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1. Introduction

Among the many useful consequences of Privalov’s theorem on the nontan-
gential asymptotic behavior of holomorphic functions are the criteria that
it provides for the vanishing of harmonic functions in the plane. To state
a specific result, consider a function /4 that is harmonic on the upper half
plane U, fix 8 € (0, 7/2), let E denote a set of real numbers having positive £’
(Lebesgue) measure, and assume that

lim sup{| A(u, v)|[v™": (u, v) € Cone(x, §,r)} =0 (*)

rlo
whenever x € E. Thus, for each x € E, h tends to zero at the rate o(y) in the
vertical cone with vertex (x,0) and aperture 20 (see Section 2 for all ter-
minology and notation). Then, by using Privalov’s theorem [Zy, Thm. 1.9,
p. 203], one can prove that 4 vanishes identically. Theorems of this type
extend the basic result that a harmonic function must vanish identically if
it tends to zero, along with its normal derivative, upon approach to every
point of an analytic arc.

It is interesting to continue this line of investigation and ask whether the
criterion (*), which involves control of 4 in cones, can be lightened so as to
only require control of 4 on vertical segments. A positive result in this direc-
tion would have interesting corollaries in several areas: the boundary regu-
larity theory of holomorphic functions; the study of Abel summability of
trigonometric series; the study of Cauchy’s problem for Laplace’s equation
(see [La, §2]). The originator of this question, however, is not known to us.
We learned of it from Alexandre Weinstein, who indicated that it arose prior
to 1930. Also, as far as we know, the only intervening progress has been to
establish that # must vanish if it decays at a rate o(y!*€) on vertical segments
over a set of positive £! measure (see [OS]).

Our present contribution to this problem is directed to the following spe-
cific conjecture, which remains open.

Received November 23, 1992. Revision received February 7, 1994.

This research was supported by the Natural Sciences and Engineering Research Council of
Canada under grant OGPIN 016.

Michigan Math. J. 41 (1994).



338 MARVIN ORTEL & WALTER SCHNEIDER

CoNJECTURE. Suppose that #: U— R, /4 is a bounded harmonic function,
and # is not identically zero. Then

lim sup|A(x, y)|y~1>0 (%)
yio0
for £! almost all xeR.

First we prove that a stronger asymptotic bound than (#*) actually holds
when the zero level set of / has finite length.

THEOREM 1.1.  Suppose that h: U — R, h is harmonic, 0 € (0, n/2), and
3Cl{z e Rectangle(l,1): h(z) = 0} < o,
where 3C! denotes linear measure. Then

liminf{|A(u, v)|v™": (4, v) € Cone(x, 8, )} >0 1.1)
rio

for &' almost all x e (—1,1).

Subsequently, by using a fundamental theorem of W. K. Hayman and J. M.
G. Wu, we show that the imaginary part of a univalent holomorphic func-
tion also has this asymptotic property.

THEOREM 1.2. Suppose that f: U — C, fisa univalent holomorphic func-
tion, and 0 € (0, w/2). Then

liminf{|Im f(u, v)|v™": (4, v) € Cone(x, 8, r)} >0 (1.2)
rlo

for £ almost all xeR.

These theorems disqualify a variety of constructions that seem to oppose the
conjecture. As an example, let S denote the closed segment connecting (0, 0)
to (1, 0), let B be a nowhere dense compact subset of S with linear measure
3c!(B) > 0, and let 9 be the countable set of connected components of S ~ B.
Construct a Jordan curve I' as follows: first connect the endpoints of each
I € 9 by a polygonal arc that lies, except for its endpoints, in the lower half
plane; then connect (0, 0) to (1, 0) by a polygonal arc that lies, except for its
endpoints, in the upper half plane. Finally, let f map the upper half plane
onto Interior(I'), and set A=1Im f. If e is a real number, and f(e, 0) is an
endpoint of one of the segments in 9, and f(e, 0) ¢ {(1, 0), (0, 0)}, then

lim A(e, y)y~1=0. ()

ylo0
Now the problem is to determine whether 4 is actually a counterexample to
the conjecture, especially in the case that JCY(I") = 0. However, by Theorem
1.2, condition (1) must fail at £! almost all points ee R, and # is therefore
not a counterexample to the conjecture.

We thank the referee for suggesting that we base the proof of Theorem 1.2
on the Hayman-Wu theorem. Our original proof was more complicated and
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led to a weaker conclusion. We also wish to acknowledge, with thanks, the
many general improvements to our work that derived from the detailed and
thoughtful consultation of the editor and the referee.

2. Notation and Terminology

We follow [Fe, esp. pp. 669-671] for all terminology and notation in set
theory, measure theory, and general topology. In particular, the Lebesgue
measure of ECR is denoted by £(E), and the Hausdorff 1-dimensional
measure of SC R? is denoted by JC'(S). The usual subsets of the plane are
denoted as follows: U= {(x, y) € R*: y > 0) is the upper half plane; D =
{zeR?:|z| <1} is the unit disk; T = {z € R*: |z|=1} is the unit circle.

We say that I" is @ Jordan curve if I' C R? and I' is homeomorphic to T.
If I is a Jordan curve, then Interior(I') (Exterior(I')) denotes the interior
region (exterior region) determined by I'. We say that I'' has an interior unit
normal at b if the following three conditions hold: (1) I" is a Jordan curve.
(2) beT. (3) There exists y having the following three properties: (i) n € R?
and |n|=1; (ii) there exists ¢ > 0 such that b+ sy € Interior(T") and b—sn €
Exterior(I') whenever 0 <s<o;

lim Re(n- £=b ):0. (iii)
z—b IZ—bl
zel

When I' has an interior unit normal at b, there is exactly one vector 5 which
meets the three conditions stated in (3); we denote that vector by n(b, I').

When xeR, re (0, ), se(0,), and 0 € (0, 7/2), we use the following
notation to designate certain rectangles and cones in R?:

Rectangle(r, s) = {(u, v) e R%: |u|<r and 0 < v <s},
Cone(x, 0,r)={(u,v)eR*: |u—x|<vtanf and 0< v <r}.

3. Lemmas

LEMMA 3.1. Suppose that h: Rectangle(1, 1) = R, h is harmonic, 0 € (0, w/2),
and

3Cl{z € Rectangle(l, 1): h(z) =0} < .
Then S, 6 exist such that the following statements are true:
(1) SC(—1,1) and 6: S — (0, ).
) £Y(-1,1)~8)=0.
(3) h(z) #0 whenever z € \U;. s Cone(s, 8, 6(s)).

Proof. Choose K > secf. Choose €1, € so that 0 <¢; <e/(8K) < e <1. Choose
p € (0, ;) so that JC'{z € Rectangle(l, p): 2(z) = 0} < ¢;. Let G denote the col-
lection of all path components of the level set {z € Rectangle(l, p): h(z) =0].
The collection G is countable. Moreover, the following three statements are
true whenever GeG:
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(4) G is a Borel set, G is 3C! measurable, and 0 < 3C/(G) < ¢;.
(5) If a, be Clos G, then |b—a| < 3C/(G).
(6) (Clos G)N(Bdry Rectangle(1, p)) #4.

We define a partition (G, G5, G3) of G as follows:

(7) G,is the collection of all G € G such that GN Rectangle(1—¢;, p/2) +9
and (Clos G)N([—1,1]1 x {0}) =4.

(8) G, is the collection of all G € G such that GNRectangle(1 —¢;, o/2) #9
and (Clos G)N([—1,1] x {0}) 4.

(9) Gjisthe collection of all G € G such that GNRectangle(1 —¢;, p/2) =0.

If Ge G, then 3C(G)> min{e;, p/2} = p/2 (by (5) and (6)). Thus, G is
finite. Choose p; € (0, p/2] such that GNRectangle(1—¢;, p;) =9 whenever
G e G,. For each Ge G,, choose a(G) € (Clos G)N([—1,1] X {0}). Each Ge
G, is contained in a closed disk of center «(G) and radius 3C/(G) (by (5)).

Let S denote the set of all seR such that |s|<1—2Ke; and |s—a(G)|>
2K3CY(G) whenever Ge G,. If Ge G, and s€ S, then Cone(s, 8, p,) does not
intersect the closed disk about a(G) of radius 3C/(G) (because K > sec¥).
Thus GNCone(s, 8, p;) =@ whenever s€ S and GeGUG,. Also, if Ge G,
and se S, then GNCone(s, 0, p;) =0 (because p; <e; and Cone(s, §, p;) C
Rectangle(1l —¢;, p1)).

Define 6(s) = p; for each s€ S, and observe that A(z) +0 whenever z €
U, s Cone(s, 8, 6(s)). Moreover, we have

LU[-142Ke, 1—-2Ke ]~ S)< Y 4K3C(G) <4Ke,
GeG,;
and consequently,

LY[—1,1] ~S) <8Ke; <e.
As ¢ is arbitrary, the proof is complete. O
LEMMA 3.2. Suppose that T is a Jordan curve, h: Interior(I') — (0, o), h is

harmonic, and 3¢ (I') < . Let T'* denote the set of all be T that meet the
following two conditions: (1) T has an interior unit normal n(b,T") at b;

lim inf 22T 1) o
tlo t

)

Then 3C/(I" ~T'*) = 0.

Proof. Using Carathéodory’s theorem [Po, p. 18], we construct a bicon-
tinuous bijection f: Clos D — I' U Interior(I") such that f|D is holomorphic.
Let T* denote the set of all we T such that (here we use the algebraic nota-
tion from C=R?)

7(w)=iw lim M €
Zow Z—Ww
zeD
By the Riesz-Privalov theorem [Po, p. 134], we see that 3¢/(I" ~ f[T*]) =C.
Choose we T* and set b = f(w). To complete the proof, it suffices to prove
statements (1) and (2) for the chosen point b.

C ~ {0]. (3)
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Choose 6 € R such that e’ =w. Then 7(w) = £ f(e")|,- € C ~ {0}. It fol-
lows that I" has an interior unit normal at b and n(b,T) = ir(w)/|r(w)|.
Thus, statement (1) is valid for b.

Now choose 6 € (0, =) such that b+sn(b,I'") € Interior(I') whenever se€
(0, 8]. Define y(s) = f~}(b+sn(b, ")) whenever s € [0, §]. Substituting y(s)
for z and (0) for w in (3) gives

Ky iT(w)
lim =
sio 1=y(s)w  n(b,T)

=|r(w)|,
and it follows that

lim——— .
lim oy =170

Harnack’s inequality for the unit disk implies that
1—|y(s)|
1+]y(s)|
whenever s € (0, 6], and we conclude
0<timinf 2LCED _jpy g PO+ 57D, T))
510 l—l'Y(S)I 510 l_l'Y(S)l
= |z(w)|lim ing 2O +57(B. 1))

si0 S

Thus, statement (2) is valid for b. O

0<———7hf(0)=hef(y(s))

LeMMA 3.3. Supposethat xeR, 0<0< ¢ <n/2, and 0 < b < o, and define
K=K(0, ) =[cos(0 —¢) sin ¢ —sin 8][cos(f — ¢) sin ¢ +sin 6]
Also, suppose that h: Cone(x, ¢, 6) — (0, ), h is harmonic, and

liminf A(x, y)y '=a>0.
yi0
Then

liminf{A(u, v)v™: (u, v) € Cone(x, 0, r)} = K(6, ¢)a.
rio

Proof. Choose &€ (0, o) and, as permitted by the hypothesis, choose r so
that 0 < 2r sec? ¢ <6 and A(x, s) > &s whenever 0 < s < r sec? ¢. Fix (u,v) e
Cone(x,0,r), set b=|u—x|tan¢+v, R=bsin¢, d=V(u—x)2+(v—">)2,
and let A denote the open disk centered at (x, b) of radius R. Then (u, v) €
A C Cone(x, ¢,6) and d < bsinf(cos( —¢))~! < R. Also, note that b <
r sec? ¢. Use the inequalities stated above and Harnack’s inequality for the
restriction of 4 to the disk A to prove that

R—d
h(u,v)= ﬂh(x’ b)>Kab> Kav.

Thus
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inf{h(u, v)v™': (u, v) € Cone(x, 8, r)} > Ka,

and the proof is complete. O

4. Proof of Theorem 1.1

Choose e >0 and ¢ € (0, w/2). Using Lemma 3.1 and the countable subaddi-
t\ivity of £, we construct S*, S, & so that the following statements are true:
(1) 6€(0,1), STUS C(~1,1),and STNS~ =40.
(2) L(STUS)>2—-.
(3) h(z) >0 whenever z € U, g+ Cone(s, ¢, d).
(4) h(z) <0 whenever z € U, s- Cone(s, ¢, 6).

Choose a closed interval I such that 7C (—1,1) and 0 < diam 7 < é tan ¢; de-
fine E¥=S*N7Iand E~=S"NI. To complete the proof of Theorem 1.1, it
suffices to prove that inequality (1.1) holds for £! almost all xe E*.

We assume that £!(E*)> 0 and define Q= U, . g+ Cone(x, ¢, 8) and I'=
Bdry 2. Because of (1)-(4), the following statements (5)-(9) are also true.

(5) I' is a Jordan curve (because diam 7 < é tan ¢) and Q = Interior(I").
(6) JCUT) < co.

(7) h(z)>0 whenever ze .

(8) ETx{0}cTN(RX{0)).

Using Lemma 3.2 and (5)-(8), we deduce that

n(b,T)=i and liminfA(b+ti)t~'>0
tl0

for JC! almost all be ' N(R X {0}). Therefore, the following statement is
true for £! almost all xe E*:

liminf A(x, y)y '=a(x)>0. %)
yio

If xe E™ and (9) is true, then Lemma 3.3 implies that

liminf{A(u, v)v™': (u, v) € Cone(x, 6, r)}= K@, ¢)a(x)>0.
rio

Thus, inequality (1.1) holds for £! almost all xe E*, and the proof is com-
plete. O

5. Proof of Theorem 1.2

Define W(z) = —i(z—1)(z+1)~! whenever ze D, and set
A={zeD:Im f(W(z)) =0, Re 7 >0].

As {we U: |w|<1}={W(z): ze D, Re z > 0}, it follows that
fweU:|w|<1, Im f(w) =0} =W[A].

As |W’'(z)| <2 whenever ze D and Re z> 0, it follows that
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I W A]) <23C1(A).

The theorem of W. K. Hayman and J. M. G. Wu states that JC'(A4) <
([HW]; also see [@Dy] for recent developments). Therefore

Jel(fwe U: |w| <1, Im f(w) = 0}) < co.

Now it follows from Theorem 1.1 that inequality (1.2) holds for &' almost
all xe (—1/2,1/2), and the proof of Theorem 1.2 is complete. L]
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