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0. Introduction

The main result of this paper bounds the dimension of the complex space
of rank-k holomorphic mappings between two compact complex manifolds
X and Y, which we denote by Hol; (X, Y). The hypothesis of the main theo-
rem involves curvature conditions on the image manifold Y. There are also
two lemmas of independent interest. One shows that the evaluation map-
ping at any point x € X, which we denote by eval(x): Hol, (X, Y)— Y, does
not reduce dimension. The other lemma is a variation on the Schwarz-Pick
lemma. These results are part of the school of thought exemplified in [KSW],
[K1], [NS], [No], [SY], and [La].
We list some results that motivate this work as follows.

0. (De Franchis’ theorem) If X and Y are compact 1-dimensional com-
plex manifolds (i.e. Riemann surfaces) and the genus of Y is at least 2,
then dim Hol,(X, Y) =0.

1. [KSW] If X and Y are complex manifolds, X is compact, and the
holomorphic tangent bundle 7(Y) has a Hermitian metric such that
the curvature form R(v, 0)(,) has at least » — k negative eigenvalues
for each nonzero vector ve 7(Y), then dim Hol; . (X, Y) = 0.

Here, R(v,w)(s, f) = h(D?*(s, f)v,w), where D is the connection as-
sociated to the metric # (see [GA] or [SS]).

2. [K2] Let M be a compact complex manifold whose first Chern class
c1(M) is represented by a (1, 1)-form

=3 Cadz, AdZp.

27F a,b

If {C,5} is negative semidefinite with maximal rank r, then
dim Aut(M) <dimM-—r,

where Aut(M) denotes the automorphism group of M.

3. [NS] Let X be a compact complex manifold. If Af¥ 7(Y) has a Her-
mitian metric such that R(v, 7)(,) is negative definite for each non-
zero ve N T(Y), then dim Mero, (X, Y) = 0. Here, “Mero,” stands for
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meromorphic mappings of rank k. For the case when k = 1, the condi-
tion becomes that Y has negative bisectional curvatures.

The authors would like to take this opportunity to express their sincere
thanks to Bernard Shiffman for his generous help and encouragement dur-
ing the preparation of this paper.

1. Statements of Results
We now state our main result as follows.

MAIN THEOREM. Let X and Y be compact algebraic complex manifolds. If

(1) N¥T(Y) has a Hermitian metric ¥ such that, for each y € Y and each
nonzero simple vector v in N T,(Y), the Hermitian bilinear form
R(v,0)(, ) is negative definite on span(vy, ..., ;) where v =v;A -+ AUy,
and R(v, 0)(, ) has at least s, negative eigenvalues on T,(Y); and

(2) Y has a Kdihler metric with negative semidefinite Ricci curvature, then

dim Hol,(X,Y) <dimY —s;. (1.1)

Here, if v is a “simple vector” this means that v is of the form v = v A -+ A vy
that is, it need not be written as a sum of wedge products. We remark also
that condition (1) implies that we necessarily have s; = k.

In Section 3, we will consider the case when Y = I'\ D, where D is a bounded
symmetric domain and I' is a torsion-free discrete subgroup of Aut(D). We
will show that for such Y and for many values of k, the upper bound given
in the Main Theorem improves that given by a result of Noguchi [No], and
that in all cases our bound is always at least as good as that in [No]. Explicit
determinations of these values of k£ will be carried out for those smooth
quotients of classical bounded symmetric domains.

An immediate consequence of the Main Theorem is the following.

CoROLLARY. Let X and Y be compact algebraic complex manifolds, and
let k be an integer such that 1 < k < dimY. Assume that Y has a Kahler met-
ric with negative semidefinite Ricci curvature. Assume further that T(Y)
has a Hermitian metric and that there exists a positive number B such that
the following two conditions hold:

(1) the holomorphic sectional curvatures are strictly less than —B;
(ii) if k =2, the holomorphic bisectional curvatures are less than or equal
to B/(k—1).

Then dimHol,(X,Y) <dimY —k.
(The case where kK = dim Y follows from [KSW, Cor. 2].)

Note that this allows some positivity in the bisectional curvatures. This
suggests that one could deform a compact Kidhler manifold with negative
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holomorphic curvature and semidefinite holomorphic bisectional curvature,
and retain some control even if the holomorphic bisectional curvatures be-
come positive, as long as the Ricci curvature stays negative semidefinite.

The following lemma is a variation on the Schwarz-Pick lemma found
in [La].

LEMMA 1. Let Y be a compact complex manifold with a Hermitian met-
ric ¥ on NFT(Y) such that, for every nonzero simple vector v e N T(Y),
R(v, 0)(,) is negative definite on span(v,, ..., Uy) where v =V A+ AUy.
Then there exists a positive number B such that, for any holomorphic map-
ping f: A¥ > Y, we have B(f*V¥) < ® where ® is the product of the Poincaré
metrics and f*¥ (w, w) = Y(fuw, fow) for we N T(AF).

We also have the following.

LemMA 2. If Y has a Kédhler metric with negative semidefinite Ricci curvature
and X and Y are compact complex manifolds, then the evaluation mapping
at any point x of X has 0-dimensional fibers. More specifically, for eval(x):
Hol(X,Y) - Y given by eval(x)(f) =f(x), we have that eval(x)~(y) is a
finite set for any y €Y. In particular, we have

dim Hol(X, Y) = dim Image(eval(x)).

2. Proofs
To prove the Main Theorem, we also need the following lemmas.

LEMMA 3 [KSW]. Let M be a complex manifold, A an irreducible com-
pact analytic subset in M, and ¢ a twice differentiable real function on M.
Assume that the Levi form L() has at least p positive eigenvalues at each
point of A\¢~1(0) and that ¢ = 0. Then we have

A ¢ (0) or dimA=<dimM-p.

LEmMMA 4. Let X and Y be compact algebraic complex manifolds. Let H de-
note the closure of a connected component H of Hol(X, Y) in Sub(X XY).
Then:

(a) H and H\ H are algebraic subvarieties of Sub(X XY);

(b) for fixed xe X and vy, ..., v € T(X), the mapping s,: H— N T(Y),
defined by s,(f) = f+U1A - -+ A fyU for f€ H, is an algebraic mapping;

(c) s, has a meromorphic extension to H.

Here Sub(V') is the Chow space of nonreduced subvarieties of V. It is well
known that the components of the Chow space are compact algebraic vari-
eties (see e.g. [Sh]). We regard Hol(X, Y) as a subspace of Sub(X xXY) by
identifying a holomorphic mapping with its graph.
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LeEMMA 5 [KSW). Let E be a Hermitian holomorphic vector bundle of
rank r over an n-dimensional complex manifold Y, and let ¢: E— Rt U {0}
be given by ¢(v) = |v||>, where ||v| denotes the norm of v induced by the
Hermitian metric of E. Suppose the curvature form R(v,, 0,)( , ) has at least
k negative eigenvalues at a vector v,€ E. Then the Levi form L(p) has at
least r+ k positive eigenvalues at v,,.

We are now in a position to give the following.

Proof of the Main Theorem assuming the lemmas. Choose x in X such that
there is a mapping f, in Hol, (X, Y) whose rank at x is at least k. Thus there
is a simple k-vector v, = v; A -+ Avg e AF T.(X) such that

FosUy = FoxUI A A foxlpr € NCT(Y)
is not zero. Now define s,: Hol (X, Y) —» N T(Y) as in Lemma 4, that is,
S (f) =fiv, for feHol(X,Y).

Now we fix the point x € X and v, € Af T(X). Then s, is a well-defined map-
ping. Note that Image(s,) is contained in the set of simple vectors. We shall
use s, to analyze Hol, (X, Y).
By Lemma 1, we obtain a bound on s, in the following way. Fix an em-
bedding j: A* » X such that j(0) = x and j,w, = Av,, where Ae C\{0} and
d d

k k
=—A-A—| e\ TH(A").
6z1 azk 0 N To(A7)

By Lemma 1, for fe Hol,(X, Y) we have

Wo

B|fujiWoly < |Wole = 1.

By the definition of s,, we thus have
1 . 1
[Ny = |Ssvdle = Tl fedemole = g,

which is an upper bound independent of f. Thus the image of s, is a ¥-
bounded set.

By Lemma 4, s, extends meromorphically to the compactification H of a
component of Hol, (X, Y). Since s, is bounded, the image of the meromoz-
phic extension stays away from the infinity points of the compactification
of N T(Y'); more precisely, the graph of the meromorphic extension of s, to
H is a compact subvariety of H x Af T(Y). The projection of this graph to
NCT(Y) is a compact subvariety A4 coinciding with the closure of Image(s,).
Thus A is contained in the.set of simple vectors.

From condition (1) of the Main Theorem, R(v, #) has at least s; negative
eigenvalues for each simple v. Let r = rank(N\f T(Y)). By Lemma 5, L(¢)
has at least r+s; positive eigenvalues at each nonzero simple v. Then, by
Lemma 3, we have

dim A < dim(AN T(Y)) = (r+s¢) = (r +dimY) — (r +s;) = dim Y —s.
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Let w: A* T(Y) - Y denote the projection map onto Y, that is, = (v) =y for
ve N T,(Y). Since s, is defined as some lifting of eval(x) to A T(Y), the
following diagram commutes:

Hol (X,Y) 2> NCT(Y)

eval(x) l /
Y.

It follows from the above commutative diagram that
rank(s,) = rank(eval(x)).
Hence, by Lemma 2, we have
dim(Hol, (X, Y)) = dim(Image(s,)) = dim A < dim Y —s;.

This finishes the proof of the Main Theorem assuming Lemmas 1-5. O
We also give the following.

Proof of Corollary. Let ve N T(Y) be a simple, nonzero unit vector with
respect to the Hermitian metric of A* T(Y) as given in the Corollary. Let
V= U, A -+ AU With the {v;} orthonormal. Then

R(U’ 5)(vk, v_k) = R(vks v—k)(vk: w() + 2 R(vjs Fj)(vl'{s v—k)
izk
Adding the bounds for each term given by the assumptions of the Corollary
shows that condition (1) of the Main Theorem is satisfied with s, = k, and
this finishes the proof of the Corollary. O

To complete our arguments, we prove Lemmas 1-5 in the remaining part of
this section.

Proof of Lemma 1. The usual sign convention for holomorphic curvature
(used to state the results of this paper) is designed to force agreement between
negative Gaussian curvature in two real dimensions and negative holomor-
phic curvature in one complex dimension. Since the argument in the proof
of Lemma 1 is more easily understood by applying the language of volumes
and metrics to curvature operators, we will work with the opposite sign con-
vention while denoting curvature by the same symbol R.

Given a holomorphic map f: A* > Y and a point x € A*, either f*¥|, =0
or f is locally an injection at x. In the first case, the lemma holds automati-
cally. In the second case, without loss of generality we may assume that f is
an injection, since our argument will be applied at each point of A*. Thus
we may consider f as an inclusion of A¥ in ¥, and A* T(A¥) becomes a Her-
mitian holomorphic vector subbundle of f* A* T(Y) with the induced metric
simply given by f* V.

With our present sign convention, curvature increases in subbundles (see
e.g. [GH1). Thus the curvature of ¥ restricted to AX is less than or equal to
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the curvature of f*¥. In the first case, we restrict the curvature operator. [n
the second case, we consider the curvature of the restricted metric. In either
case, we obtain a curvature operator on the line bundle A T(AF). Now v =
Uy A -+ AU generates the fibers of N T (A% if fvili<i<r is a frame for T(AY.
Let v =v;A-+- AV, be a simple f*¥-unit vector in A¥ T(A¥). The fact that
curvature increases in subbundles can be written as

f*R\I’SRf"I/’

where the superscript indicates the metric to which each curvature operator
is associated. Also, f*RY and R”"Y refer to the (1, 1)-forms f*R¥(v, 5)(,)
and R ¥(v, 9)(,), respectively. Recall that a (1, 1)-form is said to be posi-
tive if the associated pairing is positive definite. Under the present sign con-
vention, the hypothesis of Lemma 1 implies that f*RY is positive. Thus we
have

0< f*RY<R/Y,

Now we can imitate the proof of Theorem 4.1 in [La]. It is well known
that the wedge product is order-preserving on positive forms (see e.g. [La,
p. 101]). Thus

(f*R‘I’)k= f*R‘I’A“.Af*R‘I’
N J

k times

is a positive volume form on A*, and by the preceding inequality we have
(f*RY)* < (RF"Y)%, which will be used shortly.

Because f* ¥ is a metric on Af T(A%), it, as well as (f*RY)%, is a volume
form on AX, Since the ratio of two nonzero vectors in a 1-dimensional vector
space gives rise to a real number, the ratio

(/KN (f*RM)* (x)
ST ¥(x)
is a positive real-valued function on A*. Let S(A* T(Y)) denote the sphere
bundle of A¥T(Y) (i.e., the bundle of unit vectors in A* T(Y)), and let
»: S(N* T(Y)) —» R™* denote the positive continuous function given by v(¢) =
(R¥(¢,F))*(¢t,T) for te S(NCT(Y)). Since Y is compact, S(A* T(Y)) is also
compact, and thus the function » is bounded from below by a positive num-
ber B: that is, »(¢) = B> 0 for all e S(N\* T(Y)). For a point x € A%, let w =
cv = (CU;) AUy A -+ AU, Where v is a unit simple vector of AF T,.(A%) and v;e
T,.(A¥) for 1 < i < k. Then
(x) = (f*R¥(v, 0 w,w) _ [cP(f*R¥(v, D))" (v, D)
ATy wowy [P, 0)
_ det(R¥(f+0, £u0)(frvi, F1)))
Y(fev, fuV)
= (R¥(fuv, fu0))E (frv, fov)
= p(f,v) = B,

P-f(X)= ’ XEAk,
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which is independent of f. Note that f,ve S(A\* T(Y)) since v is a f* ¥-unit
vector in A T(A¥). From the definition of u; and the above inequality, we
have

(K)Bf*¥ < (f*RYH)%.

Let us now combine the two inequalities obtained thus far to yield
(KYBf*¥ < (f*RY)* < (R,

We now relate all of this to &, the volume form on A* associated to the prod-
uct of the Poincaré metrics on the unit disk. Since f*¥ and & are both Her-
mitian metrics on the line bundle A* T(A), there exists a function u: A* - R
such that ¥ > 0 and f*¥ = u®. Let ¥, be the volume form on the polydisk
(A,)* associated to the product of the Poincaré metrics on the A,s, where A,
denotes the disk of radius ¢. Then &, > ® as t - 1. Let

Y =h()dzyy A Ay AdZ A - ATy,

Analogous to the definition of u, we define a function #, on (A,)" for each
t <1 given by
f*¥ =u,®, on (A)~

It is easy to see that 4 is bounded on (A,)* for each # < 1 and

u(zy= TI h(z) for ze(A)K,

l=j<k 22

which readily imply that u,(z) — 0 as z — 8((A,)¥), and thus u, attains a max-
imum at some point in (A,)%. Also, it is easy to see that u, » u as t — 1, and
thus it suffices to show that u, <1/B for each < 1. For a fixed 1 <1, let
Z, € (A,)¥ be a point where u, attains its maximum. If #,(z,) = 0, we auto-
matically have u, < 1/B. Thus without loss of generality we may assume that
u,(z,) > 0. We now employ the following second derivative test [La, p. 101]:

u, has a maximum at y only if (dd“logu,)(y) < 0.

By definition, we have R/ Y = R¥+dd logu,. So by the above second de-
rivative test, we have R/ ¥(z,) < R¥(z,). Since the wedge product is order-
preserving on positive forms,

(RT™)(z,) = (R*)*(2,).
We now use this, along with the above sequence of inequalities, to obtain
(K)Bf*¥(z,) = (f*R¥)*(z,)
= (R7)k(z,)
< (R*)*(z,)
= (k1) ®:(z,)

1
ut(zo)

= (k1) S*¥(z,).



10 Davip GororF & WING-KEUNG To

Comparing the left side with the right side yields «, < u,(z,) < 1/B. Thus we
have finished the proof of Lemma 1. [

Proof of Lemma 2. Let x, be a fixed point in X and let #: A - Hol(X, Y) be
a holomorphic map such that #(A) is contained in a fiber of eval(x,). To
show that 4 is a constant map, we let F: X XA—Y be defined by setting
F(x,t)=eval(x)(h(?)) (i.e. F(x,t)=h(t)(x)) for xe X and fe A. By an
argument in [KSW, pp. 292-293], we have that K(¢) = || Fi(y, (3/0¢)|* does
not depend on x. Since F(x,, t) is a constant independent of ¢, it follows
that K(¢) = 0 and therefore F(x, 0) = F(x, t) for any xe X and 7 € A. There-
fore A(0) = h(¢) for all e A. This finishes the proof of Lemma 2. ]

Len:‘ma 3 and Lemma 5 are proved in [KSW], so it remains to prove Lem-
ma 4.

Proof of Lemma 4(a). Let S be the component of Sub(X XY') containing H.
Recall that H isinjected into S by associating each function with its graph. Let
R={(x,y,5)e X XY X S: (x,y)es}and G=Grass(n, T(X XY)) be the Grass-
mannian bundle over X XY with fibers G(x, y) = Grass(n, Tix, ,)(X XY)),
where #n = dim X. Let G be the canonical vector bundle over G, and let R
be the closure of the set {(x,,s,v)eRXG:ve T« ) (s) and (x, y) es"¢)
in R X G, where s™ denotes the smooth part of s. Define the mapping 7:
R - T(X) by 7(x, », s, v) = v,, where v, denotes the projection of v to T(X).
Thus 7! (zero-section) projected to S yields those subvarieties with vertical
tangents.

Now we show that R is a compact variety. For any vector bundle E, we
denote by PE its associated projectivized bundle obtained by taking the pro-
jective quotient of the fibers of E. We consider

R'={(x,,5 0)e RXPG: 0ePT(s)4, 5}

The projection maps are easily seen to be proper maps. Let B denote the
image of 77! (zero-section) in R’, and let p, denote the projection of R’ onto
S. By the proper mapping theorem, p,(B) is a (proper) subvariety of S. Let
S, =S\ ps(B). Clearly HC S,. A set se S, is a A-sheeted cover over X. Since
S, is irreducible, A is independent of the choice of s € S,. By choosing s € H,
we see that A =1, and thus H = S,. Hence H is a Zariski open subset of S
and Lemma 4(a) follows immediately. ]

Proof of Lemma 4(b). Let T'(H) = {(v, f) e T(X XY) X H: ve T(Gy)},
where Gy is the graph of f and T'(H) is the relative tangent bundle of the
family of subvarieties given by H. Relative tangent bundles exist in the alge-
braic category. Let T(Y) denote the projective closure of 7(Y). Let {w;};<;<«
be k linearly independent tangent vectors in 7,.(X') for some x € X. We denote

Vi=(wixT(Y)xH)NT'(H),

where H is the closure of H in S. The projection pg:V;— H is one-to-one
since f— (w;, fi(w;), f) is the inverse. Also, the projections pg and p7(yy are
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easily seen to be proper mappings. This implies that {(pg(u), p): ueV;} is
an algebraic set in A X T(Y). Note that it is also the graph of the map s;:
H—T(Y) defined by letting s;(f) = f«(w;). Hence s; is an algebraic map-
ping, which implies that s, = s;A -+ AS; is also an algebraic mapping. This
finishes the proof of Lemma 4(b). Ul

Proof of Lemma 4(c). Lemma 4(c) follows easily from Chow’s theorem and
the fact that algebraic mappings do not have essential singularities. ]

3. Applications

In this section, we apply our Main Theorem to the case when Y =T\D,
where D is a bounded symmetric domain and I' is a torsion-free discrete
subgroup of Aut(D). We will show that for those Y which are quotients of
the classical bounded symmetric domains and for many values of k, the
bound in (1.1) improves that given by a result of Noguchi [No], and in all
cases our bound is at least as good as that in [No]. To start with, we first
recall Noguchi’s results which are relevant here.

THEOREM [No]. Let N be a Zariski open subset of a compact Kdhler mani-
Sfold N such that AN = N—N is a hypersurface with only simple normal
crossings, let D be a bounded symmetric domain, and let T' be a torsion-free
discrete subgroup of Aut(D) such that vol(I'\ D) < . Denote the maxi-
mum dimension of proper boundary components of D by I(D). Then

(1) [No, Thm. (3.3)(ii)] Hol,(N, '\ D) is finite for k > [(D), which im-

Dlies
dim Hol,(N,T\D) =0 for k> I(D); 3.1)
(i) [No, Thm. (4.7)(iii)]
dim Hol (N, I'\D) < (D) for k> 0. (3.2)

We remark that we are primarily interested in the special case of the above
theorem when X and Y are both compact, and such assumptions are implicit
in the ensuing discussion.

For xe '\ D, we denote

[ (T\D) = min{u: E*+ = {0}
for any vector subspace = C T,(I'\ D) with dim = > u},

where 2+ = {we T(I'\D): R(v, 0)(w, w) = O for all v e Z}. By homogeneity
of D, [,(I'\D) is independent of the choice of x, and we write /(I'\D) =
[, ('\D) for any xe I'\ D. We also denote

AP\ D) = max{dim(Cv)1: 0 % ve T(I'\ D)},

where Cv denotes the complex linear span of v. First we have the following
lemma.
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LEMMA 6. /(D) =/(T'\D) =A(I'\D).

Proof. The first equality is a result of Noguchi and Sunada [NS, Thm. (3.4)].
To prove the second equality, we first show that A(I'\ D) < /(I'\ D). For any
nonzero ve T(I'\ D) and we (Cv)*, we have R(w, w)(v, 1) = R(v, 0)(w, W) =
0, which implies that 0 # v € ((Cv)*)*. By definition of /(I'\ D) we thus have
dim(Cv)* < /(I'\ D), which, upon taking the maximum over all v, implies
that A('\D) < [(T'\ D).

Next we shall show that /(I'\ D) < A(I'\D). For any xeI'\ D and vector
subspace % C T(I'\ D) with dim E > A(T'\ D), it follows from dimensional
considerations that = ¢ (Cv)* for any nonzero v e T,(I'\ D), which implies
that Z+ = {0}. Then it follows from the definition of /(T'\ D) that /(I'\D) <
A(I'\ D), and we have finished the proof of Lemma 6. O

Let s, be defined for '\ D as given in the Main Theorem, where 1 < k<
dim(I'\ D); that is, s; is the minimum number of negative eigenvalues of
the Hermitian bilinear forms R(v, #)(,) over nonzero simple vectors v e
N T(I'\ D).

PROPOSITION 1.
(i) s =dim(I'\D) for k > I(D).
(ii) dim(I'\D)—s, =AT\D).
(iil) g < sppq forall k= 1.
(iv) dim(I'\D)—s; < (D) for all k = 1.
(v) dim(I'\ D) —s; = maximum number of zero eigenvalues of R(v, 0)(,)
over nonzero simple ve N T(I'\ D).

Proof. Statement (i) follows immediately from a result of Noguchi and
Sunada [NS, Lemma (3.3)] that the curvature tensor of A* T(I'\ D) is nega-
tive definite for kK > /(D). To prove (ii), we observe that '\ D is of semi-
negative bisectional curvature, and that all vectors in 7(I'\ D) are simple,
which imply that dim(I'\ D) — s, is the maximum number of zero eigenvalues
of the Hermitian bilinear forms R(v, #)( , ) over nonzero vectors ve T(I'\ D);
that is, dim(I'\ D) —s; = A(I'\ D). Next we proceed to prove (iii). For a non-
zero simple vector ve A¥T! T(I'\ D) of unit norm, v = v;A -+ A Uy 4+ for some
orthonormal vectors vy, ..., vy, € T(I'\ D). Then, for we T(I'\ D),

k+1
R(v, 0)(w,w) = X R(v;, v;)(w, W)

i=1

k
= 20 R(vi, 1) (W, W) + R(Vg 11, T3 1) (W, W)

=1
< R(v', v")(w, W),
where v’ = v; A --- Av € AX T(I'\ D). This implies that the number of nega-

tive eigenvalues of R(v, U)(, ) is greater than or equal to that of R(v’, v’)(,,),
which leads to (iii) upon taking the minimum over v and v’. Statement (iv)
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follows easily from Lemma 6 and statements (ii) and (iii) of Proposition 1.
Finally statement (v) follows as in (ii) from the definition of s; and the fact
that D is of seminegative bisectional curvature. (|

ReEMARK. Statements (i) and (iv) of Proposition 1 imply that, in the case
when Y =I'\ D, the upper bound of dim Hol, (X, '\ D) given by the Main
Theorem in (1.1) is always at least as good as that given by Noguchi [No] in
(3.1) and (3.2).

Finally we will show that, for the four types of classical bounded symmet-
ric domains D and 2 < k < /(D) (as long as /(D) > 1), the upper bound of
dim Hol, (X, '\ D) in (1.1) is actually better than that of Noguchi [No] given
in (3.2). The classical bounded symmetric domains of type I, II, III, and IV
are denoted by D}, ,, DY, D), and D, respectively, and we refer the reader
to [Mo, Chap. 4] for background materials on them.

Typel: D), ,:={ZeM(p,q;C): I,—Z'Z > 0}. Here M(p, g; C) denotes
the space of p X g complex matrices, and 7, denotes the g X ¢ identity matrix.
The holomorphic tangent space of D,E, ¢ at the origin o is identified naturally
with M(p, ¢; C), that is, T,»%D}, ;) = M(p, q; C). For X,Ye M(p, q;C),
the curvature tensor of the Bergman metric of D}, , gives

RX, X)Y,Y)=—|XY'|"—|X'Y|? (3.3)
(cf. [Mo, p. 84]). From (3.3) or [Mo, Chap. 4, (3.2), Prop. 1], we have
dim(CX)* = (p—r(X))(g—r(X)), (3.4)

where r(X) denotes the rank of X. Thus dim(CX)* is maximum if and only
if r(X') =1, and we have

AMT\D,, ,)=(p—1)(g—1) foranyT. (3.5)

For k = 2 and nonzero X = X A --- A X € N T,(D}, ;) of unit norm, where
X, ..., XreM(p, q;C), we consider two cases.

Case (a): span(Xj, ..., Xj) contains a matrix X’e M(p, g; C) with r(X’) =
2. In this case we may assume that X" is of unit length, and we can extend it
to an orthonormal basis {X]= X", X3, ..., X} of span(Xj,..., X}). Then,
for Ye M(p, q;C),

R(X, X)(Y,¥) = 3 R(X}, X)(Y, Y)

i=1
< R(X{, X)(Y, 7). (3.6)

k

This implies that
number of zero eigenvalues of R(X, X)(,)
= dim(CX7{)*
=(p—r(X()(g—r(X{)) (by((3.4)
=(p—2)(g-2). (3.7)
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Case (b): span(Xj, ..., X;) contains only matrices of rank < 1. The iso-
tropy subgroup of Aut(D},,q) at o is isomorphic to U(p) X U(q), and each
U xVeU(p)*xU(q) acts isometrically on M(p, q; C) = 7},(D},,q) via the lin-
ear transformation

X->UXV for XeM(p,q;C), (3.8)

leaving the curvature tensor invariant (cf. e.g. [Mo, Chap. 4, (2.2), Lemma
1]). For 1=i=< p and 1= j =g, we denote by Ej; the p X g matrix whose
(i, j)th entry is 1 and whose other entries are all 0. It is easy to see that
for suitable UX Ve U(p) X U(qg), the linear transformation in (3.8) maps
span(X;, X,) bijectively onto span(E,, E;,) or span(Ey;, E5;). In the first
case, we have, as in case (a),
number of zero eigenvalues of R(X, X)(,) =< dim(CE;;)* N(CE;)*
=(p—1)(g—-2), (3.9
since one can easily see from (3.3) that (CE;;))* N(CE,,)* consists of pXxgqg
matrices whose entries in the first row and the first two columns are all zero. In

the second case, when U X V maps span(X;, X,) to span(%};, E,;), an analy-
sis similar to the first case gives

number of zero eigenvalues of R(X, X)(,)<(p—2)(g—1). (3.10)
Combining (3.7), (3.9), and (3.10), one sees that in all cases

number of zero eigenvalues of R(X, X)(,)
= max{(p—1)(g—2), (p—2)(g—1)}
<(p—-1)(g—1), (3.11)
which, together with Lemma 6, Proposition 1 (i), (v), and (3.5), implies that
dim(I'\D}, ,)—sy <I(D; ,) for 2<k=(p—1)g-1), p,g=2. (3.12)

We now give the comparisons between dim(I'\ D) — s, and /(D) for the other
three types of classical bounded symmetric domains without giving details
of computations, which are similar to those for D},,q.

Typell: D}':={Ze D} ,: Z' = —Z). Inthis case, /(D)) = }(n—2)(n-3)
and dim(I"'\D!')—s, = 3(n—3)(n—4). For 2 < k < {(n—2)(n—3) with
n > 3, we have

dim(I'\D}) —s;, < dim("\D}") —s, = 2(n—3)(n—4)
< i(n-2)(n-3)=UDMN.

Type III: D)V := {Ze D} ,: Z' = Z}. In this case, /(D;"") = n(n—1) and
dim(I'\D}"y —s, =3 (n—1)(n—2). For 2 < k < $n(n—1) with n = 3, we have
dim(I'\ D}y — s, < dim(P\D!") -5, = 3 (n—1)(n—2)

< in(n-1)=1DM).
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Type IV:
D;V:=[Z=(z1,...,Zn)EC”:"Z”z<2 and "Z”2<1+|%215i5nzi2|2]-

In this case, /(D}V) =1 (cf. [Mo, Chap. 4, (3.2), Prop. 4]), and thus by Prop-
osition 1, dim(I'\D}V) —s, = /(D}V) for all k.
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