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1. Introduction

Let Q@ C C be a bounded domain in the complex plane. For 0 < p < oo, the
Bergman space AP(Q) consists of all functions f analytic in Q for which

I71z= |77 do <o

Here do denotes the normalized element of area, so that ||1||,=1.

In our previous paper [1] we developed a theory of contractive zero-
divisors in A” = AP(D) for 1< p <o, where D is the unit disk. The general
approach through an extremal problem had been introduced by Heden-
malm [3] for the case p =2, but new methods were needed for other values
of p. We exploited the positivity of the biharmonic Green function in the
disk, and we proved the regularity of the canonical divisors by representing
them in terms of the reproducing kernels of certain weighted 42 spaces.

Our purpose is now to generalize the theory in various directions. It turns
out that the arguments in [1], if suitably arranged, actually give a theory of
contractive zero-divisors in A” spaces with 0 < p < 1. Furthermore, some of
the theory applies to arbitrary invariant subspaces (under multiplication by
polynomials) and is not restricted to the special invariant subspaces defined by
zero-sets. Hedenmalm [3] has already pointed this out for the case p =2. The
key to our more general results is an integral formula involving the bihar-
monic Green function, which has the advantage of circumventing Heden-
malm’s boundary-value problem and the consequent need for smooth bound-
ary values. Finally, we show that most of the results extend to Bergman
spaces AP(R2) over simply connected Jordan domains with analytic bound-
ary. The paper concludes with some special observations and remarks.

2. Background

Again let 4A°(2) be the Bergman space over a bounded domain , with 0 <
p <o, Itis easy to see that even for p <1, each point-evaluation is a bounded
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linear functional. Indeed, because | f|? is subharmonic and so has the local
sub-mean-value property, it is easily shown that

LF(O]=Cd(, 07| fll,, teq,

where C is a constant depending only on p and d(¢, 3Q2) denotes the distance
from the point { to the boundary of €.

An invariant subspace of AP(Q) is a closed subspace I such that z/ C I;in
other words, zf(z) is in 7 whenever f is in /. It follows that Q f e I for every
polynomial Q. The common zero-set Z(I) is the set of points z in Q such that
Sf(z)=0 for all fel. One example of an invariant subspace is the set of all
functions fe A”(Q) that vanish at least on a given set of points with pre-
scribed multiplicity or higher. Another example is the closure of the set of
all polynomial multiples of a given function in 4°(Q).

The theory of contractive zero-divisors in A” = AP(D), as developed in {3]
and [1] for 1 < p < oo, will now be briefly described. Given an A” zero-set
{¢;} in D\{0}, let N” be the set of functions in A” that vanish on {{;}. Consider
the extremal problem of maximizing | f(0)| among all fe N” with || f]| ,=1.
There is a unique extremal function G with G(0) > 0, called the canonical
divisor of the zero-set {{;}.

The canonical divisor has some remarkable properties. It is an expansive
multiplier: |Gf}|,=| f||, for all feAP. It has no extraneous zeros: it van-
ishes on {{;} to exactly the prescribed multiplicity and has no additional
zeros. It is a contractive zero-divisor: || f/G|, < | f||, for all fe N”. The
canonical divisor G, of a single point « € D is

_ _ 2/p
G, (z)=C2=% {1+£(1+& o _"‘)} , (1)
1—a&z 2 1—az
where
& p —lp
C=——|1+=1~|a?)| . (2)
lo| [ 2

For a finite zero-set {{;}, the canonical divisor is
G(z)=J(0,0)"PB(z) J(z, 0)*", (3)

where J(z, ¢) is the kernel function of the Bergman space A2 with weight
w=|B|”, and B is the finite Blaschke product associated with {{;}. In par-
ticular, J(z,0) # 0 in D. It follows that the canonical divisor of a finite zero-
set has an analytic continuation to a larger disk.

The proof of the expansive property begins with a variational argument
to show that |G|” —1is orthogonal to all bounded harmonic functions in the
disk. For a finite zero-set, the regularity of G at the boundary allows the
definition of a function ¢ satisfying A¢ =|G|?—1in D and ¢ =0 on T=4D,
where A denotes the Laplacian. It is then shown that d¢/dn=0 on T and
¢ >0in D. As a consequence, the integral formula

| dalr-nisrae==| | renage@inagiode@docy @
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holds for every function fe A”, where

z—¢

1—-¢z

is the biharmonic Green function of D. The expansive property is an imme-
diate consequence of (4), since I'(z, ¢) >0 in D.

I'z,$) =

2
{lz—tlzlog +(1—|z|2)(1—|r|2)} )

167

3. The Integral Formula

Our first objective is to prove the integral formula (4) in a more general
setting which may not permit the intervention of Hedenmalm’s boundary-
value problem because there will be no guarantee that the relevant extremal
function has a smooth extension to the boundary.

Let I be an invariant subspace of A”, 0 < p < o, and suppose that 0 is not
in the common zero-set Z(I'). Consider the extremal problem

max | f(0)|. (6)
SeL|fl,=1
A passage to the equivalent extremal problem
min | f], M
fel, f(0)=1

shows for 1 < p < o that an extremal function of (6) exists and is unique up
to rotation. This is seen from the general fact that a closed convex set in a
uniformly convex Banach space has a unique element of minimum norm.
The existence of an extremal function is proved for p =1 by exploiting the
duality of 4! with the Bloch spaces. Uniqueness follows from the fact that
Ais strictly convex: || f||=||g|| =1 implies || f+ g|| <2 unless f=g. Let G be
an extremal function for the problem (6), normalized by G(0) > 0. This nor-
malized extremal function exists and is unique for 1 < p < oo, but in an arbi-
trary invariant subspace neither existence nor uniqueness is clear for 0<
p < 1. Existence can be proved by a normal family argument if the subspace
is weakly closed, containing locally uniform limits of sequences bounded in
norm.

The variational argument of [1] still applies. If f is an extremal function
for the problem (7), then || f*|| , = || f ||, for each function f*= f+AQf, where
AeC and Q is a polynomial with Q(0) =0. Note that f*eI and f*(0)=1.
An easy calculation (cf. [1]) leads to the property

S IG|PQdo=0, 0(0)=0.
D
For arbitrary polynomials Q this implies

S (|GJP—1)Qdo =0.
D

It follows that
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S (|G|?—-1udo=0 forall ueh®, (8)
D

the space of bounded harmonic functions on D, since A% is the weak-star
closure of the harmonic polynomials.
The space of bounded analytic functions in D is called H .

THEOREM 1. Let I be an invariant subspace of A® for some p, 0 < p < oo,
and let G be an extremal function for the problem (6). Then the integral
SJormula (4) holds for every polynomial f. Also, |Gf| ,=|f|, for every
function fe H®.

The proof relies on Green’s formula

S (uAv—vAu)dA= S (u——— v———) ds
0 0 on an

and makes use of certain mollifiers. Let C5’(D) be the set of infinitely differ-
entiable functions with compact support in D. Three lemmas will be needed.

LemMMA 1. If FeL! and F1 h®, then there is a sequence of functions @j €
Cy (D) such that

@ || Ag;—Fl;—0 and
(b) |loj—®|l; =0 as j— oo,

where

B(z) = SD F()AT(z, §) dA. ©)

LeEmMA 2. For each positive € < 1, there is a function . € Cy3 (D) with
the properties 0 < Y. (z) <1, ¥(z) =1 for |z| = 1—¢, |VY.(2)| < c/e, and
|AY.(2)| < c/e 2 where c is an absolute constant. (Here V denotes the gradient.)

LemMmA 3. IfFe L, then for each point zeD,

SDF@)A;(%(;)P&,r))dAW(z) as € 0.

The notation F L A* means that F is orthogonal to every function u e A%:
| Fudo =0. Lemma 2 is a standard fact about mollifiers, so the proof will be
omitted (see e.g. [4, p. 25]). Deferring the proofs of Lemmas 1 and 3, let us
show first how they imply the theorem.

Proof of theorem. Let F=|G|?—1 and use Green’s formula to write

SD F(O ATz, ) dAK) = SD V(O (z, HAF()dAE).  (10)

Here it is important to observe that A(|G|P) = p?|G|P~2|G’|? is locally inte-
grable even for 0 < p <2, although it has singularities at the zeros of G. In
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using Green’s formula, one must place small “safety circles” around the
(finitely many) zeros of G that lie in the support of ¥,, and then observe that
the boundary contribution of each circle tends to zero as its radius shrinks
to zero. The details will be omitted. Now let e » 0 in (10) and use Lemma 3
to conclude that

2(2)=| T OAFE)dA, (1
D
where @ is defined by (9). This justifies a formal application of Green’s for-
mula to (9). Next let s =| f|”, where f is a polynomial. Then by property (§)
of the extremal function G, Lemma 1, and the alternate form (11) of &,

S FsdA= lim S (Ap;)sdA = lim S o;AsdA
D D D

Jj—ooo j—oro

=S <I>AsdA=S As(z)j AF()T(z, £) dAE) dA),
D D D

which establishes the integral formula (4). It follows that |Gf||, = [|.f],
for every polynomial f, and an approximation extends the inequality to all
bounded analytic functions. This concludes the proof of Theorem 1. O

Proof of Lemma 1. If u € h®™, an application of Green’s formula shows
that [ uApdo =0 for all p € Cg. The converse follows from Weyl’s lemma
(see [2, p. 103]). Thus A is precisely the set of functions u € L™ such that
fuApdo=0 for all ¢ € C§. Consequently, the hypothesis of the lemma as-
serts that F L u whenever ue L™ and u L Ay for all ¢ € Cy’. In other words,
if A is a bounded linear functional on L' and A(A¢) =0 for all ¢ € C§’, then
A(F)=0. By the Hahn-Banach theorem, this says that F is in the L!-closure
of {Ap: e Cy’}, as asserted.
To prove (b), observe that each ¢ € Cy’ has the representation

o(2) = SD No()T(z,¢) dA= SDAw(f)Agr(Z, £)dA

in terms of the biharmonic Green function I'(z, {), where Green’s formula
has been applied. Thus, in view of (9),

o(2)—(2) = SD[Aso(r) —F(O)]A Tz, {) dA,

and so
le=@li={ | 1a0@)-F@)NIATE 0dAG) dAR)
D YD

=Cllae—Fl

by Fubini’s theorem and a direct calculation based on expression (5) for
I'(z, ¢). This shows that ||p;—®||; — 0 whenever ||Ap; — F|; = 0, completing
the proof of Lemma 1. O
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Proof of Lemma 3. The idea is simply to use the standard formula
A(uv) =ulAv+vAu+2Vu-Vo.

The two error terms in the corresponding integral can be shown to approach
zero as € — 0. Specifically, one must observe (either by direct calculation or
by considering the boundary behavior of the biharmonic Green function)
that for fixed z € D the estimates

|V:T(z,§)|=CA=[¢]) and |T(z,$)|=<CA-[¢]?

hold as ¢ tends to the boundary. Thus, in view of Lemma 2, the two error
terms reduce to integrals of bounded functions over thin annuli of width
less than e, and so they tend to zero with e. The details are straightforward
and will be omitted. O

It may be remarked that the integral formula (4) actually remains valid
when | f|? is replaced by any smooth function whose Laplacian is integrable
and bounded away from a finite number of points. The expansive prop-
erty {|Gf|?do = {| f|? do remains valid when | f]? is replaced by an arbitrary
bounded positive subharmonic function.

4. Canonical Zero-divisors for0<p<1

Our next objective is to show how the theory of canonical divisors, devel-
oped in [1] for A” spaces with 1 < p <o, may be extended to 0 < p<1.

First consider a singleton zero-set {}. By a direct calculation it can be seen
that the function G, defined by the formulas (1) and (2) still has the property
(|G4|?—1) L A* when p < 1. It suffices to show that {|G,|?Qdo = Q(0) for
every polynomial Q. But the substitution

I— w+a
W= ’ = s
1—az 1+aw
with
(1|
d ="' ,
7@ =T g 47
transforms the integral to
(1—|alz)2|CI”Sle(w)lZIWI"Q<1v:J;fv)da(w),

where k(w) = (14 (p/2)(1+aw)](1+aw)~? and C is defined by (2). Now let
k(w)=X2b,w" and

s =k(w)Q( e )= 5 e,

1+aw

and integrate by polar coordinates to get
& 2

o pra o= A=l ICI e,
n=

[ 1GulP@do =1 —apr?|Cl?
D
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since b, = (n+ p/2+1)(—a&)". But in view of (2) and the definition of k, this
last expression reduces to Q(0), as claimed above.

Because G, has the property (8), the proof of Theorem 1 gives the inequal-
ity |G, Q| ,=||Q||, for all polynomials Q. Since now G, e L%, it follows
that |G, f||,=| f|, for all f€A”. In fact, the integral formula (4) applies
and shows that |G, f|,>|f||, unless f is constant. It now follows that
G, is a contractive divisor, because obviously it has an analytic extension to
a larger disk without additional zeros. Specifically, if fe A” and f(«) =0,
then f/G, e AP and | f/G,| , <||fll, unless f is a constant multiple of G,,.

On the other hand, it follows from the subharmonic property of |f|?
that | £(0)| <||.f||, unless f is constant. In particular, if fe€ A” and f(a) =0,
then

|/(0)/Ga(O)| <[|.f7Gull p= | fll

s0 [ f(0)] <|G,(0)| if || f]|,=1 and f(«)=0, unless f is a constant multiple
of G,. This shows directly that G, is the unique solution to the extremal
problem (6) with f(0) >0, where I={fe A”: f(a)=0]}.

Next observe that for an arbitrary A” zero-set (0 < p <1), a canonical di-
visor can have no extraneous zeros. The argument using G, is the same as
for p=1; see [1] or [3]. Knowing that the canonical divisor of a finite A”
zero-set has no extraneous zeros, we can apply the proof of Theorem 4 in
[1] to conclude that the representation formula (3) in terms of the kernel
function is still valid. The argument in [1] requires only that p > 0.

In particular, the canonical divisor of a finite zero-set is unique even for
0 < p<1, and it has a nonvanishing analytic extension across the unit circle.
Thus it has the contractive property || f/G||,<| f|, for every f in N”. Fi-
nally, the truncation argument (see [1, §5]) used for 1 < p < o applies equally
well to the case 0 < p < 1. More precisely, let G be the canonical divisor of an
infinite zero-set {{;}, and let G, be the canonical divisor for the set {{;,...,
¢n}. Then G, (z) — G(z) locally uniformly, and the contractive property of
G, extends to that of G. Thus the canonical divisor of an arbitrary A” zero-
set is contractive. This now implies that the canonical divisor is unique up
to rotation. Indeed, if fe N? and | f||, =1, then | f(0)/G(0)| < | f/G] , <
|fll,=1, so that | f(0)| <|G(0)| unless f is a constant multiple of G.

5. General Domains

Much of the theory of canonical divisors can be extended to arbitrary simply
connected domains. Let us assume for simplicity that Q C C is a domain
bounded by a Jordan curve I'. Fix a point z,€ 2, and let z= ¢(w) be a con-
formal mapping of D onto @ with ¢(0) =z, and ¢’(0) > 0. Let w=1y(z) be
its inverse. The linear operator 7T defined by

(T)YW) = fleW)) ' (W)*?

is easily seen to be an isometry of A”(Q2) onto A”(D).
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Given an A”(Q) zero-set {{;} not containing z,, consider the extremal
problem

max  |f(zo)], (12)
SeNPQ), | fl,=1

where N”(Q) is the set of functions in A?() that vanish on {{;}. Let §=
@(w;}, so that 0 ¢ {w;}, and let NP(D) be the set of functions in 4”(D) that
vanish on {w;}. It is easily seen that fe N?() if and only if Tf e N?(Q). A
canonical divisor of the zero-set {{;} in AP(Q) is a solution of the extremal
problem (12) with f(zq) > 0. By the strict convexity of A”(2), the canonical
divisor is unique if 1 < p <oo. It is also unique for 0 < p <1, as we shall see
presently.

THEOREM 2. For 0< p <o, let {{;} be an AP(Q) zero-set, and let {w;} be its
preimage under the conformal mapping ¢ of D onto Q@ with ¢(0) = z,,
where zy & {{;}. Then {w;} is an AP(D) zero-set. Furthermore, a function F
is a canonical divisor of {{;} in AP(Q) with respect to z, if and only if G=TF
is a canonical divisor of {w;} in AP(D) with respect to the origin.

COROLLARY. A canonical divisor of a zero-set in AP(Q) is unique for
O0< p<oo.

The corollary follows from the uniqueness, already established, of a canon-
ical divisor in A?(D) for 0 < p < oo, U

Proof of theorem. The operator T is an isometry of N?(Q) onto N?(D), so
it carries the competing functions for the problem (12) onto those for the
corresponding extremal problem in the disk. Since T£(0) = f(zo) ¢’(0)27, it
is clear that 7 maps extremal functions to extremal functions. ]

Theorem 2 allows properties of canonical divisors in A”?(2) to be deduced
directly from corresponding properties of canonical divisors for the disk.
For instance, a canonical divisor in A”(2) can have no extraneous zeros.
For a finite zero-set, it has an analytic continuation beyond the boundary,
without additional zeros, provided that I' = dQ is an analytic Jordan curve.

More generally, let 7 be an arbitrary invariant subspace of A7(Q) with
zZo& Z(I), and let F be the extremal function (unique if 1< p <o) for the
problem

max | f(zo)| (13)
seL|fl,=1

with the normalization F(zy) > 0.

THEOREM 3. For 0< p<oo, let I be an invariant subspace of AP(Q) with
Zo€ Z(I), and let F be a normalized extremal function with respect to the
point zo. Let J={Tf: fel} and let G=TF. Then J is an invariant sub-
space of AP(D) with 0& Z(J), and G is a normalized extremal function of J
with respect to the origin. Furthermore, F has the quasi-expansive property
VE£N o =@’ |27 | £ » for £ € H™(R), where ¢ is the conformal mapping of
D onto Q with ¢(0) =z and ¢'(0) > 0.
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Proof. Inorder to prove that Jis an invariant subspace, it must be shown that
h(z) =zg(z) belongs to J for each g in J. But (7 'h)(z) =y )T 'g)(2),
which belongs to the invariant subspace I because 7 !ge I and y can be
approximated by polynomials uniformly in D. Since g(0) = ¢’(0)%>”2f(z,)
whenever g =T, it is clear that Tf is a normalized extremal function in J
with respect to the origin whenever f is a normalized solution to (13).

Recall now that ||Gg||,=||g|, for all g€ H*(D), by Theorem 1. Thus,
for G=TF and g = Tf, we have

"f||p= "g“p = "Gg"p = ”T—I(Gg)”p = "Ff‘lb/_yp'lp = ”Ff"p ”90'"%0/1)’

as asserted, under the assumption that ||¢’||o < . O

Note that the quasi-expansive property of Theorem 3 is meaningful only
when |¢’|| < oo. This is the case, for instance, when Q has analytic bound-
ary. It is interesting to ask whether the quasi-expansive property ||Ff| ,=
C| f||, remains valid for domains Q with |j¢’|| o, = oo.

Another approach to the quasi-expansive property is through a general-
ized form of the integral formula (4). If F is an extremal function for the
problem (13), the integral formula becomes

SQ<IF(z)|P—H(z, 2)|f(2)|? do(2)

=ASQ SQI‘(Z,?)A(IF(Z)I”)A(If(f)I”)dG(Z)dG(i), (14)

where A is the area of Q, I'(z, {) is the biharmonic Green function of 2, and
H(z, ¢) is its harmonic kernel function, or the reproducing kernel for har-
monic functions analogous to the Bergman kernel for analytic functions. If
H(z,z0) = c for some constant ¢> 0 independent of z€Q, and if I'(z,{)=
0, then it follows from (14) that F has the quasi-expansive property.

6. Concluding Remarks

The contractive property of the canonical divisor G in A” = AP(D) says that
| /7G|, < | fll, for all fe N®. The question arises whether || f/G|,=c| f|,
for some constant ¢ >0, or equivalently whether || /G|, =<c| f|, for some
positive constant ¢ and all fe A”. In other words, is G a multiplier in A”?

If the zero-set {{;} is not a Blaschke sequence, then G is not a multiplier.
Indeed, G must vanish on {{;}, and it is well known that the multipliers of
AP are precisely the bounded functions. A proof that the multipliers are
bounded appears for instance in [11], but the following simple argument
may be of interest. Recall first that each point evaluation is a bounded linear
functional:

|l OI=AMOSfllp, ¢€D, feAP.
If || gf||=< c| f]| for all fe AP, then |g"f|<c"|f|, n=1,2,.... Thus
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O [ FON=AD"fI=A&) " S, feA”.

Now choose fe AP with f({) # 0, take nth roots, and let n — oo to conclude
that |g(¢)|<c.

Whenever G is not a multiplier of A”, it follows from the closed graph
theorem that Gf ¢ A” for some fe A”.

Suppose now that {{;} is a Blaschke sequence with Blaschke product B,
where B(0) >0, and let G, be its canonical divisor in 4”. Bill Cohn raised
the question whether G, — B as p —oo. To see that this is true, write G, =
F, B, so that F,(z) # 0 in D. The inequality |G,(z)| = (1—|z|) "2’ holds be-
cause G, is an A” function of unit norm. For fixed R, 0 < R <1, suppose
|z| = R<r<1 and express the harmonic function log|F),(z)| by the Poisson
formula over the circle |{|=r. The inequality |F,({)| < (1 —|§'|)‘2/*"|B(§‘)|‘l
then shows that log|F,(z)| < —(2/p) log(1—r)+ o(1), where “o(1)” indicates
a term tending to zero uniformly in |z|< R as r — 1. Choosing r near 1 and
then letting p— o, we conclude that limsup,_, .|F,(z)|<1 uniformly in
|z|= R. On the other hand, the function B/|B||, is admissible for the extre-
mal problem that generates the canonical divisor G, so G,(0) = B(0)/||B| .,
and F,(0) = 1/||B||,—1as p— 0. Thus F,(z) — 1, and it follows that G,(z) —
B(z) uniformly in |z| <R as p — oo.

Finally, there are a number of open questions. For instance, let 7 and J be
general invariant subspaces of A” with 0¢ Z(I)UZ(J), and let F and G be
the respective extremal functions for the problem (6). If 7 C J, is it true that
|Ef||, = |Gf|l, for all fe H*? This generalizes a question raised by Heden-
malm for canonical divisors of zero-sets.

A more basic problem is to describe all invariant subspaces of A” together
with their lattice structure. According to Beurling’s well-known description,
the invariant subspaces of the Hardy spaces H” are all singly generated by
inner functions. For the Bergman spaces it is not even known whether the
invariant subspaces determined by infinite zero-sets are generated by the
corresponding canonical divisors.

A related problem is to describe the invariant subspaces whose common
zero-set Z(I) is empty. One example is the proper subspace generated by a
singular inner function with mass concentrated at one point. More gener-
ally, it is known that a singular inner function is cyclic in A? if and only if
its associated singular measure p puts no mass on any Carleson thin set. (See
[11] for a proof and further references. The necessity of the condition was
found by H. S. Shapiro [9], while the sufficiency was proved independently
at about the same time by Roberts [8] and Korenblum {5]. The first version
of Roberts’ proof was refined and circulated informally by J. H. Shapiro
[10].) In other words, a singular inner function generates a proper invariant
subspace I with Z(I) = ¢ if u puts positive mass on some Carleson set.

The canonical extremal function, defined by the problem (6), can actually
be calculated for the invariant subspace [ S] generated by the atomic singular
inner function
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S(z)= exp{—%—i—z} .

As we shall see, the extremal function is unique (under the assumption that
G(0)>0)even forO0< p<l1;itis

p 2/p
G(Z)=(1+p)“1/pS(z)(1+1—_—z—) . (15)
For a proof, observe first that the finite Blaschke products
(1-1/n)—z )"
1-(1-1/n)z
converge to S(z) as n— bo, uniformly on compact subsets of the disk. The
canonical divisor of [B,] is

Bn(z) = (

(16)

2/p
G,,(z)=(1+p(1—1/2n))“””Bn(z)<l+p 1-1/2n ) .

1—-(1—-1/n)z
Indeed, by equation (3) (see also [1]),
Gn(2z) = J(0,0)"7B,(2) J(z, 0)*",

where J(z, ¢) is the kernel function of the Bergman space 42 with weight
w=|B,|?. But |B,|” =|b,|"”, where b, is the simple Blaschke factor with a
zero at 1—1/n, so again by (3) the canonical divisor of [b,] in A" is

g,(2) =J(0,0)"Pb,(2) J(z, 0)*"7.

On the other hand, the function g, is also given by the formulas (1) and (2),
with o« =1—1/n and p replaced by np. This allows the calculation of J(z, 0)
and leads to the expression (16) for G,(z). Since G,(z) = G(z) locally uni-
formly as n— oo, it is reasonable to expect G to be the canonical extremal
function of [S].

To prove this we will show first that [G]=[S]. It is clear that Se[G]
and hence that [S] C [G], since the function (1+ p/(1—z))~! is bounded
in D. To see that Ge[S], observe first that Fatou’s lemma gives |G|, =<
liminf,_, || G,| , =1, which implies that

S 1S(2)|P|1—2|~? do < oo (17)
D
Now let Q,(z)=14z+ ---+z" and observe that 1+ pQ,(z) # 0in D, so that
S(1+p0,)*"Pe[S]. Since

(1+p)"PS(z)(1+ pQ,(2))*”? > G(2)

pointwise in D, the Lebesgue dominated convergence theorem and (17) allow
us to conclude that the convergence holds in the A” norm. Thus G e[S],
and we have shown that [G]=[S].
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To conclude that G is the canonical extremal function of [S], we need
only show that ||G||,=1 and G(0) = M, where M = supy|Q(0) S(0)| and the
supremum extends over all polynomials Q with || QS| ,=1. Observe that,
by definition of the canonical divisor, G,(0) = supgy|Q(0)B,(0)| for poly-
nomials Q with |QB,| ,=1. Since | OB, —QS||, — 0 for each polynomial Q,
it is easy to see that M <lim,,_, ., G,(0) = G(0). On the other hand, G e [S]
implies G(0) = M ||G|| ,. Hence ||G||, =1 and G(0) = M, which completes the
proof that the canonical extremal function of [S] is given by (15).

For 0 < p <1 we do not know in general that an invariant subspace has a
unique extremal function, but this is true for [S] because it is a “limit” of
the zero-subspaces [ B,]. In fact, for 0 < p < oo the function G defined by (15)
is a contractive divisor for [S], meaning that || f/G| ,<|| f]|, for all fe[S].
To see this, suppose first that f=SQ for some polynomial Q. Note that
| B, Q/G,||,<||B.Q||p» since G, is a contractive divisor for [ B,], as shown in
[1]. (See also Section 2 above.) But B, (z) Q(z)/G,(z) = f(2)/G(z) for each
z €D, so Fatou’s lemma gives

|/7G| p <liminf||B,Q/G,| , < lim ||B, Q| , =S|, =/l »-
Hn— oo n— oo
To extend this to arbitrary fe[S], let f,,=SQ, — f in A” norm, where {Q,}
is some sequence of polynomials. Then

177Gl p = liminf|| £,/G| , = Lim || fy |l p = || f | o-
n— 0o n-—co

Uniqueness of the extremal function for [S] is now immediate. If H is an-
other extremal function, then H(0) = G(0); while | H/G| ,<||H| , =1, since
H e [S]. But |H/G|? is subharmonic, so it must be constant. Thus H=G.

The results we have obtained for the Bergman spaces have a curious anal-
ogy in the Dirichlet space D, consisting of all functions f(z) =X a,z" ana-
Iytic in the disk for which

ool

IA1p= 3 (n+1)]a,* <o
n=0

Let I be an invariant subspace of D, and let G be the extremal function
(unique up to rotation) for the problem analogous to (6). Richter and Sund-
berg [6; 7] showed that G is a contractive multiplier in D, so that |Gf||p =<
||| p for all f e D. Their results were extended by Alexandru Aleman [Habil-
itationsschrift, Fernuniversitdt Hagen, 1993], who as a consequence proved
that if 7, C I, are two invariant subspaces of D with associated extremal
functions G; and G,, then

IG1flp=|G>flp forall feD.

In other words, the analog of Hedenmalm’s conjecture is true in this case.
The methods used to obtain these results are quite different from those in
this paper. It would be interesting to find an approach that covers both the
Bergman spaces and the Dirichlet space.
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