Regularity of the Dirichlet Problem
in Convex Domains in the Plane

STEPHEN J. FROMM

1. Introduction

Let @ C R? be a bounded convex domain. Then dQ is Lipschitz but generally
not C'. Consider the boundary value problem

{Auzf in Q,

u|39=0.

(1)

The regularity of u is limited by the regularity of 9. In this paper, it is
shown that for sufficiently smooth f, « has almost three derivatives in L!().
Specifically, we will establish the following theorem concerning the oper-
ator G defined by Gf = u.

THEOREM 1.1. If Q C R? is bounded and convex, 0 <e<1, 1< p<
2/(2—¢), and fe LY_ (Q), then for some C,

GfeL5_ (@) and |Gfllp_«a) = Clflr_ o) (2)

The following theorem, stated in [7], summarizes some previous regularity
results for problem (1) in bounded convex domains in R”, n = 2.

THEOREM 1.2. If QCR" is bounded and convex and n =2, and either
l<e<2and 1< p<2/(2—e¢)ore=1and p =2, then (2) holds. The Diri-
chlet boundary condition is satisfied in the sense that Gf € W§ P(Q).

The case e =1 and p =2 follows from integration by parts and is due to
Kadlec [12]; an accessible exposition may be found in the third chapter of
[9] or [10]. The case e =1 and 1 < p < 2 is due to Dahlberg, Verchota, and
Wollff (see [7]) and independently to Adolfsson [1]. The proof of the result
for e =2 may be found in [7].

In particular, even if fe C®({), the best one can say about Vu and VZu
is that Vu e L®(Q) and V?u e L?(Q). In addition, by considering a family
of truncated convex sectors in R? with opening angles increasing to w, it
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follows that given any fixed 0 < e <2 and p > 2/(2 —¢), estimate (2) cannot
hold simultaneously for all convex €.

Theorem 1.2 and the counterexample led the author to conjecture Theo-
rem 1.1. This was also motivated by the following heuristic principle: It is
often the case that for sufficiently smooth f, u|;q should be as smooth as
d{? but no smoother. Since Q is convex, the curvature of 9 is a measure,
and thus the submanifold 99 is almost twice differentiable in L!. Therefore,
u | a0 is likely to have almost two gradients in L!(dQ). Usual extension theo-
rems then show that # should have almost three derivatives in L!(Q).

The hypothesis of convexity is necessary in that both theorems fail com-
pletely if Q is only Lipschitz. Furthermore, in terms of the integrability of
the third gradient of the solution u, a convex domain 2 that is additionally
C? is no better behaved than a generic convex domain (see Proposition 2.2).

In the next section, the required estimate for the kernel is derived. The
proof relies on conformal mapping and so is applicable only to © in R?, so
that Theorem 1.1 (unlike Theorem 1.2) is restricted here to the case @ C R2
This technical restriction to the case n =2 was overcome in [8] using new
methods. In Section 3, the atomic decomposition of function spaces is used
to pass from the estimate on the kernel to (2); this section is written for Qin
[R?, but the proofs generalize to higher-dimensional domains with no addi-
tional work.

Hereafter, G(x, y) will denote the kernel of G; N(x—y) = (1/2x) log|x—y|
is the fundamental solution for A in R?, and U(x, y) = N(x—y)—G(x, y).
By dist(-, -) we denote the (Euclidean) distance between points and/or sets,
with d(-) denoting the distance between a point or set and R?\Q. By |+] we
denote 2-dimensional Lebesgue measure as well as the Euclidean metric on
R? and C. W} P(Q) is the closure of CF(Q) in the Banach space of functions
with one derivative in L”(Q). LZ(R?) and B? 9(R?) denote (respectively) the
Bessel potential and Besov spaces on R?; L2(Q) and B?:9(Q) denote the re-
strictions of such spaces to §. (For a study of these spaces, see [15].) C will
denote various constants that depend on at most €, p, and 2, unless other-
wise stated.

2. The Estimate on the Green Function

Central to Theorem 1.1 is the corresponding estimate on the kernel G(x, y),
stated here for U(x, y). That the weighted Sobolev-type bound below is really
an LY_.-type bound is seen from the proof of Lemma 3.2.

PRrOPOSITION 2.1. Let Q C R? be convex and bounded. Let 0 < ¢ <1 and
1< p<2/(2—¢€). Then

I/p
(f Id(X)EV,?U(x,y)I”dX) < Cd(y) P, (3)
Q

where C is independent of Q).
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Proof. First we show that the estimate

I/p
( f |d(x)V2G(x, y)lpdx) < Cd(y)s~*7~! where r=3d(y) @
M B,(y)

implies estimate (3). Since Q is convex, |V, G(x,y)| =< Cd(y)lx—yl‘2 (see
[7]). Moreover, |V, N(x—y)| = C|x—y|~!. Hence
|V, U(x, )| < |V N|+|V:G(x, y)| = Cd(y)~!

for x € dB(3/4y4(,»(¥). By interior estimates for harmonic functions, it fol-
lows that |V3U(x, y)| = Cd(»)~? for xe B,(¥). So

1/p
(f Id(x)fV)?U(x,y)I"dX) < Cd(y)-~ 7L, (5)
B.(y)

Since |V2N(x—y)| = C]x—y|™® and d(x) = 3|x—y| (when x € Q\ B,()),

1/p
(f !d(x)fVEN(x—y)!”dx) = Cd(y)~ 7L (6)
N\B,(y)

By (5) and (6) and the definition U = N— G, (3) follows from (4).

It remains to show (4). For the remainder of the proof, view subsets of
[R? simultaneously as subsets of C. For x = (xy, x,) and y = (¥, ¥,) in R? as
above, define the complex variables w = x;+ix, and wy = y,+iy,. Let B =
B,(0) c Cand ¥: Q— B be a conformal bijection with ¥(w,) = 0 € B. Write
¥(w) = ze B and define ® = ¥ ~': B> Q. It is well known that

1
27

By the Cauchy-Riemann equations, |V3G(x, )| = (1/7)|(d/dw)* log ¥(w)|.
Using the chain rule and writing (d/dw)? log ¥ in terms of z and ®'(z),

G(x,y) = log|¥(w)|.

d 1 1
= log¥(w) = —— V' (w) =
dw OF (W) ¥(w) (W) z29'(z)
and
d3 d* (1 1
= _log¥(w) = l
aw? 8¥W) =2 (z @’(z))

z(q,,-n_d_)z .1__1_)

dz ) \z ®

_ 343 @II 2— (I)” 4
=z°® {2(l+z¢, ¥4 1+zq), .

Set F(z2) =1+4+29"(2)/®'(z). Then
|V3G(x, y)| = C|z®’|3|2F?—zF"|. (7)

By [2], since ® maps B univalently and conformally onto the convex region
Q, Re F(z) = 0. Moreover, every nonnegative harmonic function is the har-
monic extension of a finite nonnegative measure on dB. Hence
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1 (2 etz
F(z)=— -
(Z) 27 0 el¢—z

du(9) +ic.

Since F(0) = 1, ¢ vanishes and the positive measure u has t_otal mass 2.
Set z=re” and (P+iQ)(r,0) = (1/27)(1+re®)/(1—re') for 0<r<1
and 0 <6 < 2x. Then

. 27
F(re") = | (P+iQ)(r,0—¢)du(9).
0
We now assert that |z| =|¥(w)| is bounded below when x is far from y
or (equivalently) when w is far from wy. Because Q is convex, |G(x,y)|<
Cd(y)|x—y|™" (see [7]). Thus, if |x—y|= (1/100)d(y) then |G(x, )| < C.
Hence

|z| = | ¥ (w)| = e27C) = g=27C, @®)

Next, the quantity d(x) in (4) will be estimated in terms of dist(z, dB), as-
suming that | x—y| = (1/100)d(y). As in the preceding paragraph, |G(x, y)| <
C,. Therefore, dist(z, dB) = 1 —|z| = 1—e 276 > C|G|, where C > 0 de-
pends only on Cy. When |x—y| = (1/100)d(y), the interior gradient estimate
for harmonic functions shows that |V, G(x, y)| = Cd(x)~!|G(x, y)|. More-
over,

= _1_ _‘1_ — _1_ ’ -1
|V,G(x, )| = Zw'dw log ‘I'(w)' == |z®'(z)| .
Therefore, dist(z, dB) = Cd(x)|z®'(z)|”", and hence

d(x) =< C|z®’(z)|dist(z,dB) when |x—y|= -1%6d(y). 9

Consider the left-hand side of (4). When x lies in the region of integration

O\ B(1,2)a») () |z| =|¥(w)] is bounded below by a positive constant by (8),

and d(x) < C|z®’|dist(z,dB) by (9). Since the area elements dA(w) and

dA(z) are related by dA(w) = |¢I>’(z)|2dA(z), changing variables and using
(7) yields

1/p
(f |d(x)‘V§G(x,y)|”dx>
NB.(y)
1/p
< c( f {[dist(z, B)|z®'|)¢|z®’| 3|2 F*—zF'|}?|®') dA(z))
V(B ()

1/p
< C(f |q"|(6_3)p+2{di5t(z, aB)e[lFlz'l'lFll]}pdA(z)) .
Y(Q\B,(y))

By the convexity of @, |V,G(x,y)| < Clx—y|™! (see [7]). Since |x—y| =
d(») in the region of integration above, |#'|™' <|28'|”} = 27|V, G(x, y)| =
Cd(p)~". Since (e—3)+2/p=¢—2/p'—1<0, |®|73+2P < Cd(y)c~ 2P,
Therefore,
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1/p
(f |d(x)‘V3G(x,y)|”dx)
O\B,(y)

1/p
st(y)f—’-/P'—‘( f {dist(z, aB)f[|F|2+|F'|]}PdA(z)) :
B

The proof of the proposition will be complete once it is shown that there is
a C = C(e, p) independent of Q such that

1/p
(f {dist(z, BB)‘[lF2|+|F'|]]pdA(z)> =C.
B
By Minkowski’s integral inequality,

1/2p
( f [dist(z, dB)"?|F|]?” dA(z))
B

-1l

2 1/2p
< f [ f \dist(z, 0B)"2(P+iQ)(r, 0 — $)*? dA(z)] du(®).
0 B

27 2p
dist(z, dB)*’>(P+iQ)(r, 0 — ) du(s)

1/2p
dA(z)]
0

Since z = re” in the preceding line,

b
|z—ef®|’

e’ +z
et~z

14 re’@—9
1—rei0=9

!
2%

(P+iQ)(r, 8~ )| = zlw}

Moreover, since e'® € 3B, dist(z, dB) < |z—e’®|. Hence
dist(z, 3B)/2|(P+iQ)(r, 0 —¢)| = C|z—e™|/>7",

We now conclude that

1/2p
( f [dist(z, dB) /2| F|]>? dA(z))
B

2r _ 1/2p
< Cf U lz—e’¢|“/2")2”dA(z)] du(o)
0 B

27
<C du(¢) < Cmass u = 27C,
0

since the inner integral over z € B is uniformly bounded in e*® € B for
(e/2—1)2p > —2, which holds since e/2 > 1/p’.

For the term involving F”, differentiating under the integral sign gives
e'®

1
)d#(qb) = op (2—ei®)2 du(),

14 ze "¢
1—ze—i¢

d 1
Flz)="2%
@ dz 2= aa(

SO
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1/p
(f |dist(z, 0B) F'(2)|” dA(z))
B

27 eiqS 2

- dist@ 0B s du(9)

([

1/p
dA(z)) .
™ Jg (z

Next, one applies the Minkowski inequality and then follows the treatment
of the |F?| term, finishing the proof of Proposition 2.1. O

REMARK. When n =3, a homogeneity argument leads to the conjecture
that (3) holds with the exponent on the right-hand side changed toe —n/p’—1.
The proof of Proposition 2.1 relies on conformal mapping and cannot be
adapted to the case n = 3. Consideration of the object log|V,G(x, y)|, super-
harmonic when  is convex, leads to a proof of 3) whenn=3 and 1< p<
3/(3 —¢) (see [8]). This range of p is sufficient for proving Theorem 1.1.

The methods of this section show that the conclusions of Theorem 1.1
fail when € =0 for any p =1, even if some additional smoothness of  is
assumed.

PROPOSITION 2.2. There exists a bounded, strictly convex and C* domain
Q C R? and an fe CJ(RQ) such that V3Gf & L\(Q).

Proof. We first show that there exists a bounded, strictly convex and C 2do-
main Q C R? such that

f IV3G(x, )| dx = oo (10)
B

for some y e Q and & > 0, where Bs(y) C B,5(y) C Q.

Rudin [13] shows that in the unit disk B, there is a harmonic function
u e C(B) satisfying [p|Vu(z)|dA(z) = o, where Vu = (3/0z,u, 3/3z,u) for
Z2=2z+iz,.

By adding a constant if necessary, it may be assumed that ¥ =c¢> 0 in
B. Multiplying by a positive constant, we may take u#(0) =1. Let & be the
harmonic conjugate of u. Since i is arbitrary up to an additive constant,
assume i7(0) = 0. Then F(z) = (u+iii)(z) is analytic in B and equals 1 at the
origin. Define an analytic function 4 in B by 1+ zh(z) = (1 +ii1)(z). Define
H(z) = [{ h(}) dg, that is, H'(z) = h(z) and H(0) = 0. Define ¢ by ®(z) =

[ZeHO g
Note that &'+ 0 in B, so ® is conformal. Also,
@II
Re{1+ el (Z)} =ReF(z) = u(z) > 0.
®'(2)

By [2], an analytic function ® in B is convex univalent - that is, has convex
image and is injective and conformal - if and only if Re z®"(z)/®'(z) = —1.
Thus ®: B — Q bijectively and conformally, where Q is convex.
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Since u|,5€ L*(0B), ii|,5€ L*(dB); hence h(z) |5 L*(dB). From this it
follows that H extends to a function continuous on B. Because log|®’(z)| =
Re H(z), |®'(z)| and |®’(z)|™" are continuous and bounded. The bounded-
ness of |®’| shows that Q is in fact bounded.

As before, define ¥ = ®!: Q — B, let G be the Green function of Q, and let
w = ®(z) with x = (Re w, Im w) € R2. As before, G(x, 0) = (27) ! log|¥(x)|
since ¥(0) =0, and

3
9% log ¥(w)

Now, in (10), let y = 0 and pick 6 > 0 small enough so that B,5(0) C @ and
®(B;(0)\ B,,10(0)) C @\ B;(0). (Recall that #(0) =0.) Then

|ViG(x,0)| = 1

1, _3.,-
- =—|z 3 3 (2F2—zF)|.

[ w6 oax= L | |2738"(2) | |2F? — 2F||&'(2) [ dA()
Q\ B;(0) T J1/10<]z)<1

=C [2F%—zF'|dA(z); a1
1/10<|z|<1
the last inequality follows since |®’| = C > 0.
By the Cauchy-Riemann equations, |F’| = |Vu|. Therefore

le'IdA(z)=f|Vu|dA(z)=oo
B B

and hence [y/19 < || < 1|z]|F’|dA(z) = oo. From (u + iit) | s € L*(0B) it follows
that f|;|<1|F|* dA(z) < . Thus, (10) follows from (11).

Next we show that Q is strictly convex and C?2. Let s be arclength on 99
and let 7 represent the angle of inclination of the tangent vector to 9Q at s.
The curvature is k = d7/ds. If 0 is arclength on dB = ¥(dQ) (i.e., § = argz
when |z| = 1), then

(o drdo

do ds’
The tangent vector at the point z € dB corresponding to s € d€2 has inclina-
tion 7/2+ 0; and since ® is angle-preserving, 7 = (w/2+0) +arg ®’(z). Thus

dr d - (e, .
L = 14+—Imlog®’(e”®) = 1+ Im ———je'?
ag [t g Imlog(e™) =1+1Im =5 75 e
_ (I)”(Z) _
_Re{l+z é’(z)} = u(z).

Moreover, df/ds = |¥’|, since lengths are multiplied by |¥’| in going from
Q to B. Therefore, k = |¥’|(u-¥). It was shown above that [¥’| is contin-
uous. Hence ¥ |39 € C(3Q). Since u e C(B), it follows that k = |¥'|(u-¥) is
continuous.
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Since a Lipschitz domain in the plane whose boundary has continuous
curvature is a C2 domain, Q is C2 Furthermore, since both # and |¥’| are
bounded away from zero, x is bounded below by a positive constant and
hence Q is also strictly convex.

Finally, choose n € C*(Q) satisfying n = 1in Q\ B;(»y) and n = 0in B;,,(»).
Let f(x) = A,(n(x)G(x,»)). Clearly

JS(x)=G(x,y)An(x)+2Vy(x)-V,G(x, y)

is in Cg’(2) since both Vi and Ay are in Cy°(2) and vanish near x = y. Fi-
nally, Gf(x) =n(x)G(x,y), since 9(-)G(+,y) vanishes on the boundary.
Because Gf = 5(:)G(-,¥), V(Gf) ¢ L}(Q) follows from (10). O

3. The Atomic Decomposition

Throughout this section, 0<e<1, 1< p<2/(2—¢), and  will denote a
fixed bounded and convex domain in R2

The rest of this paper is devoted to using estimate (3) on the kernel U(x, y)
to derive estimate (2) on the operator G. An important technical tool will
be the atomic decomposition of function spaces.

Before proceeding to the proof of Theorem 1.1, we present some facts
about the atomic decompositions of the function spaces BZ*? and LZ for
a >0 and 1 < p <. Fix an arbitrarily large integer M. Using the normal-
ization given in [4], we say that a(x) is an («, p)-atom if, for some closed
cube O C R?, suppa < 3Q and

\ gntn

< a/2=1/p=(i+12)/2  if ~. 4 ~, < M.
dx{'9x)? = e

a(x)

Here, 3Q denotes the 3-fold dilation of Q about its center.

Denote an atom a associated with a cube Q by ag. Only dyadic cubes,
those whose vertices are of the form 2 ~"m with » and m in Z, are needed for
the results stated below. Moreover, since only the inhomogeneous spaces
B?9(R?) and L2([R?) appear here, we may restrict consideration to those Q
with |Q| < 1, that is, » = 0. Given such a cube, let £(Q) be the length of a side
of Q. If ag is a (1—¢, p)-atom, then

lagll Loz = Q]! ~ 271 = g(@) ™! <+, (12)

Let 1< p<eoandl=g=c,and let {5y} denote a sequence of real num-

bers indexed by the set of dyadic cubes in R% We define a Banach space of
sequences, b” 9, by defining a norm

o q/pV/q

lisolore=| £( = Isol?) "]

»=0\¢(Q)=2"

Then, given 1< p <o, o >0, and fe B2 9(R?), there are («, p)-atoms ag
and a sequence {sp} € b” 7 for which
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f= E E sQaQ with "[SQ}"bp,qS C”f”B{,"‘/(lmz)-
v=0 ((Q)=2""
Such a double sum will often be abbreviated as X sgpap-
The previous inequality has a converse that is usually stated for molecules,
which are more general than atoms: Given («, p)-atoms {ap},

HEQ:SQGQ =< C"{SQ}“bp.q. (13)
?)

BPoQ(R

a

For L?(R?), where 1 < p < o and « > 0, there is a similar decomposition
and converse, in which 579 is replaced by /72 This is the sequence space
with norm

, (14)
LP(dx)

ltsodllir2 =

_ 172
\[gdsQllQ(x»z]

where IQ is the indicator function 1, normalized to have L?-norm 1. (See
[5]; note that the normalization used here is that of [4].)
We will need the following facts:

BP1(Q)~ BP'P(Q) is a continuous inclusion; 5

BPP(Q) LE(Q) is a continuous inclusion if p < 2. ()

Vanishing moment conditions on atoms, which are optional for o« > 0 and
p > 1, have been omitted since they are not needed here.

Finally, we make two remarks on notation. Given a countable set J such
as some set of cubes, we will let /” denote L”(J), with J assigned the count-
ing measure. If a function g is not supported in Q, which is possibly the case
for g = agp, the notations Ug and Gg will denote U(g|g) and G(g|q).

We first use (3) to obtain an estimate on the third gradient of Uf, where f
is a linear combination of atoms. For technical reasons, it will be assumed
that all the atoms are at the same scale and are supported close to 4. It may
be assumed that supp apNQ # @ for any atom ay, for otherwise Uag = 0.

LEMMA 3.1.  Fix an integer v = 0. Suppose {ap} is a collection of (1—¢, p)-
atoms, where the cubes Q satisfy the restrictions £{(Q) =27 and d(3Q) =<
0Q). If {sg} € l?, then

ld(x)* V2 U(Z sgao)l Loy = Clitsolll v, (16)
with C not depending on the choice of v.

Proof. A simple rescaling argument shows that we need only consider the
case » =0 (i.e. £(Q) =1) as long as the constant C in (16) is shown not to
depend on the diameter of Q. A careful inspection of the proof below shows
that the resulting C can indeed be taken to be independent of . It should
be noted that the constants C in the pointwise estimates on G(x,y) and
V,G(x,y) used below are independent of .
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With £(Q) =1, |ag| = 1 (by (12)) and |supp ap| < |3Q| < 9. In what follows,
let {Q’} denote the set of all dyadic cubes Q' with ¢(Q’) =1and Q’'NQ + 4.
(Note that this is not the condition 3Q’'NQ # @.) Since @ = Uy (Q'NQ),

P
1d(-)*V>U T soagl|Zre) = g“ EQ: sod(+)*V>Uag

LP(Q'NQ)

D
= 2 {Slsol 40 ¥Uagl o)

p
=E[E|SQ|/{Q’,Q} ; amn
oo

where kQ" 0 = ”d( ')E V3UQQ” LP(Q'NQ)-

Because sequences are simply functions on countable sets and since sum-
mation is integration with respect to a counting measure, kg, o is an integral
kernel from functions on {Q} to functions on {Q’}. The proof of Lemma 3.1
is complete once it is shown that k is continuous from /P({Q}) to /°({Q’}).
Suppose that there is a C < oo such that

sup X kg o= C (18)
o Q
and
sup X kg, o< C. 19)
o ¢

Then, by the generalized Young’s inequality (see [3]), the rightmost member
of (17) is controlled by ||sQ||{7’p, completing the proof of Lemma 3.1. There-
fore, it is enough to show (18) and (19).

Given Q' and Q, denote the distance between Q' and 3Q by r. Those pairs
(Q’, Q) for which r <100 are few; for such (Q’, Q), the summand kg ¢ is
bounded by supg, ¢ ko', 0. Appropriate control of kg o for r =100 is ob-
tained by first passing from U to G by getting bounds for N and then break-
ing the case r = 100 for G into two subcases, d(Q’) <1 and d(Q’) = 1.

We will make use of the following fact, whose proof is elementary and will
be omitted. Let D C [R? be bounded and convex. If d(-) denotes dist(-, R2\ D),
then for » > 0 we have

f d(y)""'dy < C-(diam D)"*}, (20)
D

where C does not depend on D.
For convenience, the remainder of the proof of Lemma 3.1 will be broken
into several steps.

Step 1: We first show that, for some C,
sup kg, o= C <. (21)
0,0
By using the Minkowski integral inequality, estimate (3) on the kernel U,
and the fact that supp ag S 30, we see that
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kKoo = H fﬂ d(x)*VRU(x, y)ap(y) dy

LP(Q; dx)

< [ 1060 20, D) a0l 200) dy
Q

= Cllagli=@ | d(»<~ay.
30NQ
Inequality (21) now follows by using the bound (12) and applying (20) to
D =30NQ, while making the additional observation that
d(y) = dist(y, R2\Q) = dist(y, R2\(30NQ)).
Step 2: Suppose r = 100. Then
[d(-)*V3N(ag )l Lrongy < Cr3+e. (22)
If xe Q’, yesuppag < 3Q, and r = 100, then | x—y| = r. Since |VIN(x—y)| =
C|x—y|™3, it follows that for xe€ Q’,

|ViN(ap|a)(x)| =

f ViN(x—y)ag(y)dy| =< Cr—>.
Q
Since ((Q’) = 1(Q) =1, dist(Q’, 3Q) =r, d(3Q) <1, and r = 100, it follows
that d(x) < Cr for xe Q". Hence [|d(-)*V*’N(ag|)|| ro'nay < Crér™.
Step 3: If r=100 and d(Q’) < 1, then
||d(-)EV3GaQ||Lp(anQ) = Cr_z. (23)

Pick ¢ € C(R?) such that ¢ =1 on 2Q’ and ¢ = 0 off 4Q’, where 2Q’ and
4Q’ denote the dilates of Q” about its center by factors of 2 and 4, respec-
tively. Then

Id(-)*V*Gag| Lrgnay = 1d(-)* V> [$Gagl| Lrgnay-

Let w=¢Gag. Since ¢ € C&(R?), w|zq =0 in the sense that Gag|ag = 0.
Therefore, w = GAw, and

Aw = A(pGag) = ApGag+2Ve-VGag+ ¢ AGag.
Since dist(Q’, 3Q) = 100, $AGay = ¢-ag|q = 0. Because {1 is convex,
|G(x,»)| = Cd(x)d(y)|x—y|~?

(see [7]). Also, d(x) = C when xesupp ¢, d(y) = C when y e supp ag, and
|x—y|=r for r > 1. Thus

|Gag(x)| < LQHQ d(x)d(y)|x—y|?|ag(y)|dy = Cr2

for x € supp ¢. Similarly, because |V, G(x, y)| = Cd(y)|x—y|? (see [7]),

|V Gag(x)| =

f V,G(x,y)ag(y)dy| < Cr—?
Q
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for x € supp ¢. Hence |Aw| < Cr~2 Now,
() V2 w(| Lrongy = [[d(-) VGAw| LP(Q'ND)
< |d(C)* V’NAW| toongy +|dC ) VPUAW| Logngy-  (24)

Since V¢ =0 on 2Q’, Aw =0 there. Thus |[x—y|=C if xe Q' and ye€
supp Aw. For such x,

|VENAW(x)| = f |VIN(x—y)||Aw(»)|dy

< C||Aw|| z=(@)|supp Aw| = Cr~2
Since x € Q' implies d(x) < C,
|d(-)¢ VA NAW|| Loorngy < Cr2 (25)

To bound the other term in the third member of (24), note that the proof of
step 1 shows that

[dC)Y VUMW Loy < ClAW| =@y < Cr > (26)
By (24), (25), and (26), [|d(-) V3 ($Gag)| Lronay < >
Step 4: r =100 and d(Q’) = 1 imply that
ld()*V*Gag|| Logngy = Cr=2d(Q") 2. 27)

Let cp- denote the center of Q’, and let Q” be a dilate of Q" about ¢y with
diameter equal to d(cg’). We have d(cp) = 1/2+d(Q’) = 3/2, so
diam Q: _ 21/2 - 23/2
diam Q" d(cg) =~ 3
Furthermore, it is easily seen that dist(Q”, 3Q) = Cr. Since d(3Q) <1, xe Q"
implies

<l (28)

|VxGaQ(X)I =

f V.G(x,y)ag(y) dyl <=C| d)|x—y|2dy=cCr
Q 30

By the interior gradient estimate for A, (28) implies that for xe Q’,

|ViGag(x)| = C(diam Q)2 sup |V, Gay(x’)| = C(diam Q") ~?r 2.
x'e Q”
But since d(Q’) = 1, d{(cp) = d(Q’). Then diam Q" = d(cp’) = d(Q’), whence
|V3Gag(x)| < Cd(Q’)*r~? for xe Q" Since xe Q’ and d(Q’) =1 imply
d(x) < Cd(Q"), it follows that [|d(-)*V?Gag||  »oney < CAQ")A(Q’)*r~2

Step 5: Verification of (18). Given a fixed Q’, the number of Q for which
r=dist(3Q, Q') = 100 is bounded above by a constant depending only on
the dimension n» = 2. By step 1, then,

sup > kg, o=C.
Q' Q:r=100

So, to establish (18) it suffices to consider Q with =100 and d(3Q) < .
When r = 100, step 2 shows that
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ko0 = [[d(-)*V°N(aglo)|| Lagnay +11d(-) V*Gag| Ly na)
< Cre 2 +||d(- ) V3Gagl| o nay- (29)
The bound
sup Y rflsC<ow
Q' Q:r=100
follows by comparing the sum with the integral [ x| || x]¢ 7 dx. For the other
term in (29),

sup > [|d(-)V’Gag| 1igney<C  sup > r?

Q' Q:r=100 Q:0'NQ=P Q: r=100
follows from step 3 and step 4. This last quantity is finite, with a bound not
depending on . We omit the calculation, but note that it can be modeled by
first replacing Q by the half-plane R2 = {(x,, x,): X, > 0} and then passing
from sums over cubes to integrals. The result follows by comparison with
the quantity

sup |(s,0)—(0, £)| ™% ds,
teR YseR,|(s,0)—(0,1)|=1

which is finite.

Step 6: Verification of (19). Again, step 1 and step 2 show that it is enough
to bound

sup > ld(-) V> Gag|l Lrgna)
0 0':r=100,d(Q") <1
+sup > d(-) V3 Gag| Lrona)- (30)

Q Q':r=100,d(Q")=1
By step 3, the first term is bounded by

Csup > r2,

Q Q:r=100,d(Q)<1,Q0'NQ#H
This expression is similar to the one encountered in step 5, with Q and Q'
interchanged and the role of the constraint d(3Q) <1 played by d(Q’) < 1.
It has a bound independent of 2 for the same reasons.

By step 4, the second term of (30) is bounded by

Csup >, r/2d(Q’) 2
g Q:r=100,d(Q")=1
This quantity is also bounded by a constant independent of . This calcula-

tion is also omitted, but we note that if Q is modeled by I}Ri, a comparison
can be made with the integral

f |y[2y5~ % dy,
y=(rnr,y,=1

which is finite for e < 2.
Having shown (18) and (19), the proof of Lemma 3.1 is complete. C

Next, the constraint that the atoms are at the same scale is lifted. Also, the
following estimate will be written in terms of G, not U. Finally, the size
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of the L§_,(Q) norm is estimated, instead of the weighted norm appearing
in (16).

LemMA 3.2. Suppose {ag} is a collection of (1—e, p)-atoms, where the
cubes Q satisfy the restriction d(3Q) < Q). If {sg} € b, then

IG ESQaQ = C”[SQ]”bp.l. (31)
Q LY (@)
Proof. Because
G E E Sodo =< E G E SQGQ
»=0£(Q)=2"" L@ v=o0ll wQ@)y=2"" LY ()

and
) I/p
z( > |sQ|p) = ltsolllon
y=0\{(Q)=2""

it is enough to show (31) for Q restricted to a single fixed scale - that is,
¢(Q) = 27" for some fixed » = 0. In that case, the right-hand side of (31) may
be replaced by the equivalent expression [[{sg}||;».

Let f=Xsgag|q. Since || g 12_ ) =|g] 2@y + Cl| V3&| r_ (o) (see e.g. [15]),

IGflls_ @ = CIGS || zay + CIVPGS | 12 o)
< C\|\Gf|| gy + C”VZNf”Lf.é(Q)_F C”V2Uf“L{’_‘(9)-
Next, if Q is bounded and Lipschitzand 0 <e <1,
o]l re@y = ClAC) 0| L2y + CllA(-) VO] Lo(q).
(The essentials of the proof are given in [16, pp. 884-885].) By (15),

vllzz_ o) = Clivl| spec)-

Hence
IV2US || 2_ @) = CIV2US || L2y + CllA(- ) VUS| 120y
Since
IV2US || 20y < G | Loy + I VNS || Loy
and
||V2Nf"1,”(n) = C"V2Nf” L{_ ()
1Gf | 2_. @y = CIGS || 5oy + CUVENS || oy + 1A (- VUS| 120y (32)

By using Theorem 1.2, the inclusion B{”_IG(Q)HLP(Q), the restriction
B/ (R?) - B (Q), and (13), it follows that ||Gf]|,zq, is bounded by
Cll{so}]l;»- By Lemma 3.1, the third term on the right side of (32) is also
bounded by Cl|{sg}||;». Finally, the middle term of the right side of (32) is
appropriately bounded by noting that N is smoothing of degree 2 and that
the injection B} (Q) < L?_ () is continuous. O
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The restriction that the cubes Q be close to 99 (i.e. d(3Q) < £(Q)) is removed
in the next lemma. This permits consideration of general fe Bf LIE(Q).

LEmMa 3.3. If fe BP2L(Q), then Gfe Ly_(Q) with
IGSlz_@) = Cllf || B2 (2

Proof. Let Ef denote the extension of f by 0 to R2. Since Q is convex, f — Ef
is bounded from L{_ (Q) to LY_ (R?) by [14]; real interpolation shows that
the corresponding statement for Bf" Pl . 1S also true. Since N is smoothmg of
degree 2, the map f~ y(-) NEf(+) is bounded from B (@) to BY (R,
where ¢ € C&(R?) with ¥ =1 in a neighborhood of Q. By the atomic de-
composition, there exist (3 —e, p)-atoms dg and a sequence {sp} € b? ! with

¢(')NEf(')=25Q5Q

and ||{sg}|[pr1 = C||[¥ () NES(-)| gt (m2) =< C||f|[B ' «@)- Because distributions
in R2 restrict to Q and since Vy and Ay vanish on Q,

S =250(Adg) g
Define

= [Q:d(3Q) > #(Q)}.

Since the atoms are as smooth as desired and Q € J implies suppdgy C €,
G(Adp) = dg. Furthermore, since the Agy are (1 —g¢, p)-atoms (up to &
bounded multiplicative constant), 20e JSQAaQ converges in B~ 6([Rz) and
hence the sum converges in Bf" E(Q) Then, using a prev1ous and convenient
definition of G on (say) L”(Q), which contains B _6(9), we have

J J J

since G is continuous on L?(2) for 1 < p < .
By the continuity of the restriction map L{_ (R?)— L{_ (%), (15), and
(13),

QelJ LY_ () J LY_ (@) J LY_ (R?)
= C| X sgdg = Cl/{so}llor1.
J B (R?)

To control G X g ¢ s SgpAdg, note that Adgis a (1 —¢, p)-atom (up to a bounded
multiplicative constant) and |{sp}ge sllo»! =< ||{sg}llsr1 < C|| f| 571 (). Hence
Lemma 3.2 may be applied to the atoms ag = Adg to yield

G E SQAGQ
Qe¢J

= C|l £l sz @-

3—(

This completes the proof of Lemma 3.3. Ol
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ReMARrk. If d(3Q) < ¢(Q) were not needed in Lemma 3.2, then Efe
BY LIE(RZ) could be directly decomposed into a sum X spag of (1—¢, p)-
atoms ag.

The previous lemma is technically weaker than Theorem 1.1 because of the
inclusion B{’LL(Q)qL{’_E(Q) (see (15)). The space B{’LL(Q) was used above
for technical reasons: it is simple to start with a decomposition in which the
cubes Q are all at the same scale. Given the resulting estimate (16), it is then
straightforward to pass to an estimate for an atomic decomposition of the
data with coefficients in 5#!, which corresponds to the space B (Q).

We now complete the proof of Theorem 1.1.

Proof of Theorem 1.1. Given functions #; and u, on Q, let the equation
U | a0 = U3 | 30 denote the condition u, —u, € Wy ?(Q).

Let f be in LY_ (), and let v = Nf— Gf. The inclusion (15) implies that
lvllzs_ @ = Cllv||se2(a), sO

€

1GS N5 a0y = Cllvll spseay +INS || 25_ - (33)

Note that v is determined by the properties Av =0 and v |30 = Nf | 59.
Since Nfe L{_ (Q), there exists a g € B{ 2(Q) with

glaa = Nflag> ”g”Bé"_’i(Q) = C"Nf”Lé’_e(ﬂ)' (34)

This follows from results in {11] concerning the restrictions of Besov and
Bessel potential spaces to d{2 for rather general domains 2. A proof using
the atomic decomposition is given in [6]; it closely follows the case @ = R}
given in [5, §3].

We now claim that Av =0 and v|zq = g5 imply

vl g2-r 0y = Cllg 822 cqy.-

€

Assuming the claim, ||v|gp.20) < C|Nf||1z_(0)- Inequality (33) then shows
that

IGfllzz_ @ = CUNSI 2_ -

The theorem follows, since f~ Nf is continuous from L{_ (Q) to L§_ ().

To show the claim, note that by Lemma 3.3 G: Bf"'.(Q) —» LY_ (Q) is con-
tinuous. Real interpolation shows that G: Bf*2(Q) —» B2 (Q) is continuous.
Let h=g—v; then h|;0=0 and Ah = Age B{"?(Q). Since h = GAh,
121l B2y = CllAR|| gp20y < Cllgl| 22 () and

€

vl sezcy = Al B2-r @y &Ml 2220y = Cllgl 8220y -

This completes the proof of Theorem 1.1. 1
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