The Topological Whitehead Torsion of an
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Introduction

In this paper we compute the topological equivariant torsion of an equi-
variant fiber homotopy equivalence between compact equivariant ANRs.
Throughout this paper, G denotes a finite group. Let p: E—> Band p’: E'—> B’
be locally trivial G-fibrations between compact G-ANRs such that the fibers
are equivariant compact ANRs. Let

E Y E

P'l lp (*)
LB

be a G-fiber homotopy equivalence over the G-homotopy equivalence f.
Then we compute the topological torsion of # using the torsion of the pull-
back of f and the fiberwise action of the equivariant Euler characteristic of
B’ to the torsion of the fibers (Theorem 6.5). This result generalizes the main
theorems in [1], {2], and [7].

The structure of the paper is as follows: In Section 1 we summarize the
properties of compact G-ANRs and G-CE maps between them. In Section 2
we recall the definition of the topological torsion of a G-homotopy equiva-
lence between compact G-ANRs and we prove the composition and the sum
formula. In Section 3 we summarize the theory of functorial additive in-
variants [6, Chap. IV; 11, §6]. As an application of this theory we prove the
product formula for the topological torsion following the lines of proof of
Theorem 6.11 in [11]. This product formula generalizes the one given in the
cellular case in [8] and [13]. In Section 4 we define the pull-back map p*:
Whi%(B) - Whi¥P(E) determined by a locally trivial G-fibration p: E — B
between compact G-ANRs. The definition and the properties of p* are analo-
gous to the ones proven in [2] for G = 1. In Section 5 we define the fiberwise
product of the Euler characteristic of B’ with the torsions of the homotopy
equivalences of the fibers determined by (*). In Section 6 we complete the
computation of the topological torsion of 4. We first give the proof for the
special case that B is a finite G-complex. Using the fact that every compact
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G-ANR is finitely G-dominated by a finite G-complex and the methods of
functorial additive invariants we extend the calculation to the general case.

Steinberger and West introduced the topological equivariant torsion in
[15] for classifying G-h-cobordisms between locally linear G-manifolds (see
[14] for the details). The formula for the torsion of a fiber G-homotopy
equivalence and the product formula (which is a special case of this) are
very important tools in computing the torsion in certain cases.

I would like to thank Frank Connolly, Wolfgang Liick, Mark Steinberger,
and Piotr Zelewski for useful suggestions during the preparation of this

paper.

1. Equivariant Absolute Neighborhood Retracts

We review the definitions and some of the facts about equivariant ANRs
and equivariant cell-like maps. The proofs are either elementary or similar
to the non-equivariant case.

By a G-ANR we will mean a metric G-space which has the neighborhood
extension property in the category of metric G-spaces.

1.1. We summarize some of the properties of G-ANRs.

(i) X is a G-ANR if and only if, for each G-embedding i: X— Y into
a G-metric space, there is a G-neighborhood of i(X) which retracts
to X.
(ii) If X is a G-ANR and H is a subgroup of G, then X is an H-ANR.
(iii) If X isa G-ANR and X'’is a G’-ANR then X X X’is a G XG’-ANR.
Similarly, if X and X’ are G-ANRs then X X X’ is a G-ANR (with
the diagonal action).
(iv) (Equivariant Hanner’s Theorem) The following are equivalent for a
G-space X:
(1) X is a G-ANR;
(2) each orbit G,, xe X, has an open G-neighborhood which is a
G-ANR;
(3) each point x e X with isotropy group G, has a slice which is a
G,-ANR.
In particular, locally linear G-manifolds are G-ANRs.
(v) If X is an H-ANR and H is a subgroup of G, then the balanced prod-
uct GXy X is a G-ANR.
(vi) Every finite G-CW complex is a compact G-ANR.
(vii) Every compact G-ANR is G-dominated by a finite G-complex.

A proper G-map f: X —Y between G-spaces is called a G-cell-like map
(abbreviated G-CE map) if, for each y €Y with isotropy group G, and for
each G,-neighborhood U of f~'(y) in X, the inclusion map f~'(y) > U is
G,-nullhomotopic. It follows from the definition that if f (y)isa G,-ANR
for all yeY then f is a G-CE map if and only if f~'(y) is G,-contractible.
The composition of two G-CE maps between G-ANRs is a G-CE map [14].
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The following characterizes G-CE maps [14].

1.2. Let f: X—Y be a proper G-map between G-ANRs. Then the follow-
ing are equivalent:
(i) fis a G-CE map;
(ii) for each open G-subset U of Y, f restricts to a G-homotopy equiva-
lence f Y (U) - U;
(iii) f is an a-homotopy equivalence for each open G-cover o of Y.

There is very strong connection between G-ANRs and equivariant Hilbert
cube manifolds. Steinberger and West [16] extended the work of Chapman
[4] on Hilbert cube manifolds in the equivariant case. The G-Hilbert cube
Qg is the countable product of copies of the unit disc of the regular repre-
sentation of G. A separable metric G-space M is called a Qs-manifold if
each orbit has a G-neighborhood which is G-homeomorphic to an open
subspace of Qg.

1.3. We now summarize the connections between Qg-manifolds and G-
ANRs.

(i) (Equivariant Edward’s Theorem) A G-space X is a G-ANR if and
only if X X Qg is a Qg-manifold.

(ii) If f: X— Y is a G-CE map between locally compact G-ANRs, then
SXid: X XQg — Y X Qg is G-homotopic to a G-homeomorphism.

2. Topological Equivariant Torsion

In this section we will prove the composition and the sum formula for the
topological equivariant torsion. First we recall some facts about mapping
cylinders of G-maps. In this section, by a G-space we will mean a compact
G-ANR, even though some of the results are true for more general spaces.
We start by recalling some facts from [12]. Let 4, X, and Y be G-spaces such
that XNY D A. Then X and Y are called G-CE equivalent rel A, denoted
X ~ Yrel A, if there exists a G-space Z containing X and Y as well as G-CE
maps r: Z— X and s: Z— Y such that, if i: X—> Z and j: Y — Z are the in-
clusion maps,

ri=id|y, sji=idly, ir=gid|zrelA, js=gid|zrel A.

Notice that “~” rel A is an equivalence relation on the G-spaces containing
A as a closed subspace.

An immediate consequence of the definition and [14, Cor. 4.7] is the fol-
lowing.

(MO) If X ~Yrel Aand f: A— BisaG-map, then X U;B ~Y U, Brel B.

The following property has been proved in [12].

(Ml) Let f;: Y—>Y’, 0<t=<1, be a G-homotopy such that f,|x = folx.
Then M(fo) ~ M(f;) rel(M((fp) | x) VY UY’).
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Let X, Y, Z be G-spaces containing A as a closed subspace. Let f: X->Y
and g: Y — Z be G-maps which are the identity on A. Define M(f, g) to be
the space obtained from M(f) L1 M(g) by identifying the base Y of the map-
ping cylinder M(f) with the top Y X {0} of the mapping cylinder M(g) by
the identity map. Notice that the collapse map in M( f) gives:

(M2) M(f, g) ~ M(g) rel M(g).

Also in [12] it was shown that:

(M3) M(f,g) and M(gf) are G-CE equivalent rel((AX I)UX UZ).

LEMMA 2.1. Let f: X—>Y be a G-map and let A be a closed G-space con-
tained in X. Then
(i) M(f|4) ~ M(f)rel Y;
(ii) M(f) ~YrelY;
(iii) AXTUX Xk} ~ X X Trel(X X {k}) for k=0,1;
(iv) X X{k}~ X xTIrel(X x{k}) fork=0,]1.

Proof. (i) Let i: A — X be the inclusion map. Then, using (M2) and (M3),
we have

M(f|4) = M(fi) ~ M(, f) ~ M(f) rel Y.

(i1) The equivalence is given by the collapse map M(f) — Y. (iii) and (iv)
follow from (i). O

LEmMMA 2.2. Let f,g: A—> B be two G-homotopic G-maps between G-
spaces, and let A be a closed subset of a G-space X. Then

BU; X ~ BU, Xrel B.

Proof. Let h: AX I— B be the G-homotopy between f and g. Then
BU; X =BU,(XUgyxoAXT)~BU, (X xI)rel B;
BU, X =BU, (XU AXIT)~BU,(XxI)rel B. O

LEMMA 2.3. Let X DB DA be a triple of G-spaces so that the inclusions
are G-homotopy equivalences. Let r: B— A be a strong G-deformation re-
traction. Then

X~BU,(AU, X)rel A.

Proof. Let i: A — B be the inclusion. Then X = BU;3 X ~ BU;, Xrel B by
Lemma 2.2. Also BU;, X ~ BU,(AU, X)rel A. O

We now describe the construction of the group WhTG"p(A) [14]. An element
of Wh¥P(A) is represented by a strong G-deformation pair (X, A). Two
such pairs, (X, A) and (Y, A), represent the same element in Whi¥P(4) if
and only if there exists a G-space Z containing A as well as G-CE maps
r:Z— X and s: Z—-Y such that r|4=s|4=1id,4 and fr =5 gsrel A, where
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f: X—A and g: Y — A are strong G-deformation retractions [14]. Notice
that if X ~ Yrel A then (X, A) = (Y, A) e Wh¥P(4). Whi¥P(-) is a functor
from the category of compact G-ANRs and G-homotopy classes of G-maps
to the category of abelian groups.

If f:Y— X is a G-homotopy equivalence then (M(f),Y) is a strong G-
deformation pair [11; 5]. Define 7(f) = fx (M(f),Y) e Whi¥P(X).

ProrositioN 2.4 (Composition Formula). Let f: X—>Y and g:Y— Z be
G-homotopy equivalences. Then

7(&f) =7(8)+ &7(f)
in Wh'®P(Z).

Proof. Consider the triple (M(f, g), M(f),X) and let r: M(f)— X be a
G-retraction. Then, by Lemma 2.3,
M(f,8) ~ M(f)Ux (XU, M(f,g))rel X,

which means that

r«(M(f, 8), M(f)+(M(f), X) =(M(/,8),X)
= r(M(f)Uy M(g), M(f))+(M(f), X) = (M(/, g), X).
Let j: Y — M(f) be the inclusion map. Then
(M(f)Uy M(g), M(f)) = j(M(g),Y).
Using (M3), we can write the above formula as follows:
reJx(M(8),Y)+(M(f), X)=M(gf), X).
But rjf =g idy = r«j« = (f+)"". Apply g+« to the above equation and get

7(8f) = 7(8) + &7 (f)- O
Next we will give a proof of the sum formula. Let

X, 2 X, Y, 2 v,

il L and k| i

X, — X Y, 2y

be G-push-out diagrams of G-spaces so that i; and k; are inclusion maps
(or, more generally, G-cofibrations) (see [11] for general facts about G-push-
out diagrams of G-spaces and G-cofibrations). Let f;: X;—> Y, s=0,1,2,
and f: X — Y be G-homotopy equivalences commuting with the maps in the
diagrams.

ProPoOSITION 2.5. With the preceding notation,

7(f) = Jism (1) +J2:7(f2) — JoxT(S0), 4y
where jo = j k1= j2k3.
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Proof. We first reduce the problem to the case that all the maps in the dia-
grams are inclusion maps. Let

X5 X3 Y5 £ ys
1|l l and kli llz
Xr —_— Xr Y/ Jl Y/

be G-push-out dlagrams where X{ = X; and Y/ =Y, for s =0, 1, and where
X;=M(i,), Y; =M(k,), and all the maps are the inclusion maps. Let c:
X;-2X,,d:Y;-Y,, cx: X'— X, and cy: Y’ — Y be the G-CE maps induced
by the collapse maps in the mapping cylinders. They induce G-homotopy
equivalences f/: X/—-Y/, s=0,1,2, and f’: X'— Y’ which commute with
the maps in the diagrams.

Claim: The formula (1) in the proposition follows from the formula
T(S") = Jjix7 (1) + J2:7(f2) — Jox7(S0) (2)
where jj = jik{ = j3 k5 is the inclusion map.

Proof of Claim: Notice that f=cyf’, j,=cyji, and f,=f] (s=0,1);
f> is given as the composition

X35> X, 25 Y, 5 V3

where ¢ is the inclusion map and j, = cyj5t. Since the maps cy and ¢ are G-
CE maps and . is the inverse of the G-CE map d, their torsion is zero. So the
composition formula gives:

ey)er(f) =7(cy f) =7(f);
(Cy)assT(SS) = (cyjs)at(Ss) = (U)7(f) for s=0,1;
(Cy)xJ2+7([3) = (cy)x (J2)xtx7(Sf2) = (J2)xT([2).

Applying (cy). to both sides of (2), we get (1).
Thus we have reduced the proof of the proposition to the following case.

Special Case: Formula (1) is true if all the maps in the diagrams are as-
sumed to be inclusion maps of closed subsets.

Proof of Special Case: We use the approach in [5, 23.1]. Let
D:M(f)UX - X
be a strong G-deformation retraction. Then, by the composition formula,
T(M(f), X) = Dt (M(f), M(fo) UX) +17(M(fo) UX, X).
Since M(f) = (M(f1}))UX) Uy ryux (M(Sf2)UX),
T(M(f), M(fo)UX) =1(M(f/)) UX, M(fo)UX)+7(M(fL)UX, M(fo)UX).

The composition formula implies
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T(M(fHUX, X)=D,r(M(fIUX, M(f)UX)+1(M(fp)UX, X), s=1,2.
Putting all these together, we get
T(M(f), X)=7(M(HUX, X)+7(M(f)UX, X)—1(M(f)) VX, X).

The proof follows by applying f. to the above formula and the definitions
(the details are in [5, 23.1]).
The proof of the Special Case completes the proof of the proposition.
O

3. Product Formula

In this chapter we prove a product formula for the equivariant topological
torsion. This formula has been proven in [9] for the non-equivariant case
and in [13; 7; 11] for the cellular equivariant case. The proof of the formula
in the equivariant topological case generalizes the methods in [11].

We use the theory of functorial additive invariants developed in [11, Chap.
I, §6]1. We recall some of the definitions and the basic facts about functorial
additive invariants. Let C be a category with cofibrations and weak equiva-
lences in the sense of Waldhausen [17; 11]. A functorial additive invariant
(A, a) for C consists of a functor A: C — (Abelian groups) and a function
associating to an object X of € an element a(X) € A(X) such that the fol-
lowing hold.

(1) Homotopy Invariance: If f: X - Y is a weak equivalence then
A(Sf)a(X)) = a(Y).
(2) Additivity: Let
Xo —> X2
il |7
X X
be a push-out diagram with i a cofibration. Then
a(X) = A(j)(a(X})) + A(J)(a( X)) — A(Jo)(a(Xo)),
where jo =Jll
(3) Normalization: a(@) =0, where 0 is the distinguished initial object
in C.
A functorial additive invariant (U, u) is called universal if, for any functor-

ial additive invariant (A, a), there is exactly one natural transformation &:
U — A such that &(X ) (u(X)) = a(X) for all objects X.

ProprosITION 3.1. There is a universal functorial additive invariant (U, u)
unique up to natural equivalence.

Proof. Chapter I, Theorem 6.1(a) in [11]. O

Let C, D, & be categories with cofibrations and weak equivalences. Let F':
C X —> & be a functor such that F(X,-): D —-8E and F(-,Y):C—§ are
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functors between categories, with cofibrations and weak equivalences for
all X in C and for all Y in ®. Let (Ug, ue) and (Ug, ug) be the universal
functorial additive invariants for € and O and let (A4, @) be an arbitrary
functorial additive invariant for &.

PRroprosITION 3.2. (i) With the previous notation, there is exactly one natu-
ral pairing

P(X,Y): Ue(X)QUp(Y) >V

such that P(X, Y ) (ue(X)Q@uq(Y)) =V(XXY) forall X in C and forallY
in .

(ii) Assume that C has an internal product such that (-,Y):C—>C isa
Junctor between categories with cofibrations and weak equivalences. Then
there is a natural pairing

P(X,Y): Up(X)QUe(Y) = Ue(X XY)
uniquely determined by the property that
P(X, Y ) (ue(X)Q@ue(Y)) = ue(X XY).

Proof. Lemma 6.3 and Corollary 6.4 in [11, Chap. I]. 0l

Let G be a finite group and X an arbitrary G-space. In [11, Chap. I, §5], a
category I1¢(G, X) is defined with objects G-maps x: G/H — X, where H is
a subgroup of G. A morphism ¢ from x: G/H—-> X to y: G/K—> X is a G-
map ¢: G/H — G/K such that yo = x. Let U®(X) be the free abelian group
generated by IsoJJ (G, X), the set of isomorphism classes of objects in
I1o(G, X). Then UY(-) becomes a functor from the category of G-spaces
to the category of abelian groups.

REMARK. In [11, Chap. I, §5], I1o(G, X) is defined for any group G.

For any subgroup H of G, set W(H) = N(H)/H. Then there is an action
of W(H) on X* which induces an action of W(H) on mo(X). Similarly,
there is an action of G on II wo(X*), where the disjoint sum is taken over
all the subgroups of G. Notice that there are bijections

Is0 I1o(G, X) = I wo( X Y/ W(H ) - 11 7o(X ) /G, (3.2.1)

where the second disjoint sum is taken over the conjugacy classes of sub-
groups of G.

Let X be a compact G-ANR. Since X is finitely G-dominated, its equi-
variant Euler characteristic is defined by xg(X) € U%(X) [11, 5.3]. We sum-
marize the properties of the Euler characteristic of a compact G-ANR |11,
Thm. 5.4] as follows.



Topological Whitehead Torsion 69

3.3.

(a) If f, g: X - Y are G-homotopic, then f; = gy: US(X) - US(Y).
(b) If f: X—>Y is a G-homotopy equivalence then fy(x5(X)) = xg(Y).
(c) If

X, 22 X,
iy l ljz (*)
X, 2 x

is a G-push-out diagram with i, a G-cofibration, then

X6 (X) = (J)s(xc(X1) + (J2)s (x6(X2)) — (Jo)s (X6 (X0))>
where jo = jii; = jaia-

Consider the category C with objects G-homotopy equivalences f: X - Y
between compact G-ANRs and morphisms commutative diagrams

% 1 & (*)
X, 2 v,

A morphism is a cofibration if g,, g, are inclusion maps of closed subspaces
and a weak equivalence if gy, g, are G-homotopy equivalences with topolog-
ical torsion zero. Then © becomes a category with cofibrations and weak
equivalences.

The proof of the following proposition is the same as the proof of Theo-
rem 6.11 in [11, Chap. I].

ProposiTioN 3.4. The universal functorial additive invariant for Cis
(WhP@UC, (7, xg)). That is, this functor sends the object (X L, Y) to
(7(f), xg(Y)) € WhiP(YYDUC(Y) and the morphism (g,, g,) in (*) to

WhisP(g))®UC(g)): WhP(Yy) @ UC(Y,) » WhiRP(Y)) @ US(YY).

Proof. 1t is an additive invariant because Wh}}’p@) UC is a G-homotopy
functor (using the composition formula for the torsion component and [11,
Chap. I, Thm. 5.4] for the Euler characteristic component), and it is an
additive functor because of Proposition 3.5 and [11, Chap. I, Thm. 5.4].
The proof that it is universal is the same as the proof of Theorem 6.11 in [11,
Chap. I]. O

The next theorem is the product formula for the topological equivariant
torsion; it follows from Propositions 3.2 and 3.4 [11, Chap. I, Thm. 7.1].

THEOREM 3.5. Let G and H be finite groups.
(a) There is a natural pairing

P(X,Y): (WhFP(X)DUX)D(WhEP(Y)DUH(Y))
S WhER (X XY)QUC*H(X XY)
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uniquely determined by the property that

P(X, Y)((7(f); xc(X))®(7(8), xr (Y))) = (7(f X &), X6 x u(X XY))
Jor a G- (respectively H-) homotopy equivalence f: X' — X (resp.
g:Y'>Y) between compact G- (resp. H-) ANRs.

(b) (Product Formula) Let ®: Whig?(X)@UH(Y) - Whi®2 (X xY) be
the pairing sending (u, v) to the component of P(X,Y)((u, xg(X)),
(0, v)) in WhigR (X XY), and define analogously

®: US(X)DWhiP(Y) » Whi®R (X X Y).
Then

T(f X&) =xa(X)RT(g)+7(f)®xH(Y) e WhiFR 1 (X XY).

Proof. Part (a) follows from Propositions 3.2 and 3.4. Part (b) follows
from part (a), the homotopy invariance of the torsion, and the composition
formula. O

REMARK 3.6. We derive some immediate consequences from the product
formula just described.

(a) Let f: X’ — X be a G-homotopy equivalence between compact G-ANRs
and let Y be a compact H-ANR such that x(YX) = 0 for each component of
the fixed point set of any subgroup K of H. Then 7(f Xid: X' XY > X XY) =
0e Whi® ,,(X xY). (For the PL-case, see [8, Thm. A]).

(b) Let f: X' X be a G-homotopy equivalence between compact G-
ANRs, and let V be a unitary representation of H. Then

7(f Xid: X' X S(V) > X xS(V)) = 0e WhFL (X X S(V)).
Let G be a finite group and let A be a subgroup. If X is a compact G-
ANR, then the H-space res X is a compact H-ANR.

LEMMA 3.7. Thereis a functortal additive invariant on the foregoing cate-
gory C sending an object (X L, Y) to 7(res f) e WhigP(Y).

Proof. Obvious from the definition. O
REMARK 3.7.1. Using Proposition 3.2(a) for any X a compact G-ANR, we
get a natural pairing

res X: WhitP(Y)QUS(Y) -» WhiP(Y)QUH(Y) (¥%)

sending (7(f), xg(Y)) to (7(res f), xz(Y)) for any G-homotopy equivalence
Jf: X —-Y of compact G-ANRs.

Let G be a finite group. Set H = G, the diagonal subgroup of G XG.
Applying the previous theory we obtain the next theorem.

THEOREM 3.8. (a) There is a natural pairing

P(X,Y): (WhPP(X)®USX)R(WhEP(Y)DUS(Y))
- WhiPP(X xY)DUS(X XY),
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uniquely determined by the property that

PX, Y)((7(f), xa(X)®(7(8), xc (Y ) = ((7(f X &), xa (X XY))

Jor G-homotopy equivalences f: X'—> X (resp. g:Y'—Y) between com-
pact G-ANR:s.
(b) (Diagonal Product Formula) Let

®: WhiPP(X)y@UC(Y) > WhiPP(X xY)

be the pairing sending (u, v) to the component of P(X,Y)((u, xg(X)), (0, v))
in WhiS?(X xY) and analogously ®: US(X)®WhPP(Y) - Whi?P(X X Y).
Then

7(fX8) = x6(X)®T(g)+7(f)®xc(Y) e WhigP(X X Y).

REMARK 3.9. The analogs of Remark 3.6 are in this case as follows.

(a) Let f: X'—= X be a G-homotopy equivalence between compact G-
ANRs, and let Y be a compact G-ANR such that x(YX) =0 for each com-
ponent of the fixed point set of any subgroup K of G. Then

7(fXid: X'XY > XxY)=0e Wh¥P(X xY),

where X X Y supports the diagonal G-action.
(b) Let f: X’'— X be a G-homotopy equivalence between compact G-
ANRs, and let V be a unitary representation of G. Then

7(fXid: X' X S(V)—> X X S(V)) =0e Whi®P(X x S(V)),
where S(V') is the sphere of V and G acts diagonally on X X S(V') [8, Cor. B].

4. The Transfer Map of a Locally Trivial G-Fibration

Let p: E— B be a locally trivial G-fibration [3; 10] between compact G-
ANRs such that, for each be B with isotropy group G,, p~(b) is a com-
pact G,-ANR. We define a homomorphism p*: Wh®P(B) - WhI®P(E) as
follows.

Let f: B’—> B be a G-homotopy equivalence between compact G-ANRs
representing an element 7€ Wh?P(B). Form the pull-back diagram

reEL E
| I
B L. B.
By the Equivariant Hanner’s Theorem, f*E is a compact G-ANR and fis
a G-homotopy equivalence. Define p*(7) = 7(f) e WhP(E).

(i) p’ is a well-defined map (2, §2]. First notice that if f is a G-CE map
then f Xid: B’X Qg — B X Qg is G-homotopic to a G-homeomorphism. Since
p satisfies the G-homotopy lifting property, f Xid: f*EXQs— EXQg is
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G-homotopic to a G-homeomorphism and, by [14], 7(f) = 0e WhI®P(E).
Therefore p*(7(f)) =0if f is a G-CE map.

Let fi: B — B and f,: B, — B be strong G-deformation retractions which
represent the same element in WhiS?(B). Then there is a compact G-ANR Z
containing B, as well as G-CE maps r: Z — B, and s: Z— B, such that r | ; =
s|p=idg and fir =g fosrel B. Define a map k = fir: Z— B. Let k = f,F:
k*E — E be the pull-back. Then, from the foregoing remark, (k) =7(f)) =
p*(1(f1). Also, k =g f,5 and 7(k) = 7(f2) = p*(7(/f2)) = p*(7(f})). Hence
p* is well-defined.

(ii) p* is a group homomorphism: The proof is similar to that given in

(2, §2].

5. Fiberwise Products

From this point on, by a G-fibration we shall mean a locally trivial G-fibra-
tion p: E— B such that £ and B are compact G-ANRs and, for each be B
with isotropy subgroup G,, p~!(b) is a compact G,-ANR. Let

E ' E

Pl e (*)
B LB

be a fiber G-homotopy equivalence between two G-fibrations. We shall de-
fine a “fiberwise” product x(B’)7(hy) € WhP(E) where hy: Ej— Ep) is
the G,-equivalence induced by / on the fibers. This product generalizes the
product defined in {7, §5].

We first need some preliminary observations. Let b e B’. Then the fi-
ber over b is a compact H-ANR, h,: Ej — Ej;, is the H-equivalence, and
7(hp) € WhifP(E ). Write Ind§ for the composition

WhP(E ) = WhEP(G X Ef () = WhEP(EG ) = WhSP(E),

where the first map is the induction map, the second map is induced by
the G-map G Xy Es5) — GEf 5y = Egs(p), and the last map is induced by the
inclusion.

LeEMMA 5.1. (i) Let b and c belong to the same path component of B'H
Then Ind§(r(hp)) = IndS(7(h.)) in Whi®P(E).
(ii) If b e B then Ind§(7(hp)) = IndS,(7(hgp)) in WhEP(E) for all ge G.

Proof. (i) follows from the fact that there are /-homeomorphisms ¢: Ej—
Efland ¢': Egyy— Ej() such that ¢’h, = h.¢.

(ii) Set K = gHg™'. Then gb e B’X, and there are natural G-homeomor-
phisms ¢: GXyEj— GXgEy, and ¢': GXpyEspy— G XxEfpy such that
¢’(idg X hp) = (idg X hgp) 0. O
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By (3.2.1), UC(B’) is the free abelian group generated by the set A =
(U =o(B '#))/G. Thus, any element x € US(B’) can be represented by a func-
tionx: A-7Z.

First we shall define the fiberwise product x7(4;) under the condition that
every subgroup of G is an isotropy group for the G action on B’. Let ae A
and o € mo(B’") represent a. Choose b € a so that G, = H. By Lemma 5.1(a),
Ind§(r(h,)) does not depend on the particular point b but only on the com-
ponent «. By Lemma 5.1(b), Ind§(7(#4,)) depends only on a and not on the
representative o. We write Ind§ = Ind¢. Define

x7(hy) = X x(a) Indg 7(hy),

where b belongs to a representative of @ and the sum is taken over all @ € A.

In the general case, we cross the G-fiber homotopy equivalence (*) by the
unit disc D of the regular representation C[G]. Since D is G-contractible, we
can identify U%(B’) with U®(B’x D), and crossing with D does not change
the torsion data. Also, since D has every subgroup of G as isotropic group,
we can define the fiberwise product as in the first case.

6. The Torsion of a Fiber Homotopy Equivalence

In this section we prove a formula that calculates the torsion of a G-fiber

homotopy equivalence between locally trivial G-fibrations between compact
G-ANRs.

First we observe that the proof given in [7, §6] generalizes to the topologi-
cal case, provided that the base space is a finite G-CW complex.

PROPOSITION 6.1. Let
E' E
rl |7
B, B
be a fiber G-homotopy equivalence, and let B be a finite G-CW complex.
Then
7(h) = x(B) 7(h,) € WhSP(E).

Proof. The proof is the same as the proof of Theorem 6.2 in [7]. We con-
sider three cases.

Case I: Let B= G/H X D, where D is a contractible space with the trivial
G-action. Consider the G-subspace G/H of B. Let h%: E{— E, be the re-
striction of 4 over G/H, and let 4 be the restriction of # over x = H/H. In
this case the natural maps G Xy E; — E;, and G X4 E, — E, are G-homeo-
morphisms, and 4° is given as the composition

E’Gx = GXHE; - GXHEX = EGx-
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By definition,
7(h°) = x6(G/H) 1(h?). (D

Notice that the inclusion maps i’: Ej— E’ and i: Ey— E have torsion zero in
the corresponding Whitehead groups since they are pull-backs of G/H — B,
which has zero torsion because it is the inverse of a G-CE map. Then Ai’ = ih®
and, by the composition formula, 7(#) = i,7(h°). Since xG(G/H)'r(h)?] =
x6(B)7(hY), it follows from the definition and (1) that 7(h) = xg(B) 7 (k).

Case 2: Let B= G/H X S", where G acts trivially on S”. We will show the
formula by induction on n. Write S” = D Ug»-1 D", and let the inclusion
maps be j,.: G/HxD? - B and j: G/HxS"~' - B. Also, let h, and hg be
the restriction of # over G/H X D and G/H x S"~!, respectively. Then, by
the sum formula,

7(h) = (G a7 (h )+ ()7 (h) = (o)w7 (ho).

The result then follows from Case 1, the induction hypotheses, and the sum
formula for the Euler characteristic [7, Thm. 6.2].

Case 3: Let B a finite G-CW complex. We use induction on the number
of G-cells of B. The details are the same as in [7]. O

Let C be the category with objects fiber G-homotopy equivalences of the
form

E'' E

r| l»

B 14, B.

We write [h: E'— E; B] for an object in C. A morphism ¢: [h: E'— E; B]—
[ho: Eg— Ey; By] is a triple (k', k, s), where k': E'’—> E\, k: E— Ej,, and s:
B — B, are G-maps making the corresponding diagrams commutative. We
call a morphism ¢ = (k/, k, 5)

(co) a cofibration if k', k, and s are inclusions;
(we) a weak equivalence if:
(wel) the maps k’ and k are fiber G-homotopy equivalences and s
is a G-homotopy equivalence; and
(we2) k', k, s, and the equivariant homotopy equivalences induced
on the fibers by k£’ and k& have zero torsion on the correspond-
ing Whitehead groups.

Then € becomes a category with cofibrations and weak equivalences.
Define a functor A from C to the category of abelian groups by

Alh: E'—-E; Bl = Whit®(E)Y®UC(E)

on objects and A(¢) = (k«, ki), where ¢ = (K, k, s) as before and k., ky are
the maps induced by k. Also define, for each object [4: E' — E; B], elements
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a\(lh: E'—> E; B]) = (7(h), xG(E))
ax([h: E'— E; B]) = (xg(B)7(hp), xc(E))
of A[h: E'> E].

PRropOSITION 6.2. The pairs (A, a;) and (A, a,) are universal functorial
additive invariants on the category C.

Proof. From the properties of the Whitehead torsion, (A, a,) is an additive
functorial invariant. The additive property of (A4, a,) follows from the addi-
tivity of the Euler characteristic and the naturality properties of the fiberwise
product. The homotopy invariance follows from the composition formula
for the Whitehead torsion.

Now we prove that (A, a;) and (A4, a,) are universal. We follow the proof
of Theorem 6.11 in [11]. Let (D, d) be a functorial additive invariant. Let
{h: E'> E; B] be an object of C, and let r: X — E be a strong G-deforma-
tion retraction representing an element € WhSP(E). This defines an object
[r: X— E; *] in C. Notice also that the fiberwise product defined in [r:
X — E; *]is simply 7. Since the map hy: US(E’) - UY(E) is a bijection, any
element of UY(E’) can be written as hy(y) for some 5 e US(E’). Let x:
G/H — E’ represent an element of UC(E’). Then x induces a morphism

X=(x,hx,p'x):[id: G’H- G/H;G/H]-[h: E'—> E; B]
where in [id: G/H - G/H; G/H] all the maps are the identity. Define a
natural transformation F: Whi®P@ U — D by the rule
F([h: E'— E; B])(7, hy(n))
= 2 ((x) —xc(x)D(X)(d([id: G/H - G/H; G/HY))
+d([r: X—E; *])
[11, Thm. 6.11]. Fis a natural transformation for both (A, @;) and (A4, a,) be-

cause ai([r: X > E; *]) =a([r: X > E; *]) =7. Hence (A4, a;) and (A4, a,)
are universal functorial additive invariants. [l

COROLLARY 6.3. (i) For each object (h: E’— E; B] in C, there is a natural
isomorphism

¢([h: E'> E; B]): Whg?(E)®UCY(E) > WhEP(E)YDUC(E)

such that ¢([h: E'— E; Bl)(a,([h: E'> E; B])) = a,({h: E’'— E; B]).
(i1) If B is a finite G-CW complex then ¢([h: E’' > E; B]) is the identity.

Proof. Part (i) follows from the universal properties of (A4, @;) and (A4, a,).
Part (ii) follows from Proposition 6.1. O

If B is a compact G-ANR, then B is finitely G-dominated; that is, there is
a finite G-CW complex K and G-maps B-%> K-> B such that rd =sidp.
Using this observation, we can generalize Proposition 6.1 to any compact
G-ANR.
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THEOREM 6.4. Let
EE
p| lr
B4, B
be an object of C. Then 7(h) = xg(B)7(h,) € Whi¥P(E).
Proof. The object {h: E'— E; B] and the finite domination of B as above

determine an object [r*h:r*E’— r*E; K] of € by pull-back. Also, since
rd =gidpg, there is a morphism in C,

¢:[h:E'-E;B)->[r*h:r*E’->r*E;K].
Then one component of ¢ is a G-map D: E — r*E such that 7D =;idg. Thus

the map (D,, Dy): WhiPP(E)YDUCY(E) - Whi?(r*E)® UC(r*E) is a mono-
morphism. By Corollary 6.3(i), there is a natural isomorphism

¢([h: E'> E;B]): Wh*(E)®UC(E) - Whi¥»(EY@UCY(E)

such that ¢([h: E'— E; B])(xg(B) 7(hp), xg(E)) = (7(h), xg(E)). By natu-
rality, ¢([r*h: r*E’ - r*E; K1)(D,, Dy) = (D+, Dy)$([h: E' - E; B]). But by
Corollary 6.3(ii), ¢([r*h: r*E’— r*E; K1) is the identity, and since (D, D)
is a monomorphism it follows that ¢[(h: E’— E; B]) is the identity. There-
fore xg(B) 7(hy) = 7(h). |

Now we can prove the general theorem which computes the torsion of a fiber
G-homotopy equivalence.

THEOREM 6.5. Let
E' E
| |7
LB
be a fiber G-homotopy equivalence. Then
7(h) = xg(B")1(hp) + p*(7(f))-
Proof. By the universal property of the pull-back /4, we have the diagram
B el E
| Pol lr
B4 p L, p

Then 7(h) = 7(f) + fur(h’) = p*(7(f)) + fo7(h’). Using Theorem 6.4, we
obtain

Sur(B') = fu(xa(B") 7(h})) = x6 (B Y(fo)7(h}))
= x6(B)Y1(fphp) = xc(B')7(hp)
by the naturality properties of the fiberwise product [7, Thm. 6.1]. W



Topological Whitehead Torsion 77

REMARK. The product formula (Theorems 3.5 and 3.8) can be derived as a
special case of Theorem 6.5.
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