is a weaker condition that we will make use
of in Section 3: w; and w, are known as asynchronous k-fellow travelers if
there exists a nondecreasing function f: R — R such that d(w,(#), w,(f(£))) <
k for all ¢. Recall that the Cayley graph of a groupoid, with respect to a set
generating set @ and a base point vy, has as vertices the set of morphisms
based at vy. Given two morphisms f: vo— x and g: vy — y, there is an edge
labeled by a e @ from f to g if the composition fa is defined and equal to g.
We denote by I'(G, @) the Cayley graph of G with respect to @, and omit
mention of the basepoint v, since the exact basepoint is immaterial in what
follows. As composition is not always defined in a groupoid, we need to
consider a subset £(G, @) S ®@* consisting of all words that label paths in
I'(G, @). Let 7: £(G, @) — G be the map given by evaluation (where as usual
we are identifying G with its set of morphisms).

DEFINITION (see [4, p. 248]). Let G be a groupoid, with A a finite set of
generators for G. We say that G is bi-automatic if there is a regular language
L over A, and a constant £ =1, such that:
(i) L= L£(G,Q).
(i) w: L — G is surjective.
(iii) Let vy and v’ be paths in I'(G, @) that are labeled by elements of L. If
v, v’ are paths from x to y and from x’to y’ respectively, then v and
v’ are K-fellow travelers where K = k(d(x, x’)+d(y, y’)+1).

Take the natural metric on L; such that each edge has unit length. An edge
in L; will be labeled by the element of & to which it projects. In this way L,
may be regarded as the Cayley graph of the groupoid G. Notice that if a
word in £(G, @) C @* represents a path in L, it also represents all images of
that path under the group of covering transformations of M.

The following notation will be useful.

IZEFINITION. For z € Ly, denote by poly(z) the closure of the component of
M —\Jp.q P which contains z.

Notice that all vertices of poly(z) are of degree 3, and all faces are of degree
greater than 3. We have the following lemma.

LemMMA 2.1 (Skinner). Let xe€ Lgand Py, P, €Il be such that
F, = P;Npoly(x) # 0;
F, = P,Npoly(x) #0.
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Then

(i) If P, and P, both separate x from y € Ly, then PN\ P, # @.
(ii) If PN P, #0 then FiNF, #@.

Proof. Assume P;N P, =#@. Then x lies in the component of M— (P,UP,)
which is between P; and P,, and so at most one of P, and P, can separate x
from y.

To prove the second part, we use the result that the family of planes given
by II satisfies the 1-line and 4-plane properties. Recall that this means that if
two planes intersect then they do so along a line, and that given any four
planes in I, at least one pair is disjoint. Assume that PN\ P, # @; let e, ..., e;
be the edges of F; (labeled cyclically) and let Q,, ..., O, be the planes such
that Q;N F), = e;. We want to show that P, = Q,; for some i. Assume that this
is not the case. If P,NQ; =4# for all i then any path in P; which connects
P;N P, to F) must intersect one (or more) of the lines given by P;NQ;; say
it meets PN Q;. It follows from the assumption that P,NQ, =@ that any
path from P, to F; must cross the plane Q;, which contradicts the hypothesis
that P,Npoly(x) # 0.

So assume that P,NQ, # @ and consider the four planes Py, P, Q;, O,.
Applying the 4-plane property, we see that it must be the case that P,NQ, =
@. Similarly P,NQ; = @. But then one of Q, or Q, must separate P, from
poly(x), which contradicts our assumption. ]

Let v be a geodesic in L, with endpoints x, y € Ly. If z is another vertex iny
(which is not equal to y) then it follows, from Lemma 2.1 and the fact that
poly(z) has degree-3 vertices, that there are exactly three possibilities:

(a) One face, F, of poly(z) extends to a plane P eIl separating z and .

(b) Two faces, F; and F,, extend to planes P;, P, €Il which separate z
and y.

(¢) Three faces, F), F,, and F3, extend to planes P;, P,, P; € Il which sep-
arate z and ).

We shall call such faces separating faces where it is clear from the context
which vertices are being separated. Given a path v in L,, we will use ¢(y) and
7(7y) to denote the initial and terminal vertices (respectively), and we shall
call v a geodesic if it has minimal length among all paths from «(y) to 7(%).
Using the above result and the notion of cone type as introduced by Cannon
[3], it is possible to show that the language

L ={weQ*|w gives a geodesic edge pathin L}

is regular (see [12, §11.5]). This language can be shown to satisfy the first
two conditions of the definition (12, §11.2.1, p. 228ff], but it does not satisfy
the third. To achieve this it is necessary to restrict to a sublanguage of the
language of all geodesic paths.

DEFINITION. A geodesic path v = e, ... e, is a normal geodesic if for each
vertex z in v, which is not equal to y, one of the following holds:
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(i) zis of type (a) above, and the edge ¢; of v based at z crosses P;
(ii) z is of type (b), and the subarc e;e;,; of v based at z either crosses
P, then P, or it crosses P, then P;; |
(iii) zis of type (c), and the subarc e;e;,€;, of v based at z crosses each
of Py, P,, P; in some order.

Loosely speaking, normal geodesics travel as diagonally as possible. Ob-
serve thatif y = e, ... e, is a normal geodesic, then any subpathd =e; ... ;4
is also a normal geodesic. Let

£(G) = {we @*|w represents a normal geodesic edge pathin L,}.

This language was studied in [12, Chap. 11], from where we quote the fol-
lowing results; for clarity we present (somewhat different) proofs.

LEMMA 2.2 (Skinner). £(G) is a regular language over Q.

Proof. We use the result that the language £ of all geodesic words is regular.
First it will be shown that if a word represents a geodesic which fails to be
normal, then there is a subword of length 4 or less which gives a nonnormal
geodesic. Let ¥ = v,... v, be a geodesic edge path in L; and assume that v is
not a normal geodesic. It follows that for at least one vertex on v the con-
ditions of the definition are not satisfied. Let z = «(+;) be the closest such
vertex to 7(-y). Notice that we must have i < n—2. There must be either two
or three faces of poly(z) which separate (z from 7(v)); denote by II the set
of planes corresponding to these faces, and let Pye Il be the plane crossed
by v;. Then the planes in II\ P, must give separating faces of poly(t(vy;+1)),
and so the segment v;,,v;+27i+3 must cross each of the planes in IT\ P, (by
the choice of z). It follows that each of the planes in II separates z from
7(7vi+3), and therefore v;v;,1vi+27i+3 is a geodesic which is not normal (if
i+ 3 > n we consider only the first three edges of the segment); see Figure 2.
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Figure 2 An example of a geodesic segment which is not normal;
in this case, poly(z) has three separating faces.
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To ensure that a geodesic word is normal it is enough to exclude all sub-
words of length 4 which do not themselves correspond to normal geodesics.
Let ® C @* be the set of all such words. Then @ is finite. For each we ®,
let £,, be the regular language consisting of all words in @* that contain w
as a subword. Then

£(9) = £\ U £, =J3ﬂ( U _'£w)
we® we®
is also regular since the union, intersection, and complement of a regular
language are regular. g

LEMMA 2.3 (Skinner). The map «: £(G)— G is surjective.

Proof. We will show that if x, y € Ly are any two vertices then there is a nor-
mal geodesic with initial vertex x and terminal vertex y. Let vy be a geodesic
from x to y. If y is normal then we are done. Otherwise, let z =(%;) be the
first vertex that fails to satisfy the conditions of the definition (so the first
i —1 vertices do satisfy the conditions of the definition). Let & (2 < k < 3) be
the number of separating faces of poly(z), and define II and P, as in the
previous proof. Let 1 < j <|II|—1 be such that v;, ; is the first edge after z
that does not cross one of the planes in II. Choose k—j edges /4 j, ..., Vi«
so that v; ... ¥i4j—1Yi+j --- Yi+k is @ geodesic that crosses all of the planes
from II in some order. Then vy ... y; ... ¥i4j-1Yi+j --- Yi+« IS @ normal geo-
desic. Notice that d(7(y/+x), ¥) = d(7(vi+x)s ). Choose a geodesic 6 from
7(y{+x) to y. We now have a path y' =, ... v; ... Yigj—1Yi+j -+ Yi+ k0, from
x to y, which is a geodesic (since it has the same length as ) and for which
the first i vertices satisfy the conditions for normal geodesics. By repeating
the above procedure at most d(x, y) —2 times, we obtain a normal geodesic
from x to y. See Figure 3. 0

Figure 3 Constructing a normal geodesic
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The remainder of this section is devoted to showing that the language £(G)
actually gives a bi-automatic structure for G. It then follows from a result in
[4] that the fundamental group of M is bi-automatic. The first two condi-
tions of the definition have already been established. It remains to verify
condition (iii). If x, x’e L, are two vertices with d(x, x’) =1 then there is a
unique plane which separates them, which we will denote by P,.

LeMMA 2.4 (Skinner). Let x,y,x’,y’'€e Ly be such that d(x,x’) =1 and
d(y,y’) =1, and let v and v’ be normal geodesics from x to y and x’ to y’
respectively. If P, = P,, then y and ' are 3-fellow travelers. Moreover, the
result remains true if a path of length 2 is prepended to one of v or v’

Proof. Let P denote the plane P, = P,. A plane Q € II (including P) separates
x from y if and only if Q separates x’ from y’. It follows that length(y) =
length(v’). We shall argue by induction on this length. The result is trivial
for length 0, so assume that the geodesics have length n > 0 and that the
result is true for all cases where the length is less than n. Let y =+, ... v, and
Y =%i...vn, and let Q # P be a plane such that QNpoly(x) # & and Q sep-
arates x from y. Then Q also separates x’ from y’and, moreover, QNP # 4.
So by Lemma 2.1, F'= QNpoly(x’) # @ and is a separating face of poly(x’).
There are three possibilities, determined by the number of faces of poly(x)
that separate x from y:

(1) If QNpoly(x) is the only face of poly(x) separating x from y, then
QONpoly(x’) is the only separating face of poly(x’). Thus v, ... y,and v ...
v, are 3-fellow travelers by the inductive hypothesis, and hence so too are y
and v’ (see Figure 4). It is clear that prepending two edges to one of vy or vy’
does not alter the result.

Figure 4 QNpoly(x) is the only separating face
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Figure 5 QNpoly(x) and RNpoly(x) separate x from y

(2) If two faces of poly(x) separate x from y, then let them be given by
ONpoly(x) and RNpoly(x). Then, as explained above, QNpoly(x’) and
RNpoly(x’) are (the only) separating faces of poly(x’). Because v and v’
are normal, they must both have Q and R as the first two planes crossed.

The normal geodesics v;3 ... v, and 73 ... v, satisfy the inductive hypoth-
esis; also, the segments +v,7v, and vy{vy; are (at worst) 3-fellow travelers in
whichever order they cross the planes (see Figure 5). Therefore -y and v’ are
3-fellow travelers. It is possible that one of the planes Q or R is equal to P.
If we prepend a path ¢ to v where length(s) = 2, then the required result
follows from the inductive hypothesis and the observation that o and ~v;v;
are 3-fellow travelers.

(3) If three faces of poly(x) separate x from y, then one of them must be
PNpoly(x). This is because each must intersect P, and it is not possible to
have four planes which each meet poly(x) and pairwise intersect. So, assume
that PNpoly(x) is a separating face, as are two other faces QNpoly(x) and
RNpoly(x). Then the normal geodesics v, ... v, and ¥4 ... v, are 3-fellow
travelers by induction, and the initial segments v,;7v,y3; and y{y37y3 are 3-
fellow travelers in whichever order they cross the planes P, Q, and R. It fol-
lows that v and «’ are 3-fellow travelers (see Figure 6). Again we note that if
o has length equal to 2 and 7(0) = x, then ¢ and v{v3 are 3-fellow travelers.

This completes the proof. O

We will also need the following variation of the preceding result.

LEMMA 2.5. Let x,y,x’,y'e Ly be such that x and x' are diagonally oppo-
site vertices of a single square and d(y,y’)=1. Let y=~v,...v, and v'=
Y1 ... v be normal geodesics from x to y and x’ to y’, respectively. Suppose
that there is a plane Pl such that P separates x from x’ and y from y’.
Assume further that PNy = PN~y’=@. Theny and v’ are 3-fellow travelers.
Moreover, the result remains true if a path of length 1 is prepended to one

of yorvy'.
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Figure 6 PNpoly(x), QNpoly(x), and
RN poly(x) separate x from y

Proof. Denote by Q the plane other than P which separates x from x’. It
must be the case that Q separates exactly one of the pairs x and y or x’ and
y’. We shall assume the latter, so n = m+1. We proceed by induction on
the maximum length. The result is clearly true in the case where m = 0 and
n =1, so assume that n» > 1 and that the result is true for all cases where the
maximum length is less than n (note that we include the statement which
concerns prepending a path of length 2 as part of the inductive hypothesis).
If Q is the only face of poly(x’) which separates, then v is the edge dual
to this face and we apply Lemma 2.4 to v and v3 ... v,,. If RNpoly(x’) is
another face which separates, then we apply the inductive hypothesis to v
and v3 ... v,- Ol

We are now ready to establish the main result.

PROPOSITION 2.6. Let y=+;...v, and v'=+{... v, be normal geodesics
with d(u(y), u(v") =1 and d(7(v),7(v’)) = 1. Then v and v’ are 3-fellow
travelers.

Proof. Let P,, P, eIl be the planes separating x = () from x’=(vy’) and
y =7(v) from y’= 7(y’) respectively (see Figure 7). Let x; be the terminal
vertex of v; and let x/ be the terminal vertex of y/. Observe that a plane Q e I
which is equal to neither P, nor P, separates x from y if and only if it sepa-
rates x’ from y’. Therefore the difference in length between vy and ' is either
0 or 2. This is because each of P, and P, separate either x from x’ or y from
y’ (but not both), so either they separate the same pair, in which case the
length difference is 2, or they separate different pairs, in which case the length
difference is 0. We shall proceed by induction on the sum of the two lengths.
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Figure 7 Two paths in M

The result is clear for the case where both of the paths have length 0, or
one path has length 0 and the other has length 2. Assume that n+ m >
0. Assume that if p and p’ satisfy the conditions of the statement and
length(p) +length(p’) < n+m then p and p’ are 3-fellow travelers; assume
further that if o is a path of length 2 such that gp and p’ also satisfy the con-
ditions of the statement then gp and p’ are 3-fellow travelers. If P, = P, then
v and vy’ are 3-fellow travelers, by Lemma 2.4. If P, separates neither x and
» nor x’and y’, then P,Ny = P,N+y’= 0 and so we must have that P, = P,.
Without loss of generality it will be assumed that P, separates x’ and y".
As a result, it is not possible to find a ¢ such that ¢y’ is a geodesic with
d(i(o), t(y)) = 1. Hence we need only check the case in which a path of length
2 is prepended to v; in what follows, o denotes such a path. Consider as
follows the number of faces of poly(x’) that separate x’ from y’.

Case 1: 1f P,N X" is the only separating face, then since ' is a geodesic,
v1 must be the edge dual to this face. This is precisely the edge joining x’ and
X, and so v5 ...y, is a normal geodesic from x to y’. Hence v; ... v, and
v2 ... Y, are normal geodesics which begin and end a distance 1 apart (see
Figure 8). The initial segments y, and +{ are clearly 1-fellow travelers. It
follows that v and +’ are 3-fellow travelers. Also, if ¢ = g,0, is a path such
that oy and v satisfy the conditions of the proposition then clearly ¢, and
vi are 3-fellow travelers, and from the inductive hypothesis we have that
0271(Y2 -.- Ym) and 3 ... 7y, are 3-fellow travelers. It follows that ¢y and vy’
are 3-fellow travelers.

Case 2: Assume that P,Npoly(x’) and one other face of poly(x’) sepa-
rate x’ and y’. Then d(x, x3) =1 (see Figure 9). Applying the inductive hy-
pothesis to y and v3 ... v,,, we see that v and v’ are 3-fellow travelers. If we
prepend o to v, then clearly ¢ and +y;vy; are 3-fellow travelers. From the in-
ductive hypothesis we see that v and +; ... 7, are 3-fellow travelers. Hence
oy and vy’ are 3-fellow travelers.
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Figure 8 poly(x) has one separating face

Figure 9 Two planes separate x’ and y’

Case 3: Assume that P, Npoly(x’) and two other faces of poly(x’) sepa-
rate x’ and y’. Call these faces QNpoly(x’) and RNpoly(x’). If one, say R,
is equal to P, then QNpoly(x) is a separating face of poly(x). Observe that
poly(x) has at most two separating faces. If QNpoly(x) is the only sepa-
rating face then, by applying Lemma 2.4 to v,...v,, and ¥; ... v,,, we see
that v, ... v, and y3v3(v4 ... v») are 3-fellow travelers. Clearly v, and i are
3-fellow travelers, and therefore so too are iy and «’. If ¢ is prepended to 7,
observe that o+; and v{vy37v3; must be 3-fellow travelers, as are vy, ... 7,, and
Y4 ... ¥n (Lemma 2.4). Therefore oy and v’ and 3-fellow travelers.

It may be that there is one other face of poly(x) that separates. Applying
Lemma 2.5 to v3 ... v, and 74 ... v,,, We have that y; ... v, and v3(v4 ... v;)
are 3-fellow travelers. Clearly v,v, and y{v3 are 3-fellow travelers and so y
and v’ are 3-fellow travelers. If o is prepended to v, observe that ¢, and
viv273 are 3-fellow travelers as are y,(7y3 ... v») and 4 ... v, (Lemma 2.5).
Therefore oy and +’ are 3-fellow travelers.
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If neither Q nor R is equal to P, then both QN poly(x) and RN poly(x)
are separating faces of poly(x). There may be a third face of poly(x) which
separates, but in any case v, ... v,, and v ... v, are normal geodesics which
begin and end a distance 1 apart and the initial segments of length 3 are 3-
fellow travelers. Therefore v and ' are 3-fellow travelers. If ¢ is prepended
to v, notice that v, and y{y5+y; are 3-fellow travelers. Applying the induc-
tive hypothesis to v4...4,, and v; ... v,, we have that y,v3(v4 ... v») and
Y4 -.. v; are 3-fellow travelers. Hence oy and v’ are 3-fellow travelers.

This exhausts the possibilities and so completes the proof. |

We remark that it is possible to show that if two geodesics are within a Haus-
dorff distance of k, then they are 2k-fellow travelers. This could then be
used to shorten the proof slightly at the expense of increasing the fellow-
traveler constant to 6.

It is now straightforward to verify that the structure given by £(gG) is bi-
automatic.

THEOREM 2.7. G is a bi-automatic groupoid.

Proof. As already stated, conditions (i) and (ii) of the definition are satis-
fied. We will verify condition (iii) of the definition by using Proposition 2.6.
Let v, v’ X, ¥, X/, and y’ be as in the definition. Let 6* =67 ... §;; and 8 =
87 ... 8, be geodesics joining x to x’ and joining y to y’, respectively. Let
x; =u(8f) for 1 <i<m and x; = x’ for i > m. Similarly, y; = «(6{) for 1=
i <n and y; =y’ for i > n. For each i such that 1 <i < max(m ,n), choose
a normal geodesic v; joining x; to y; and let v; =+’ for i = max(m, n)+1;
see Figure 10. Then, for each i, v; and v, are 3-fellow travelers. It follows
that, for a fixed ¢, y(¢) and y’(¢) can be joined by a path e where /(e) <

Figure 10 + and v’ are fellow travelers
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3(max(m, n)+1). Thus, d(y(¢),v'(¢)) < 3(d(x, x")+d(y, y')+1) and it fol-
lows that G is bi-automatic. ]

From Proposition 11.1.5 in [4], we have the following theorem as an imme-
diate consequence.

THEOREM 2.8. The fundamental group of a closed 3-manifold with a cub-
ing of nonpositive curvature is bi-automatic.

3. Canonical Surface Groups Are Rational

We recall that if (@, £) is a rational structure for a group G, then a subset
H of G is £-rational if the set of words in £ that project to elements of H is
a regular sublanguage of @*. For subgroups this is equivalent to the follow-
ing concept: H is £-quasiconvex if there exists £k > 0 such that, for each
word w in £ that projects to an element of A, the path in I'(G, @) corre-
sponding to w lies within a k-neighborhood of the set of vertices that repre-
sent elements of H. .

Consider the canonical surface defined above, and let S be a component
of this surface. It will be shown that the corresponding subgroup of (M)
is rational with respect to the bi-automatic structure £(G).

From the description of the canonical surface, one obtains a second, finer
cubing of M in the obvious way—that is, each cube in the original cubing is
divided into eight smaller cubes. Let G be the groupoid obtained as for G (so
G is a subgroupoid of G’), and define @ and £(G’) in an analogous manner.

Fix a vertex p in G and a vertex s in G’ such that s lies in the surface S, and
denote by £,(G) the sublanguage of £(G) consisting of words which project
to paths in M that begin and end at p. Similarly define £,(G’) < £(G’).

As in [4, p. 247], an element of @ (corresponding to a directed edge in L)
may be regarded as a generator for the group G,. Choose a maximal tree T
in the 1-skeleton of the original cubing, and a maximal tree 7’ in the finer
cubing, such that 7 € T". An edge e represents the element of Gp defined by
following T from p to the initial vertex of e, following along e, and then re-
turning within 7" to p. Then £,(G) gives a bi-automatic structure for G, =
m (M. Similarly, £,(G’) gives a bi-automatic structure for G; = m;(M).

The main result of this section, Theorem 3.5, relies on the concept of
equivalent automatic structures for a group, as introduced by Neumann and
Shapiro in [11]. Let £, and £, be two regular languages over alphabets @,
and @,, respectively. Then £,UL, is a regular language over the alphabet
@, UQR,.

DEerFINITION. If both £, and £, give automatic structures for a group G, we
say that the two structures are equivalent if £,UL, gives an asynchronous
automatic structure for G.

ProrosiTioN 3.1. The languages £,(G) and £,(G’) yield equivalent bi-
automatic structures for m(M).
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Proof. From the definition we have that p is also a vertex of G’. We first
show the following two propositions.

PROPOSITION 3.2. The languages £,(G’) and £,(G’) yield equivalent bi-
automatic structures for m(M).

Proof. Consider I'(m(M), @), the Cayley graph of =;(M) with respect to
@'. Let wye £,(G’) and w,e £,(G’) be words over @ which map to paths in
I'(m (M), ®) such that d(w,, w,) < 1. By regarding @' as generators for G,
we may also consider wgand w, as paths in I'(G’, @'). As such, they have end-
points separated by a distance of less than twice the diameter of 7’ and are
therefore fellow travelers (with constant 4(4 diam(7"’) +1)). It follows that
the paths in I'(m (M), @) are fellow travelers.

Recall that ¢ is a (k,€) quasi-isometric embedding if, for all x, x5:
(17k)d(xy, x3) —e < d(d(x1), d(X3)) < kd(x,, x,) +€ (note that ¢ need not
be injective). We thus have a quasi-isometric embedding ¢:T'(G’, @) —
I'(m (M), Q") given as follows: We regard =;(M) as being given by a vertex
group of G, and we have base point p for I'(G’, @’). A vertex of I'(G’, @) is a
morphism based at p and so has as representative some word we £(G’) over
@'. As described above, @ may also be regarded as a set of generators for
Gp or Gs. In either case, w will be sent to the same element of x;(M). This
defines the map ¢. Given x;, x, e I'(G’, @), we have:

d(d(x1), 6(x2)) = d(xy, x2) = diam(T”) d(d(x1), $(x2)).

The equivalence of £,(G’) and £,(G’) then follows from the fact that they
are both sublanguages of £(G’); this yields a bi-automatic structure for G/,
which therefore has the fellow traveler property. ]

We also have the following proposition.

PRrROPOSITION 3.3. The languages £,(G) and £,(G’) yield equivalent bi-
automatic structures for w(M).

Proof. The proof is very similar to that of Proposition 3.2. Let we £,(G)
and w'e £,(G’) be two words which map to paths in I'(m (M), RUR') such
that d(w, w’) <1. There is a word ve £,(G’) with length twice that of w
and such that v is within a distance of 1 from w inside I'(7; (M), GUQ’).
This word is obtained by rewriting each element of @ as the product of
two elements from @’ in the obvious way. Then v and w’ are fellow travel-
ers within I'(m (M), @'). Hence w and w’ are asynchronous fellow travelers
within I'(m; (M), RUQ’). Notice that we need to use the fact that the defini-
tion of equivalence requires only an asynchronous structure. 0O

Combining Propositions 3.2 and 3.3 gives the required result that £,(G) and
£,(G’) are equivalent structures for m;(M). O

To show that m(S) is a £,(G)-rational subgroup of m;(M), we combine
Proposition 3.1 with the following.
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< first subdivision

second subdivision

Figure 11 Further subdivision of the cubing

THEOREM 3.4. 7(S) is a £,(G’)-rational subgroup of m,(M).

Proof. Recall that S is a component of the canonical surface obtained from
the first cubing. Choose a lift § of s and denote by Pg the lift of S which con-
tains §. The 1-skeleton of the cubing of M may be thought of as the Cayley
graph I'(G’, @) with base point §. Vertices are labeled by morphisms in G’
with initial vertex 5.

Consider the second, finer cubing of M. One may further subdivide each
cube to produce again a canonical immersed incompressible surface in M
(see Figure 11). As in the definition of II, let IT’ denote the family of lifts of
components of this surface to M. There are two vertices of the second cub-
ing which are a distance 1 from § and do not lie in Pg. Let Py, P;eIl’ be the
planes which separate § from each of these vertices respectively. From the
construction of the canonical surfaces it is clear that any other vertex (of the
second cubing) in Pg also lies between P; and P5. It follows then that a geo-
desic with initial vertex in Pg which leaves Pg must cross one of P{ or P3.
Such a geodesic cannot therefore return to Pg, as geodesics cross planes in
IT" at most once [12, Lemma 11.5.2, p. 241]. Thus a geodesic edge path that
begins and ends in Pg must lie entirely within Pg. In particular, every normal
geodesic based at § lies within Pg. Hence, in I'(G’, @), each word in £,(Q’)
that projects to an element of m;(S) must lie within a bounded distance of
m1(S). This means that 7;(S) is £,(G’)-quasiconvex and is therefore £,(G’)-
rational (see e.g. [5, Thm. 2.2}]). O

REMARK. As seen in the preceding proof, normal geodesics which begin
and end on a given plane lie entirely in that plane; that is, they are in some
sense totally geodesic.

We can now apply Proposition 2.7 in [11] to combine Theorem 3.4 and Prop-
osition 3.1 to yield the following theorem.

THEOREM 3.5. m(S) is a £,(G)-rational subgroup of m(M).
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Combining the with two results contained in [5], we collect here a list of
some rational subgroups of the fundamental group of a nonpositively cubed
3-manifold.

THEOREM 3.6. The following subgroups of (M) are rational:

(1) m(S), the subgroup corresponding to a canonical surface in M
(2) the centralizer of a finite subset of m (M );
(3) polycyclic subgroups of w(M).

We remark that recent work of Neumann [10] shows that, for the second and
third results of Theorem 3.6, it suffices to have an asynchronous bicombing.

We also observe that since 7;(S) is rational it follows from work of Mihalik
[9] that the covering of M corresponding to 7;(S) is a missing boundary
manifold; that is, it can be embedded in a compact manifold in such a way
that the complement is a subset of the boundary of the compact manifold.

4. Examples

A. Some examples of 3-manifolds which admit cubings of nonpositive
curvature are given in [1]. It is shown there that if M is defined by taking a
branched cover of S3 over the 5, knot or the Whitehead link, with all com-
ponents of the branch set having degree at least 4, then M has a cubing of
nonpositive curvature. M has such a cubing also if M is a branched cover of
S?3 over the Borromean rings with all components of the branch set having
degree at least 2.

B. In [2], Aitchison and Rubinstein give a procedure for obtaining cub-
ings on certain surgered manifolds. We give here a specific example. Con-
sider the link 63 (Figure 12) and the corresponding 4-valent planar graph.
Two-color the regions of this graph as shown, and then split each vertex so
as to isolate the shaded regions. The resulting graph may be considered as
the 1-skeleton of a polyhedron (an hexagonal prism). Let P and P’ be two
copies of this polyhedron, and identify the faces as follows:

(i) Corresponding faces that come from a shaded region are identified
by a rotation of n/2 in a positive (anticlockwise) sense when viewed
from the interior of P.

Figure 12 Steps toward obtaining a cubical decomposition
of the canonically surged manifold M
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Figure 13 A hexagonal prism may be subdivided into
twelve cubes, one of which is shown; all the cubes
share a common vertex at the centre of the prism

(ii) Pairs of faces that correspond to unshaded regions are identified via
a rotation —7 or —2«/3 if the face has degree 4 or 6, respectively.

In this way, one obtains a manifold M which is defined by (+2, +2, +2)-
surgery on 63 [2]. To obtain a cubing of M, observe that a hexagonal prism
may be subdivided into twelve cubes as shown in Figure 13. Hence we have
a decomposition of M into twenty-four cubes. If we declare each cube to be
Euclidean then we obtain a cubing of nonpositive curvature on M. Note that
M is Haken.

C. Given a manifold with a cubing, one can obtain other cubed manifolds
by taking branched covers. Let M be a manifold with a cubing of nonposi-
tive curvature. If ¢ is a closed, embedded edge path in M which is locally
geodesic and null-homologous in M, then any branched cover of M over
o has a cubing of nonpositive curvature.
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