Nonlinear Potential Theory on the Ball,
with Applications to Exceptional
and Boundary Interpolation Sets

W. S. CouN & I. E. VERBITSKY

0. Introduction

Let S denote the boundary of B,,, the unit ball in C”, and let do be the usual
rotation-invariant measure defined on S. If fe L!(do), n€ S,and 0 < 3 < n,
then we define the non-isotropic potential

~ £(5)
lﬁf(n)_fs o, 7 (0.1)
We also set
_ dp
e = reters 0.2

for any finite measure u (u € N(S)).
If 1 < p<oo, let L§ be the space of potentials F = Iz f where fe L”(do)
with norm

102z = 1 llze.

The space Lg is an analog of the usual potential space defined in Euclidean
space. In the case where 3 is an integer, Lg coincides with a (non-isotropic)
Sobolev space.

We will also need the Hardy-Sobolev spaces H‘B" (0 < B, p <) of func-
tions F holomorphic in the unit ball. Let

F(z)= 51.{3 S (2) (0.3)

be the homogeneous polynomial expansion of F (see [Ru]) and
RPF(z) = X1+ k)’ fi(2) (0.4)
k
its (radial) fractional derivative of order 8. Then Hg is the space of all holo-

morphic functions F on B,, with the property that
[Fllezz = sup IRPF(r)|| Lo(aoy < oo (0.5)

0<r«i
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It can be shown (this is implicit in {AC1, Lemma 2.2]) that Hg, 1< p<oo,
can be identified as a closed subspace of L§ consisting of the boundary values

f(g‘)=lri_r’1}F(r§).

Let z€ B, and Fe L'(do). Then the invariant Poisson integral of f is de-
fined by

—|z»"
P = o.
Lf1(2) fs £ |1— e
For {eSand a > 1, let
T (¢)= {z: I1—<z, O] < %(1—|z|2)} (0.6)

be the admissible approach regibns and
M, F() = {sup|F(2)|: z€ [y ($)) (0.7)

the corresponding admissible maximal functions.

The exceptional set E(F') of a function F defined on the ball is that subset
of a sphere where F fails to have a finite admissible limit (i.e., the boundary
limit within the admissible region) for all o > 1.

It is easily seen that exceptional sets of the invariant Poisson integrals of
Sobolev functions f (fe L’ﬁ’, 1< p<oo,0< B =< n/p) are exactly the sets of
(non-isotropic) capacity zero (see [AC1]). (Note that the only interesting
case in the problem of exceptional sets is 0 < 8 < n/p, since for 8 > n/p all
functions from the Hardy-Sobolev space Hp are continuous in the closed
ball B, = {z:|z]| <1} and hence have admlsSIble limits everywhere on S.)

Here the corresponding capacity, Cap(E, Lf,?), of a set E C S is defined by

Cap(E, L) = inf{|| f||7-: Is f = 1on E; f= 0, fe LP(do)). (0.8)

The situation in the case of Hardy-Sobolev spaces Hé’ is much more com-
plicated. As was shown in [Ah], for 0 < p <1, a function in Hé’ has admis-
sible limits almost everywhere with respect to the Hausdorff capacity H,,
with m = n—@p. The capacity H,, for E C S is defined by

H,,(E) = inf 3 8", (0.9)

where the infimum is taken over all coverings of E by unions of Koranyi
balls B({}, 6;) = {n € S: |1— (9, {| < §;}. On the other hand [C1], every com-
pact E with H,,(E) = 0 is the exceptional set for a function Fe Hj.

The case 1 < p < oo was investigated in [Ah] and [AC1]. It was shown that
every function in Hé’ has admissible limits with an exceptional set of zero ca-
pacity Cap(-, Lg). On the other hand, as was discovered by Ahern [Ah], at
least for 1 < p<2and n—Bp=1 there exist compact subsets £ C .S such that
Cap(E, L2 3)=0but E is not exceptional for any Hardy-Sobolev function.

Note that ifn—Bp=1and 1< p=<2,onecanset E=T"to get an example
of a non-exceptional set of zero L”-capamty (If p > 2, it follows from a re-
sult of Ullrich-{Ul] that 7! is exceptlonal for HZ, n—8p = 1. Nevertheless,
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non-exceptional sets of L§-capacity zero exist forall 1< p<oand n—f8p =
1. Some examples of this type recently constructed by the authors are given
in [CV].)

One of the main goals of this paper is to prove the following conjecture
(see [ACI]).

CONJECTURE 1. Let p>1and 0<n—Bp<1. If K is a compact subset of
S such that Cap(K, Lg) =0, then K is exceptional for the space Hg.

In [AC1], Conjecture 1 was shown to be true in some special cases, including
the case where the set E is contained in a complex tangential manifold or
nonsingular curve. It was also shown to be true for the Hilbert case p =2. A
more general conjecture on exceptional sets stated in [AC1] is still open.

CONJECTURE 2. Letp>1and 0<Bp <n. Ifacompact set K C S is a peak
set for the ball algebra A such that Cap(K, Lf;) =0, then K is exceptional
for the space Hj.

Conjecture 1 follows from Conjecture 2 since, for n—8p < 1, any compact
set K such that Cap(K, Lg) =0 is a peak set for A by the Davie-@ksendal
theorem (see [Ru, p. 221]).

One of the possible approaches to the problem of exceptional sets is to
develop an analog of the nonlinear potential theory (see [AH; HW; Mal])
for the spaces of holomorphic functions on the ball. (Nonlinear potentials
appear when p # 2.)

In this paper we make use of some ideas of nonlinear potential theory to
construct, for any compact subset £ C S of positive capacity, Cap(FE, Lg) >
0, a holomorphic function

¢=¢reHf (0=n—fBp<1)
such that ||¢||‘}’15 < CCap(E, L}) and Re¢(n) = 1 on E. Here C depends only
on 3, p, and n; ¢(n) is the admissible boundary value of ¢ at » € E, and R¢
denotes the real part of ¢.

In R”, there are two alternative definitions of nonlinear potentials [AH].
A direct analog of the first one for positive measures . on the sphere (n e
M *(S)) is given by

G 10 37 Lt (0.10)

where p’=p/(p—1) forl1 < p<ocoand 0 <8 < n/p. We recall that the energy
of u is defined by

5w = | g )| Zr - (0.11)
It can also be estimated by means of 9°7u (see [AH]):

&)= | 9ndn = c28fw), (0.11')

where ¢, and ¢, are independent of u.
An alternative definition of a nonlinear potential (in the Euclidean case)
is due to Hedberg and Wolff [HW]:
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[ w(B(n,1~r)) 17"~
Wi = [ | A ©012)

where 5 € S. It is easily seen that, for all n € S,
Wu(n) < CI%u(n). (0.13)

The fundamental Wolff inequality states that, in the average, the converse
is also true:

88(n) = f 982y dy < C f WPy dy. (0.14)
S

This means that 9u and “Wu lead to equivalent notions of the energy and the
corresponding capacities, although they may have different pointwise be-
havior. (Actually, as was shown by D. Adams, Wolff’s inequality follows
from some earlier estimates of Muckenhoupt and Wheeden [MW]. But, as
mentioned below, Wolff’s original proof has its own advantages and can be
used to obtain some stronger estimates of that type.)

Both nonlinear potentials have deep applications to many difficult prob-
lems of the theory of Sobolev spaces and partial differential equations (cf.
[AH], [HW], and [MV].) In fact, different applications require certain mod-
ifications of potentials 9u and “Wu. (For instance, one can replace measures
of the balls in the definition of “W#?y by convolutions with smooth functions
with compact support; see [HW].)

For holomorphic functions in the ball, the Hedberg-Wolff potential Wpu
seems to be more promising. However, it is based on regularization by means
of functions with compact support. In the case of the spaces H%, one deals
with non-isotropic holomorphic kernels giving rise to potentials

J()do({)
(1— <Tfs g‘»n_B ’

which cannot be represented by means of convolutions with compactly sup-
ported functions.

We consider two holomorphic modifications of the Hedberg-Wollff poten-
tial (one of them is more suitable for p > 2 and the other one for p < 2), and
the corresponding estimates of energies of measures distributed on the unit
sphere S. These potentials, whose real parts are bounded from below by
WHAP, seem to provide an adequate tool for studying Hardy-Sobolev spaces
Hg in the case n —Bp < 1 which is addressed in Conjecture 1.

Let pe M*, 1< p<oo, and 0 < B < n/p. Denote by B(¢, r) the anisotropic
ball centered at { € S, of radius . For any A > 0 and z € B,,, we set

1 p'—1 A—n
o= [ [[LBEL] ao dr
wia=[ [N oy e 00

Jgf(n) = (0.15)

If0<A<], we set
(1 __r))t+ﬁp—n p—1 dr

1
B —
Vi) = | [ AT du(s“)] = 0.17)
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Clearly, both potentials are holomorphic functions in the ball. Note that the
Hedberg-Wolff potential may be considered as an analog of the radial Little-
wood-Paley g-function (see [FTW]). Then the potentials U5Py and VFPy are
analogs of the tangential g,-function.

The estimates based on the Fefferman-Stein vector-valued maximal theo-
rem show that, for A > n, the potential Mﬁpp belongs to the Hardy-Sobolev
space Hé’, and its Sobolev norm is equivalent to the corresponding energy of
the measure u. In fact, an estimate like this holds for any distribution x on
S. The main problem is to obtain similar inequalities for the smallest pos-
sible value of A in order to guarantee that the real part of the potential is
positive. (What we need, at the very least, is A <1, which can be true only
for a positive measure p.)

It can be shown that Conjecture 1 follows from the following crucial esti-
mates (Section 1), combined with the analogs of some known facts on non-
linear potentials and capacities for the ball (see [AH] and [AC1]).

TueoREM 1. Let pe M. Suppose p>1,0<B<n/p,and 1>A>n—@p.
(@) If p<2, then
|1 USPufr < CES(w). (0.18)
(b) If p=2, then
1VEPullfr < CER(w). (0.19)

Note that one can try to use U5y instead of VPu for p > 2. However, it is
easy to show that in this case (0.18) is true only if A > n—@p’, whereas (0.19)
holds for the wider range A > n—8p. On the other hand, one cannot use
’Vf”p for p < 2 in the problem of exceptional sets because its real part is no
longer positive when p'—1 > 1.

We observe that Theorem 1 looks more natural in the more general frame-
work of Triebel spaces Fé’q (see [Tr]). A complete characterization of the
positive cone of F' fg for 8> 0, 0 < g <o, was obtained recently by Jawerth,
Perez, and Welland [JPW] using wavelet-type decompositions of Triebel
spaces due to Frazier and Jawerth (see [FIW]).

We propose another approach to the result of [JPW] which makes use of
some ideas of Wolff’s original proof in a simplified form. It can be easily ex-
tended to the case of the unit ball in C” to get the following analog of Wolff’s
inequality for 0 < g < oo used in the proof of Theorem 1 (see Section 2).

THEOREM 2. Let pe M*(S),1< p<o,0< g=<oo, and 3>0. Then

VB 1=\ dr 177 ,
fon( (1—ryn—8 > 1_r] d"(?)scfswpudu, (0.20)

where C is a positive constant independent of p.

Note that, when g = 1, the preceding inequality is equivalent to (0.14). From
(0.20) and a non-isotropic analog of a result of Muckenhoupt and Wheeden
[MW], it follows that, for 0 < g < o,
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, V(B 1=\ dr 177
gg(y.) < C]"M“Ip':'fgl(s) < CZLI:J;) (ﬂ(l_r)n_ﬂ ) l—rr] da(g') = 038}(;3(#)

for some positive constants ¢, c,, ¢; independent of u (cf. [AH] forl < g <o
and [JPW] for 0 < g =1, where a proof of these inequalities is given in the
Euclidean case). Note that (ng’)* = Fg’"l, where 1/p+1/p'=1(1 < p < x),
and that ¢; =q’if l < g <o while g, = if 0 < g =<1 (see [Tr}).

Theorem 1 makes it possible (see Section 3) to characterize interpolation
sets of Hardy-Sobolev functions lying in the ball algebra (see [C2]) in the
spirit of the Carleson-Rudin theorem and its further development by Khrush-
chev and Peller [KP] and Koosis [Ko].

We recall that a compact subset K of S is said to be a boundary interpola-
tion set (B.I. set) for a Banach space B C C(S) if the restriction operator
Ry: @B — C(S) maps B onto C(K). Similarly, K is a strong boundary inter-
polation set (S.B.I. set) for @ if Rx maps the unit ball of & onto the unit
ball of C(KX).

THEOREM 3. Let p>1and 0 <n—Bp <1. Suppose Hgﬂ C(S) is given the
norm || f|| = max(|| f{|zz, |.f || 4), where A is the ball algebra. If K is a com-
pact subset of S, then the following properties are equivalent.
(i) Cap(K, L‘g) =0.
(i) Kisa B.I set for HgﬂC(S).
(iii) K isa S.B.I. set for HENC(S).

Analogous statements are also true for Besov spaces Bg. (In the case n =1,
for Besov spaces Bg, Theorem 3 was proved in [C2].) We observe that if
n > 1then Theorem 3 is no longer true for n —Bp = 1: It is easily seen that in
this case the circle 7" is not an interpolation set but Cap(7", Lg) = 0.

1. Proof of Theorem 1

In this section we prove that, for any measure pe M™(S) of finite energy
(ie., 85(p) < ), the potential U5Py defined by (0.16) belongs to the Hardy-
Sobolev space Hg if A>n—8p and 1 < p < 2. This result remains true for
p > 2 if we replace USPu by V8Pu defined by (0.17). (See Section 0.)

We start with some auxiliary statements. The following estimate is easy to
prove (see [Ru]).

ProposiTION 1.1. Lets>0,A>0,zeB,, and ¢ € S. Then

.1 c 1
(1""<Z, g‘)))‘ |1_<z, ;)IA+S.

Let0=p<1,7€S5,0< p<o0,0<B <o, and fe Hé’. An equivalent (quasi-)
norm in Hg (via the Littlewood-Paley g-function) is given (see [AB]) by

1 3 dp p/2
P __ 258 | ps 2
17 17 = 1£(0)|P+ fS [fo (1—p) 2P| R (on)] —l_p] do(n), (1.2)

where s > (.

=

(L.1)
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We will also use the Triebel spaces Ff? (0 < p<,0<g <, —0<f<
co) of holomorphic functions f in the ball B,, with (quasi-) norm

dp
I-p

p o — p : — )58 ps q P
£ liEze = 1.£(O)P+ (1-p) |R*f(om)| do(n), (1.3)
sLJo

where s > (.

It can be shown that, as in the real-variable case [Tr], (1.2) and (1.3) each
define equivalent norms for different values of s > 3. It is also easy to see
that Ff 2= H and F§? = B, where B{ is the corresponding Besov space (see
[AB; AC2)).

We will need some known imbeddings for the Hardy-Sobolev, Besov, and
Triebel spaces (see [AB; FIW; Pe; Tr]) which are collected in the following
proposition.

PROPOSITION 1.2. Let 1< p <o and —oo < 3 < o0,
(@) If p<2, then
cill £z = 1 fllsg = c2ll fllep- (1.4)
(b If p=2, then

cill flizg = 1/ uz =< c2ll fll g (1.5)
Jor some positive constants c,, c, independent of the function f holomorphic
in the ball B,

Let 1< p<oo, 1/p+1/p’=1, and 0 < B < n/p. For pe M*(S), 0 <A < oo,
and z € B,,, we set

1 p'—1 A—n
8 _ pv(B(g‘sl—r)) (l_r) dr
Wu@= | | [ do(§) 2. (1.6

(1—r)n=6p (1—rdz, N
We will need an estimate of ‘llﬁ”y.(z) in terms of the linear potential
dp($)
I Z =f 1.7
20D = | Ty (1.7)

for p=2.
ProprosITION 1.3. Let pe MY, A>n—20, and 0 < o < n/2. Then

|USk(2)| = CLop(2), (1.8)
where C is independent of z € B, and p.

Proof. Applying Fubini’s theorem, we get

o2 L (A=n)?e* A2 (B 1-0) - 5,
|UL(2)]| =< fo fs T=r P (1=r*~"drdo($)

1
< Cf f(l—r)z"‘“’z"_ldrdp(n)
0vs

do(¢)
B 1—-n) 1€z, O

It is easily seen that, for {€ B(n,1—r), we have |[1—r(z, {| = c|l—r{z, )|
Hence
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e\
f do({) <C (I-r) .
B(n,1-r) ,l—r(zs§‘>|/\ ll—"(Zﬂ?)IA
From this it follows that
1 (l_r)2a+)\—n—l dﬂ(ﬂ)

ULy (2 scff drd scf ,

(Ww@N=C) ) Tiramp @M =C | T p
and this completes the proof. u

REMARK 1.1. Itiseasytoseethat, forp=2,0<2a<n,and1>A>n-—2aq,
both |USPu| and | V7P| are actually pointwise equivalent to I, p.

REMARK 1.2. Proposition 1.3 remains true for o = n/2 if we replace (1.7)
by the corresponding logarithmic potential.

Proof of Theorem 1. (a)Let1< p <2.Letz=pne B, and ¢(z) = UPu(z).
By Proposition 1.2(a), it suffices to estimate the Triebel norm,

1 dp D
It =161+ [ | [ a=ps-o1rs(om| ;2] dota,
slvo —
by the energy, Sg(p.), for some integer s > 3. By Proposition 1.1,

1 d,
f (1=0)5 P | R (om)] -
0 —-p

1 1 p—1 A—n
s #(B(f,l—r))] (1-r) dr dp
=c| a-p fofs[ A—r | Ji—prcn, P+ O 15

Note that

1 —n)s— 8
f (1-p) dp <C 1 '
o [1=orin, HP*s 1—p [1—rdn, OHPP
Interchanging the order of integration and applying the preceding estimate,
we get

I d,
| a=pe? RS9 (om)| 25 = Cn), (1.9
0 _
where . )
1 p'- -n
w(B($,1—1)) (1—-r) dr
= d —_— 1.10
() fofs[ A=ry | Ji=rén, oopes @O 1= 10
Clearly, .
1 p'-
_ p(B(S,1—r)) N dr
@I = [ fs[ T ] (1=n*"do(§) <
is bounded by ||®|[;7(4,). Hence, it remains to prove that
I®[|Zr(a0) = CEH(1)- (1.11)
Since A > n—fBp, we can choose a number ¢ such that
—n(2—
n—B<t<A+B i p).

p—1
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Then we have
(B 1= A=n"" ]p—n
q)(ﬂ)—LL[ 1=r)"—8 |[1—ri{n, O
w(B(&,1—=r) 172 (1 —r)r+B-n@=p)=(p=1D
[ (1—=r)"=F ] [1—r(n, HP+8-1p=D

Applying Hoélder’s inequality with exponents 1/(p—1) and 1/(2—p), we
obtain

®(n) < CP,(n)" ™' ®,(n)* 77, (1.12)
where r
_(tr w(BG1=r) A=n)'" dr_
@1(,,)_ff (A=ryn=8 |1—=riy, O do() 15
1 w(B(§,1—r)) p’(l__r)[A+ﬁ—n(2—p)—t(p—l)]/(Z—p) dr
=] | [ (A=r)"> ] [T=rén, pes-me—n T

We estimate ®,(n), using Proposition 1.3 witha=8/2and A=¢t>n—-3,
and obtain

®,(n) = Clgp(n).

Now we again apply Holder’s inequality with exponents y =1/(p—1)?>>1
and y'=1/(p(2—p)) to (1.12) with Iz in place of ®; this yields

1/4*
191 = ClEatl [ 0200127 dat)|
Note that (2 — p) py’= 1. Hence, by Fubini’s theorem,

fs |®(n)| do(n)

1 - p’ — p)A+B=nQ2=p)—t(p—-11/(2-p)
Scff p(B(S, 1—r)) (I-r) i dr_
(1—r)n—8 [1—r{n, OH|A+E-1p-DI/2=p) 1—r

By our choice of ¢, we have [A+8—¢t(p—1)]/(2—p) > n. Then
f (1 — p)A+B-nQ2=p)~1(p=11/2~p)

|1—r(y, OH|A+E-1p-11/2-p) de(n)=C

where C is independent of u, r, and {. Combining these estimates, we see that

, B ’1 d 17y’
(9100 = Ot [ [ [ (B2E=2Y drr 2]

By Theorem 2 with g = p’, we have that

Lo [ (B, 1—r) - ces
US[ oo ] dm—— CEE(w).

Also, by (0.11), )
”Iﬁ.u"iﬂ'(dg) = Sg(u)-
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Thus we obtain the desired inequality

1@ 2r(ae) < CES ().

The proof of Theorem 1 in the case 1 < p < 2 is complete.
(b)Letp>2.LetpeMt,0<B8<n/p,and n—PBp < A< 1. We recall that
VPP is defined by

I N
Bp =
wuo=[[|[ e ao] 15

Let us prove that
Vel < CES(w). (1.13)

For z =pne B, we set ¢(2) = ’Vf"y(z). By Proposition 1.2, it suffices to
prove that the Triebel norm,

1 p
lotgp =tor+ [ | [ a-or-sireonl % | aow,  aia

is bounded by 8'3(;1,) Since A > n— 3p, we have that |¢(0)|” = Cu(S)” <
CEJ ().
Let v = p’—1 < 1. By differentiating

[ f dp.({) ]7
s =<z, V]’
we derive the following estimate.

ProrosiTION 1.4. Let s be an integer, and let 0 < y<1,0<A<1,andze€

B,. Then
dp(§) ]7 [ du (%) ]” ! du(§)
R® f 4 1l<c f (L5
[ s A=t N = of]  Js =g opes )
where C is independent of p and z.
Proof. Let z=rn, where0<r<landynesS. Let
du($)
G(z, ) = f _al)
@A= | =@ on
and
du(f)
F(z,AD)= | —————.
@N= ) =@ op
Recall that RG(z) = G(z)+rdG/dr(z). Hence, it suffices to show that
TGz, 1| < CF(z, W' F(z, A+5). (1.16)

Since 0 <A< 1, we have | RG(z, A)| = CyF(z, A), where C, = cos(wA/2). Using
this estimate, it is easy to check by induction that the left-hand side of (1.16)
is bounded by
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F(Za )‘+ ll) ]ki
F(z,A) |’

where C depends only on A, v, and s, and the sum of products is taken over
all k;= 0 and /; = 0 such that X k;/; = s. Note that

k, k,;/s
[F(Z,/\+1,-)] SC[F(:<,',A+S)] .

CF(z, V"X H[

F(z,A) F(z,A)
Estimating each term by Hoélder’s inequality and applying the preceding esti-
mates, we get (1.16). The proof of Proposition 1.4 is complete. Ll

It follows from Proposition 1.4 with vy = p’—1 that

@@)]fﬂ
s [1—riz, O

dp(7) A+Bp—n)(p'—1) _Ar
(1-r) _—
s [1—rz, m)A+s 1—r

Let z = pn. By Fubini’s theorem,

dp(7) f f do
=C| du(r —_—
s [1=rdz, s s a 1—r¢z,ry|<s OMFST]

1
u(B(n, 8))
= Cfo (6+1—r+1—p)rts+l do.

1
|PmmscL[

Clearly, for any 6 > 0, we have

B w=c| dp(§) o MB(®,8)
s 1=r<z, O “Jpge =< DR~ T (6 +1-r+1-p)*’

Since p’'—2 <0, we get
f [ du(¢) ]”'“2 dp(r)
slds [1=r¢z, O] [1—r¢z, Y+

1 p'—1
n(B(n, 6))
= Cj(; (5+ 1 _r+1_p)(A+s+l)+(p’—2)A dé.

Thus

1 o1 (1 — ,yA+Bp—n)(p'=1) p'—1
|R°p(z)| = Cf (1-n p(B(n, 8)) 45 dr
0 Y0

(B+1—r41—p)A+s+D+(p=20 "1 _p

It is easily seen that, since A > n—(p,

1 (l_r)(r\+ﬁp—n)(p'—l) dr . 1
0 (5+1_r+1_p)()«+s+l)+(p’—2)/\ 1—r (5+1_p)(n—ﬁp)(p'—l)+s+1 :

Hence,

1 p'-1
s p(B(n,d))
|R°¢(2)| = Cfo (6+1— p)6+D+m—Bp (-1 do.
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Note that z = pn. Integrating the preceding inequality against dp/(1—p),
we get

! d Lol (1—p)*Pu(B(n, 8))"" d
— S BIps 4 P a i £
L(l o) IR ¢(P’1)| 1—p = CJ; L (6+1—p)s+D+(n—8p)(p'~1) do 1—p°

Since s > 3, we have

fl (1—p)*~# dp _ C
0

(8+1—p)6+D+U=Bp)P'=D 1—p = §1=B)p'—D+1"

Thus,
1 dp I u(B(n,8) 17" ds
1—p)*~B|R* —scf A
fo( O PR G {2 0[ S ] &

Combining the preceding estimate, (1.14), and Theorem 2 (with g = p’'—1),
we obtain

67z = CEL(w),
which gives (1.13). The proof of Theorem 1 is complete. 1

REMARK 1.3. It follows from the proof of Theorem 1 that the theorem re-
mains true if we replace the Sobolev norms of the corresponding potentials
by Besov norms ||-|| gz, or Triebel norms ||+||zzs, for1< p<ooand1=<g <.

Theorem 1 is apparently true for F§%-spaces with 1 < p < and 0< ¢ <1,
but we do not consider this case here.

2. Proof of Theorem 2

In this section we prove the inequality

Tw(B(&1—rN 9 dr )P7e .
fon[ (1—r)n=5 ] 1—rI d"(?’SCL’W”udu .0)

for 0 < g <o0. We observe that, if 0 < g <1, estimate (2.1) is “stronger” than
Wolff’s inequality (0.14), which is equivalent to (2.1) with g = 1. (It is easy 0
see that it suffices to prove (2.1) for sufficiently small ¢g.) Note that by (0.11")
and (0.13),

[ <wheudy < cefiw), 2.2)
S

where Sg(pu) is the energy of u.
To prove (2.1), we will need the following obvious statement.

PROPOSITION 2.1. Let 0 < s < oo and let f= 0 be an integrable function on

(0,1). Then
1 s 1 t s—1
[f f(r)dt] = f [f f(y)dy] fydt. 2.3)
0 0 0
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We may assume that 0 < ¢ < min(1, p’—1). For (€ S, set
1 q p'q
[ mBG, t») dt
¢(§)-UO( ) 2
and apply (2.3) with s = p”qg and f(¢) = t [ w(B(¢, £))/t"~F19. Then

_ P (Y eBEON ! mBEY) Y dy 1P dt
o= [ [[ () 9

Choose ¢ so that 0 < e < B(p—1)q. By Holder’s inequality with exponent
p7q—1>1, we get

U'(M(B(ﬁ',y))>qﬂ]p7"_l< Ctef’(u(B(i',y)))p"q dy
0 0

yn—ﬁ y yn—-B y1+e
Hence
VBN (Y pBE&YYY ™! dy  dtf
¢(Z)SCL( (n—8 ) J(;( yn—B ) ylte fl+e

1 pt . dy dt
—c fo fo T N O

Let n € B(¢, t); then B({, t) C B(n, 4¢). Since 0 < y < ¢, we have

w(B(&, YN " W(B(S, 1)) = p(B(§, y)P 97! fm ) w(B(§, )du(n)
194

< w(B(5, y)? 97! f w(B(n, 40))7du(n).
B(t,»)

Integrating the preceding estimate against do and interchanging the order of
integration, we have

fs w(B(E, Y)Y~ Iu(B(L, 1) do({)

<C f f w(B(5 Y)Y =9~ \u(B(n, 41)) du(n) do()
S YB(L, )

= [ wBaanyaumn [ wBE NP do(d)
S B(n,y)

<Cy" f w(B(n, 4y)” =9~ \u(B(n, 4))7 du(n).
Y
From this it follows that

fs $(¢) do

1 dt ! y"dy
o tn—Ba—etl J (=B (p'—q)+e+l

=C

x fs w(B(n, 49))” =9~ u(B(n, 41)) du(n) =



92 W. S. CoHN & I. E. VERBITSKY

w(B(n,40) 19 [ u(B(n,4y)) 1P~ dy dt
—Cf dﬂ( )f|: n- B ] j;)l: yn—-Bp ] yl—ﬁ(p—l)q+e tl—e'

Now we estimate

‘[ u(B(n,4y)) 1P~} d
F(l‘)=f [u( (n y))] ly
0 y

yn—Bp 1-B(p—Dg+e "’

Choose 6 >0 so that 0<e+6 < B(p—1)q, and again apply Holder’s in-
equality with exponent (p’—1)/(p’'—1—¢q) > 1. We have

t B(n, 4 p'-1 , , dv) P —1-a)/(p-1)
F(1) SCtﬁ(p—l)q—e—é{ f [&_(”'__y)_)] PAE=DAP=1-0) _y} _
0

yn—ﬁp y
Hence
w(B(n, 41) dt
f¢(§-)da<cf du(n )” s ]@(41) s
where
B(1) = f’ BBOINT ™ sprmtyiprmt—g Y )PV D
o |yt Y Y X

Now we observe that, forall0 <7 <1,

[u(B(n, 4t))]q < CtBlp—1g-éq/(p'~1-q)

tn=Ah
y fZ' pBOL AN srispreg-n DY
0 yn—hp y

= CtPP—1q-0a/(p'~1-9) (8¢)9/(P'~1-4),

We obtain
: (p—1)/(p'~1-q) dt
=Cf du(n)
yn- Bp y t1+é(p' =1/ (p'—-1-q) °

Interchanging the order of integration yields

ffs‘[u(B(n y))} yam'—l)/(ﬂ’-‘-‘”ﬂ o

yn—8p y 1 =0/(p'—1-¢q)
< C P»(B(TI y)) 17! S(p'—-1)/(p'—1—q) : dt i}_'
“ynbp | 7 s (THP-DP=T-9)
w(B, NP Ndy s
<Cf[ y" 8p —}— CW (71)

Thus
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fsqs(;) do < cfs WPy dys.

The proof of Theorem 2 is complete. ([

3. Applications to Exceptional and Interpolation Sets

In this section, we characterize exceptional and boundary interpolation sets
for Hardy-Sobolev functions in the case n—fp < 1.

If0<A<], then ‘uﬁ”u and ‘Vf”u are holomorphic functions on B,, with pos-
itive real parts. To prove Conjecture 1, we show that their admissible bound-
ary limits are bounded from below on S by the Hedberg-Wolff potential

1 p'—1
oo o u(B(s“,l—r))] dr
pr,um—fo[ | =

ProrosiTION 3.1. Letl< p<oo,0<B=<n/p,and 0<A<I.
(@) If p<2, then

lim RUEPu (o) = CWFPu(n). (3.1)
p—1

(b) If 2 < p <o, then
lim RVFPu(on) = CWPPu(y), 3.2)
p—1

where C is independent of n€ S and p e M™.

Proof. (a) Let z=pn, where 0 < p <1and neS. Since 0 <A <1, we have

1 TA 1
—_—_— > 3.
=Gy =2 =@ op (3.3)
for any ¢ e S. Hence
RUSPw(on)
! [(1—r)PP~"w(B(, 1—r))]P! Ao, dr
=>C 1— " d ,
fo fB(n,é) |1—rodn, O (1=r) 1—r a(§)

where 6 = (1—r)/4. If { e B(n, 8), then B(n,8) C B({,1—r). We get

[ wBG& =P do() = CU=D"(w(BG, 507
B(n, 6)

Moreover, for { € B(1, 8), we have |1—ro(n, $)|* < c¢(1—rp)*. Thus

RUPu(pn) = C ][#(B(n,l—r))]"'"' dr

al (L—rp)"=F» 1—r
=, [ [HB@1 =) Pl gy
sl a=ryn-ep 1-r’

If 0 < r<1/4, then clearly
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(W(S)? < C fs [u(B(n, 1~r))]” ' da(n),

where C is independent of u and . Thus, forany0<p<landneS,

w(B(n, 1-r) 17" ar
(1—r)=8p 1—r'

174
RUPu(py) = Cfo [

We complete the proof of (3.1) by combining the previous estimates and
passing to the limit as p — 1.
(b) Let 2 = p < . Then, since p’—1<1and 0 <A< 1, we have

: (1—r)*+Pp=r P dr
RV ch[f d()] ar
» en) o Wa@1-n [1=ro¢n, O ns l—r
If {€ B(n,1—r), then |1 —rp{y, HI* < C(1—pr)*. Hence

1 p'—1
Bp . u(B(n,1-r)) dr
S.RVA P«(P’?)Z CL l:(l__r)n—ﬁp-—)\(l_rp))\ 1—r

o~ [P[ B 1= ar
_Cfo[ (1—ryn—Fp ] 1—r

which yields (3.2). The proof of Proposition 3.1 is complete. Ol

We are now in a position to prove Conjecture 1 (cf. [AC1]). Let p>1 and
0=<n—Bp<1. Let K be a compact subset of S and let Cap(X, Lg) =0. Then
there exists a collection of open nested sets G, such that K C G, and

Cap(G, Lj)=C27%, k=1,2,....

Let v, be the capacitary (equilibrium) measure of G, (see [AH]). Then
&PP(v,) = C27%. We choose A so that n—8p < A <1 and set

F(2)= % Fi(@), (3.4)

where Fy = USPy, if 1 < p<2 and F, = VP, if p> 2.
By Theorem 1, || Fy| gz < C27*/P, Hence F e HY. It follows from Proposi-
tion 3.1 that, for all y € S,

lim RF; (o) = CWPPyi (7).

p—1

Since Gy is open, WPPp, () = 1 everywhere on K (see [HW, p. 180]). Thus,
for all n € K, we have

liII}IF(pn)l = o0,

p—

It is easy to see that if 7 ¢ K, then n ¢ E(F). The proof of Conjecture 1 is
complete. O

To prove Theorem 3, we need the following assertion.
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LEMMA 3.2. Letl< p<oand 0<n—fBp<]1. Suppose that K is a com-
pact subset of S for which Cap(K, Lg) = 0. Then there exists a sequence
{fi)i=1 of holomorphic functions on B, satisfying the following conditions.

(i) Rfy is positive and continuous in the extended sense on B, the
closed ball.
(ii) lim,_; R fx(p{) = +oo0 forall {e K.
(iii) f is continuous on B,\K.
(iv) limy_ o fi(2) =0 for ze B,\K.
(v) exp(—fi) € HENC(S).
(vi) limy_ o1 —exp(—fk)”Hg =0.

An analog of Lemma 3.2, for Besov spaces Bf in the case n = 1, was proved
in [C2, Lemma 1].

Proof. Since Cap(X, L”) = 0, we may find open sets G; such that K C N G,
and Cap(G, Lg); = 277, Let v; be the capacitary measure for G;. We choose
A so that n— Bp</\<l If1< p=<2weset

Ji(z) —Jgk URPu;(2),
and if 2 < p < oo we set
fi(2) —Ek VEPui(2).
It is not difficult to verify conditions (i)-(iv) (cf. [C2]). To prove (v) and
(vi), we need to show that, for 1 < p < oo,
I =expt=follag = C % &0). (3.5)

We will give a sketch of the proof. In the case 1 < p < 2, (3.5) follows (at
least when 8 = N is an integer) from the inequality

dNe ~/x(12) (1-—]‘))‘_" Vj(B(g',l—r)) p—1 "
dtN = J>kff |l—tr(z,§‘)|’\+N[ (1—r)yn—6p ] da(j‘)-:;,

This inequality is obtained by using Holder’s inequality and the argument
used to obtain the estimate (6) in [C2]. If 8 is non-integral, the foregoing
estimate, together with the estimate

1
|RBF(z)|scf (1-)N-8-1|RNF(tz)|dt, B<N,
0

will suffice.
For the case 2 < p < oo, the needed estimate (again when 8 = N is an inte-
ger) is

dNe —fi(12)
drN

To obtain this, we let

c '[VJ(B(sﬂa)) p'-1 ds
~ jzkdol 8"PF (8+1—p)N+1"
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V() = X VfPv;(z).
j=k

Note that, by Proposition 3.1,

Tv(B(£,6)) 17" db
e V| < expl—C ASAT IR N R .
l | Xp jgk 0 6""319 o (3 6)
Next, and this is actually the argument given in [C2, Lemma 3],
dNe_Vk(IZ) v,
~ s — p— k(Z)q) .
av |, ¢ (@)
Here ®(z) is a sum each term of which is a constant multiplied by a product
of the form 1
d' Vk(tZ) ]ms
1}[ dt's ’

where f =1 and X /im;= N.
Now use the earlier argument (see the proof of Theorem 1(b), especially
Proposition 1.4) to estimate that, at 1 =1,

dVelt2)| _ o 1 [uBE N do
dt's - 0 j=k dn—hp (5+l—p)’s+l.

Thus, by Holder’s inequality,

d’st(rz) " o[ s [HBGNPT_as M
] _C{ngk[ on=Fhp ] 5'*'1—0}

! vi(B(,8)) 17! dd
XJ(; 2[ on—Bp ] (6+1—p)N+1’

j=k

where M = > m;—1. Together with (3.6), this gives the desired estimate. The
case where 8 is not an integer is handled exactly as before.

The rest of the proof of Theorem 3 follows the lines of a similar assertion
for Bé’(T‘) and is based on Lemma 3.2. (See the details in [C2].)
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