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Introduction

T will denote the circle group written additively so that its elements are real
numbers in [0, 1) and are added modulo 1. For each y e R, {y} is the frac-
tional part of y, so that {y}=ymod1 and {y} e T. Fix irrational « € (0, 1).
Let ¢: T > S'={z € C:|z| =1} be a measurable function, and define Uj:
L*(T) - L*(T) by

(U S)(x) = d(x) f({x+ ).

Then Uy is a unitary operator, and

n—1
(H ¢([x+ka]))f({x+na}) for n=0,
k=0

(Ugf)(x) = .
(1}:11 5([X—ka}))f({x— |n|a}) for n<O.

The spectral theorem says that there exists a spectral measure P, on the
Borel sets of T such that

Ug=S e X gp (x) for neZ.
T

In this paper we study the spectral measure Py associated with U, when ¢ =
e?™& where g: T — R is absolutely continuous except at one point.

The study of such spectral measures and related questions about multi-
plicative and additive cocycles and skew product transformations has gen-
erated much interest recently (e.g. [1; 2; 3; 4; 6; 8; 11; 12; 13]). More specific-
ally, the case g=x9 a>0 and « with bounded partial quotients, has been
solved [3; 4]. And the case when ¢ is continuous (i.e., the size of the jump
of g is in Z) has been successfully studied [12]. The results we present here
are related to work in [3; 4; 5; 6] and rely on a very simple technique: the
direct calculation of the Fourier coefficients of the measure d(P,1, P,1).
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In Section 2, we introduce our technique by proving results when ¢(x) =
e2™* ) e R. The first result of the section was known [2] and the second im-
proves a result in [6]. Section 3 contains the main results of the paper. We
show that if g is absolutely continuous except at one point where it has a
simple discontinuity, then P, is not of discrete type. The smoothness hy-
pothesis on g is strengthened a bit, and we obtain necessary conditions on
the irrational o and the size of the jump of g for P, not to be of Lebesgue
spectral type.

The answers to many of the questions in this field, including those given
here, involve number-theoretic properties of the irrational «. Any number-
theoretic facts and terminology used here can be found in [7].

1. Preliminaries from Spectral Theory

Any spectral measure can be decomposed into three parts: a discrete part,
one that lives on discrete points; an absolutely continuous part, one that is
absolutely continuous with respect to Lebesgue measure; and a singular con-
tinuous part, one that vanishes on single points but lives on a set of Lebesgue
measure zero.

It is well-known [9; 10] that the spectral measure associated with a U is
pure. That is, it has only one of the three parts just mentioned. And if it is
absolutely continuous, it is equivalent to Lebesgue measure.

DEFINITION 1. We say that the unitary operator U, has discrete, Lebesgue,
or singular continuous spectrum if its associated spectral measure P is dis-
crete, Lebesgue, or singular continuous, respectively.

Note that o Cy

<U¢:’1,1>=S e> ™ d(Py(x)1,1). | ¢)
T
This identity suggests that studying the sequence (UJ'1, 1) will yield informa-
tion about the spectral measure Py. This is indeed the case. The results of
this paper are for the most part based on the following well- known propo-
sition. For the reader’s convenlence we include its proof.

ProposiTiON 1. Let ¢: T—>Sl be a measurable function, and deﬁne Uyt
LX(T) = LX(T) by Uy f)(x) = $(x) f({x+ ).
(i) Uy has discrete spectrum if and only if there exists y: T — S! and &,

|k| =1, such that ¢(x) = k(Y ({x+ o})/¥(x)) a.e. In this case, tffor
y€R, ||y| is the distance from y to Z, then

1 n—1
S 1] o({x+ma})dx|=1.

0m=0

lim [KUJ1,1)|=
Jrief =0
n>0

(ii) If U, has Lebesgue spectrum, then
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1 n—1 .
lim KUJ1, 1] = S TT ¢({x+ma})dx|=0.

n-—»o 0m=0

(ili) If KUJ'L, 1)} € I*(Z), then Uy has Lebesgue spectrum.

Proof. (i) (=) If U, has discrete spectrum then U, = X7~ «, P,, where
{P,}>_,is a family of mutually orthogonal self-adjoint projections on L?(T)
and |x,|=1. Since Uy # 0, there exists n such that P, # 0. Thus thereisa y €
LX(T), {|[¥|,=1, such that Us¥ =k, ¥, so that ¢ (x)¥({x+a)) =«,¥(x) a.e.
After taking absolute values, ergodicity implies that || is constant a.e. Since
Wll2=1, [¢|=1a.e.

(<) If there exist ¥: T—S' and «, |«| =1, such that ¢(x) = k(Y ({x+})/
Y(x)) a.e., then ¢ is an eigenfunction of U, . Hence the spectral measure as-
sociated with U, has a discrete part. Since the spectrum is pure, it must be
discrete. If ¢(x) =« (¥ ({x+ a})/Y(x)) a.e., then

1
KU, 1) = § k"Y({x+na))¥(x)dx| for n>0.
0
Since translation is continuous in L*(T),
1 1 _
SO Y({x+na}) ¥ (x)dx|— So Y(X)Y(x)dx|=1 as |naf-0.

(ii) If U, has Lebesgue spectrum, then (1) shows that {UJ'1, 1)} is the set
of Fourier-Stieltjes coefficients of an absolutely continuous measure. Mer-
cer’s theorem implies (ii).

(iii) If KUS1, D} e 1%(Z), then there exists an fe L*(T) such that f(—n)=
(UJ'1,15. Thus

S f(x)ez"i"xdx:S e " d(P,(x)1,1) for all neZ.
T T

This implies f(x) dx = d{P4(x)1,1). Thus P, has an absolutely continuous
part and must therefore be Lebesgue. Ll

2. The Case When g Is a Linear Function

Fix Ae R, A # 0, and define ¥;: L3(T) —» L*(T) by

(K ) (x) = > M f({x+ o).
We will compute (V4'1,1) for ne N:

-1
(I/)‘nl,1>=gl e eZWi/\{x-i-ma}dx;
0m=0
X+ ma x+ {maj, O0=x<1—{ma},
ol =
x+{ma}—1, 1—{ma}=<x<l.
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Hence the function IT7 2}, e2™ A+ Ml will have discontinuities at
x=0,1—fa}, 1— 20}, ..., 1= {(n—1)a}.

Re-label these so that 0 <1—{/ja) <1—-{la}<---<1—{l,a}, where /,=0.
We thus have the following picture.

|
[ I | )
0 1-flha}l 1-{lLa) ce 1=1-{/,c}
So
1-{ha} n—1 . n—1pl—{/;,a] n—1 .
(V){zl, 1> :___S H e27rl)§{x+moz]dx+ 2 S H 321rt)\{x+mcx}dx.
0 m=0 J=1Y1-{La] m=0

The next step is the crucial one. We want to perform the integration and
will therefore write the product as a function whose anti-derivative we can
compute. On the interval [0, 1 —{/,a}),

n—1 n—1 : . n—1 . .
H e27ru\lx+ma] — H eZmA(x+{mod)=eZ7rMnx H e21ru\{ma}=e21rl)\nxc’

m=0 m=0 m=0

where C =TI e and hence |C|=1. On [1—{/;a}, 1 —{/;;,a}),

n—1 n
H eZm’)\[x+ma}= H eZwi,\{x+lma}
m=0 m=1

J . ' n . . .
— H e27ru\(x+{l,,,a]—l) H 621rt)\(x+{1ma])=e27ru\nxe-—2m)\jc.
m=1 m=j+1

Now perform the integration:

-1
(I/)\nl 1= C eZKiAnxll_{llﬂf}_’_nE e—21ri/\jeZ7rf)\nx 1—{1j+10‘]:|

2wiAn | 0 = 1-{a)

C re27ri/\n(l-{lla])_1
27iAn ’

- a-d
+nE e._zyri)\j(eZﬂz\n(l—{l,+loz])__e21riAn(I—1lJa]))]
j=1
Collect the e?™An(1=lj;a]) terms, remembering that {/, o} = 0:

n
N'L1D = 1 e2ridn(1=(lje)) (o =2miM(i=1) _ o =2miAj
4 2mi)
wiAn /=
3 j_l
2xikn ,2mwiA
~Le - n(? =D §n: e ~2midntl o} o —2xidj (2)

This equation is the key to the results of this section.

PROPOSITION 2. Let Ae R, A#0, and define Vy: L*(T) — L*(T) by
K x)=e>™Mf((x+aj).

Then V), does not have discrete spectrum.
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Proof. Using (2),

CeZ‘iri)\n(eZWi)\_ I) n

KI/,\”]., 1)'______ S E e—-Z?rMH[[_,a}e—Zwi)\j
™ j=1
2sinwA|n sin A
| |21n\n|| = | By | =1—¢, for some ¢ >0.
Thus limsup, (W', Dj<1—¢<1. - O

We now discuss the distribution of the set {{ka}}z;lo for certain special n.
Let {p,/q,} be the sequence (or perhaps a subsequence) of convergents to
«. There is a function £,: {g,} — R* such that £, = V5 and

1
oj=— .
tlana?
Multiplying (3) by ge N, 0=<¢g<gq,, we get
I qPn
dn
Since ng(pn’ Qn) =1,

apy 1 2 qn—l}
0=s¢g< =0, —,—, ..., .
H qn} d q"} { 4n’ qn dn

Hence for each ¢ in {0,1,..., g, —1} there exists a unique integer m,, 0=<
m, < q,—1, such that |{m o} —q/q,| <1/¢£,(q,)q,. We thus have the follow-
ing picture.

3)

_qalz q __ 1
Eld)a? A an

=2/£,(9,)4n =2/£(4n)4,

S\ T ——
[—)—(—+) =t (—)
0={mya} /g, {(m o} ce [mqn_lal (g,.—1)/q, 1

ProposiTION 3. Let A€ R\Z, |A| <limsup,_(£,(q,)/4), and define V,:
L*(T) - LX(T) by _
(K (x) =e*™Mf({x+ o).

Then V) does not have Lebesgue spectrum.

Proof. We will show that lim,,_, ., {V,7"1,1)| # 0. Rewrite (2) in the form

2wk _ q
e 1_1~ E" e—kri)\(q,,{l,al+j—qn).

271"1)\ qn ji=1

If ¢ Z, then |(e*™ —1)/2%i)| is bounded away from zero. Thus we need
only show that (1/g,) X7, e~2mMal,,cJ+j—a.) is bounded away from zero
for arbitrarily large g,,. To do this, it is enough to show that for any j, j'e
[1’ 2’ "',qn}’

27 |M|(gntljd + = Gn) = (qullped + ' — qp)| < w(1—¢)

V1, 1y =
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for some € > 0, because then we are averaging values on the unit circle that
lie on an arc of length at most 7 (1 —¢) and therefore cannot average to zero.

Since 0 <1—-{/a}<1—{Lha}<---<1—{l; a} =1, and since we know the
distribution of {{/;a}}7~ ,, we have

| for all je{l,2,...,q,),

£a(an)ay

J

an—
.ol —
{/;a} a

and thus
]Qn{lja} +j _in < l/ga(Qn)-
Pick € > 0 so that |A| < (lim sup, _, (£4(g,)/4))(1—€). There exists g, arbi-

trarily large so that
ga(Qn) €
Al< 1——).
Al 4 2

Thus, for any j, j'€f{l,2,...,q,},
27| A|[(@nflid +J — qn) = (@utly 0} + 7 — @)

B, &\ 2 [ e
<Ay (1_5>sa(qn)“”(1 2)‘ H

CoRrOLLARY 4. IfAeR\Z and |A|<limsup, _,.(£,(q,)/4), then V, has sin-
gular continuous spectrum. .

Proof. The proof follows from Propositions 2 and 3. O

REMARK 1. Proposition 3 is an improvement of a result of Choe [6]. In
the worst case, £,(q,) = V5 and the bound for |A| is still better than Choe’s,
which was lim supn_,o(,(S(l+1/E(x(q,4,)))_l for all «. (This bound was never
stated as such, but is the bound given by the technique used there. A refine-
ment of this technique will improve the bound by a factor of two, but this
is still not as good as the bound given here even in the case when « has
bounded partial quotients.) If o has unbounded partial quotients, then
limsup, .« £,(g,) = and Proposition 3 holds for all Ae R\Z. Thus, in
this case, the type of the spectral measure is completely known: discrete
when A =0, Lebesgue when A € Z\{0}, and singular continuous otherwise.

We will now state Proposition 2 in the language of cocycles.

DEFINITION 2. A measurable function ¢: T — S!is called an «-multiplica-
tive coboundary if there is a measurable function g: T — S! such that
_q(fx+a))
=————a.e

q(x)

Two measurable functions ¢,y : T —S! are said to be a-cohomologous if
¢ /Yy is an a-multiplicative coboundary.

o (x)

CoROLLARY 5 (Baggett and Merrill [2]).  Let A, X, s,s’€ R. Then e2mirxglmis
is a.-cohomologous to e*™**e?™s" if and only if A=\ and s = s'+ ko, where
kel.
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Proof. The “if” part is true because e>™<* = g2mk(¥ +a) o 2mikx 1 o2mA=X)x ¢
e?™=5 is an a-coboundary, Proposition 1 says that the operator V defined
by

(Vf)(X) — e27rl'()\~A')er1ri(S—s’)f([x+ Ol})

has discrete spectrum. The spectrum of V' is the same as the spectrum of ¥V
for all |k|=1. Proposition 2 implies that A=\". Thus e?>™¢~5) is an a-co-
boundary. But then this says that e?™¢~5) is an eigenvalue of the transla-
tion by an « operator, and this implies that s —s’= ko« for some ke Z. [

REMARK 2. Corollary 5 also implies Proposition 2. The proof given in [2]
relies on results on the cohomology of step functions. The techniques we
have used here are attractive since they are direct and can be used to study
more complicated operators. This is the topic of the next section.

3. The General Cases

We now study the operator V; ,: L*(T) — L*(T) defined by
(W, /) (x) = 2T H 8D f((x 4 o)),

where Ae R, A#0, and g: T — R is absolutely continuous or smoother.
In [5], it is shown that V: L*(T) - L*(T) defined by

(Vo ) (x) = e*™ &9 f({x + o))

does not have Lebesgue spectrum if g € C'(T, R). It is easy to prove that for
some «, V, does in fact have discrete spectrum. Since the operators studied
in the previous section never have discrete spectrum, and in fact have Le-
besgue spectrum when A € Z, we should be able to make similar conclusions
for all « for V) ,. This is indeed the case. The following proposition general-
izes Proposition 2.

ProrposiTioN 6. IfAe R,A#0, and g: T — R is absolutely continuous, ther
V), ¢ does not have discrete spectrum.

Proof. We will show that for all large n, KV} gls 1| is bounded away from

1. We have
1 n—1

W 1,1 ZS T e2miMix+ma)+gtxtmal) g
0m=0
Subdividing [0, 1) as in the computation that led to (2), we see that
1—{1101] n—1 .
(V/\"gl, 1) — S ]:[ eZvru\(tx—Hna}+g({x+ma])) dx
’ 0 m=0

n=1 pl—{/, 1o} n—1 )
S e?.m,\({x+moz}+g([x+ma])) dx

+

J=1Y1~-{,a} m=0

1—[1,01] A A n_1
— S CeZn-:)\nerM S0 g(lx+mal) dx
0

. oy . . n—1
+ 2 CeZvrt/\rlxe—Zm/\Je2mEm:0 g(tx+ma})dx,

n—1 Sl'—tl’j+|a]
J=1

1-{/,a)
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where |C|=1. We integrate by parts in the same way on all integrals:
U= eZ'lriE"m_:lO g([x+ma})’ dv = eZﬂ'i/\nxdx’

n—1
1 .
du=2ri ’ dx, — 21rtAnx;
u mum§=:0g({x+ma}) X, v i

n—1 L _
WL 1) = [Cuv]é_“‘“}+c > e‘z’r”\fuvH_:gf““’]
’ j:] Ja}

1—{/} n—1 el )
—H Cvdu+C Y e‘zm)‘JS

0 j=1

UdU]=S1—S2. (4)
1-{/;«}

The first quantity |S;| can be computed as before, and yields an equality
similar to (2):

2ridng 27N __ n
Ce ™" (e 1) S o2kl ol g ~2iAjg 2mi Sy sll=L e+ mad)
2miAn j=1

1$1]= )

The same calculation as in the proof of Proposition 2 yields

in A
1S,|= Islln;rl | —1—¢, for some &>0.
.
It is easy to see that
1 1 1 n—1 )
1S:]=\ —|= X g'(x+mal)|dx.
0 IAI n =0

Since g is absolutely continuous, g’e L'(T) and S}) g'(x)dx=0. The L' er-
godic theorem says that

n—1

% > g'(fx+maj)
m=0

—{(0 as n—ooo,

1

Thus, |S;|<¢,/2 for all large n. Therefore KV}",1, 1| is bounded away from
1 for all large n. 0

DerINITION 3. A function g: T — R is said to be absolutely continuous ex-
cept at one point if there exists an xy€ T such that:
(i) g’e L' (T\{x,}) and g is the indefinite integral of g’ on this interval;
and
(ii) lirnx—»x(,+ g(x)# limx—>x0_ g(x).

Note that if g is a function satisfying (i) in the definition, then both of the
limits in (ii) will exist and be finite.

We are now ready to state the main theorem about the operators that do
not have discrete spectrum. (This generalizes work in [3].)

THEOREM 1. Let g: T — R be absolutely continuous except at one poini,
and define V,: L*(T) — L*(T) by

Ve /) (%) =D f({x + ).
Then V, does not have discrete spectrum.
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Proof. Without loss of generality, we may assume that the discontinuity of
g is at 0 and that g(0) =1lim, _, o+ g(x) =0. Let lim, _, ;- g(x) =A (#0). Then

g(x)=Ax+(g(x)—Ax) forall xeT,

and g(x)—Ax is absolutely continuous. Proposition 6 gives the desired con-
clusion. O

As a corollary, we obtain a result about linear combinations of positive
powers of x which again has no hypothesis on the irrational « (cf. [4]).

CoroLLARY 7. If g(x)=27-1bjx% where b;e R and a; =0, and if g(0) #
lim, _, - g(x), then V, does not have discrete spectrum.

REMARK 3. In[13], it is shown that for any ae R, a <0, x“is not a friviai
a-additive cocycle [10]. This result together with Corollary 7 gives: For any
irrational o and for any ae R, a+ 0, x? is not a trivial oa-additive cocycle.

REMARK 4. If o has unbounded partial quotients then the hypothesis of
Theorem 1 cannot be weakened much more, because in [12] it is shown that
in this case there exists a function g: T — R, continuous except at one point
where it has a jump of size 1, such that V, has discrete spectrum.

The following lemma will help in finding cases where V) , does not have Le-
besgue spectrum.

LEMMA 8 (Choe). Let AeR and ge C/(T,R). For any €>0, there exists
he C\(T,R) such that |h'(x)|<e for all xeT, and such that V, , and V, ,
have the same type of spectrum.

Proof. See the proof of Proposition 4 in [5]. L]

ProrosiTioN 9. If A€ R\Z, || <limsup,_, o(£,(g,)/4), and g€ C(T,R),
then V), . does not have Lebesgue spectrum.

Proof. As in the proof of Proposition 3, we will show lim,,_,ml(V,\"?"él, INEI)
where {g,} is the sequence of denominators to the convergents of «. Write
(Vi 1,1) =S8, — S, as in (4). We have already seen that for any € > 0, |S;|<e
for all large n. Thus we need only show that |S;| is bounded away from zero
for arbitrarily large q,,. Rewrite (5) as follows:

2miA __ q,
C(e 1 33 e 2miManllal+i—an + ZiZo g((= o+ mal)

Sil=
il 2@ih Gn 2

Again, we will show that we are averaging values on the unit circle which lie
on an arc of length strictly less than .

Pick € >0 so that |A| < (limsup, ., (£4,(g,)/4))(1—¢€). Because of Lemma
8, we may assume that |g’(x)| <e/167 for all xe T.

Fix g,. Forxe T and 0<i <gq,—1, define

. 1 i1
Ii=|lx4+-1— },{x+——+ D
x [[ qn 2Qn qn ZQn
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Thus I:NI)'=0 for i #i’ and U I.=T. Each I} contains one and only
one {x+ ma} because each interval {i/g,—1/2q,, i/q,+1/2q,) contains one
and only one {ma}. Let {x+ m; o} be the one contained in 7. We have

q,—1

1 qn—l .
S e(di= 3 S g(ydi= S g(x)——, where xell.
0 i=0 911 i=0 dn

Thus

1 %! |
o 2 &lxrmial)—g(xi)

ni=0

1 g,—1 . 1
LS g(ivrmay) - g(f)dt'=
dn m=0 0

T gu\167 g, ") 16nq,’

This inequality holds for all xe T and all g,,. Therefore, for any j, j’'=
{1,...,g,} we have

gn—1 q,—1

> g(—latma))— 3 g(—lya+mal)

m=0 m=0

€ €
<2r—=7—.
87

2
T 4

In the proof of Proposition 3 we saw that we can find g, arbitrarily large;
hence for any J, j'e{l,..., g,} we have

27 |A\||(gutliod + — @) = (@ullj e} + ' — )| < w1 —/2). 0

DerINITION 4. Let Ae R\Z. A function g: T — R is said to be continuously
differentiable except at one point with jump A if there exists an xy,e T such
that:

(i) g is continuously differentiable on the interval T\{xp};
(i) lim,_, v+ g(x) —limx_,xa g(x)=A; and
(iii) lim,, ¢ g'(x) =lim, , - g'(x) # *oo.

THEOREM 2. Let Ae R\Z. Let g: T — R be continuously differentiable ex-
cept at one point with jump A, and define V,: L*(T)—- L¥T) by

(Ve /) (x) = >89 f({x + ).
If |A| < limsup, _,o(£,(q,)/4), then V, does not have Lebesgue spectrum.

Proof. The proof is the same as that of Theorem 1. Condition (iii) in Defi-
nition 4 guarantees that Proposition 9 can be applied to g(x) —Ax. O
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