Affine Anosov Actions

STEVEN HURDER

1. Introduction

In this paper we give a general procedure for constructing examples of affine
Anosov actions without fixed points on nilmanifolds.

The simplest affine action is a linear or standard action, which is an affine
action with a fixed point. The existence of a fixed point for an affine action
on a flat torus is well known to be related to a group extension problem and
the vanishing of corresponding cohomology groups. We also include in this
paper the extension of these results to nilmanifolds, obtaining homological
criteria for fixed points for affine actions on nilmanifolds.

There is a very active ongoing program to classify the Anosov actions of
“large” groups on tori and nilmanifolds [8; 9; 10; 11; 12; 13; 14; 15; 18; 19].
The groups considered in this program are either free abelian groups of rank
greater than 1, or they are a discrete subgroup of finite covolume of a con-
nected semisimple algebraic R-group G, where the R-split rank of each fac-
tor of G is at least 2, G has finite center, and G} has no compact factors.
The group is considered to be “large” because nontrivial actions of the group
on a manifold are expected to be rare owing to the additional structure im-
posed by the group properties. In fact, the basic program can be viewed as
relating the “geometry at infinity” of the group with the geometry of an
action, and as a consequence it can sometimes be shown that an Anosov
action of such a group on a nilmanifold is always affine. One is thus left with
the problem of classifying the affine Anosov actions of groups on tori and
nilmanifolds. There is remarkably little known about this problem, and the
constructions of examples in this paper are a first step toward its solution.

A point x € X is periodic for an action ¢ if the set

I'(x) = fp(y)(x)|y €T}
is finite. Let A(¢) C X denote the set of periodic points for ¢.

THEOREM 1. For each n=2 and p > 1, there exists a lattice subgroup

I'(n, p) CSL(n, Z)
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and an affine action ¢ with linear part given by the standard action of T'(n, p)
on T", such that:

(1) SL(n,Z),:CX'(n, p) CSL(n,Z),, where SL(n,Z), denotes the con-
gruence p-subgroup;

(2) the restricted action of ¢ to SL(n,Z),: is the standard linear action;
and

(3) the affine action ¢ of I'(n, p) has a dense set of periodic orbits but has
no fixed points.

A C’-action ¢:T' X X of a group I on a compact manifold X is said to be
Anosov if there exists at least one element, v, €I, such that ¢(v;) is an
Anosov diffeomorphism of X. We then say that ~, is ¢-hyperbolic. For an
Anosov action, the set of periodic points A(¢) is at most countable, as each
power p > 0 of a ¢-hyperbolic element ¢(y/) has a finite set of fixed points.

CoROLLARY 1. For each n=2, there exists a subgroup I' C SL(n, Z) of fi-
nite index and an Anosov affine action ¢:T'XT" - T" such that A(p) is
dense, but there is no fixed point for the action of the full group T..

The examples constructed in Theorem 1 make key use of the unipotent ele-
ments in the representation of the lattice. Therefore, the restrictions of these
actions to an abelian semisimple subgroup of I" will have a fixed point. How-
ever, for abelian subgroups there is a more direct technique for constructing
actions without fixed points, described in Section 5, which yields the follow-
ing theorem.

THEOREM 2. Let T' be a free abelian group of rank r =2, and let
Po- I'— SL(}’I, Z)

be a representation such that ¢o(v,) is hyperbolic for some v, €I’. Then
there exists a subgroup I'"CT' of finite index and an affine Anosov aciion
¢ of TV on T" with linear part ¢ |I"’ and no fixed points.

For example, given two commuting hyperbolic matrices A, B € SL(n,Z)
which generate a free abelian group of rank 2, there is an affine action of
Z? on T" with no fixed points, and the linear action is given by the group
(AP, B?) for some integers p,g=1. In another direction, let Z2={y;,v2)
act on T2, with ¢q(v;) = ¢o(v2) =A € SL(2,Z) for a hyperbolic matrix 4
which admits more than one fixed point. Then there exists an affine action
¢: Z>x T2 - T? with linear part ¢, and no fixed points.

A compact nilmanifold is a quotient X = A\J of a simply connected,
nilpotent Lie group 91 by a cocompact lattice A C 9T. A basis for the Lie alge-
bra n of 91 defines a set of left-invariant vector fields on 91 which descend to
a frame field for TX. A diffeomorphism f: X — X is said to be affine if the
derivative map Df: TX — TX is implemented by a constant matrix map with
respect to the framing of 72X given by left-invariant vector fields. A differ-
entiable action ¢: I' X X — X is affine if the action of each v €TI" is affine.
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We introduce the descending series of commutators for the nilpotent Lie
group N,
1=91kC%k_1C---C911C910=91, (1)

where 9; ., =[91;,9]. The abelian quotient group @; =9;_;/M; is a real
vector space. The automorphism group Aut(91) preserves the descending
series, and so induces actions on the quotient groups @; for all i. There is a
corresponding descending series for A,

1=AkCAk_1C -+ CACAg=A,

where A;=AN,; is a cocompact lattice in IN; (cf. [1, Chap. I]) with abe-
lian intermediate quotient groups Q ;= A;_{/A;. The action ¢ preserves the
algebraic structures associated to 9, and so induces homomorphisms &;:
I' > GL(®;) and ®;: T" - Aut(Q,;).

For a representation p: I' = Aut(V) on an abelian group V, let H*(I"; V,)
denote the cohomology groups of I" with coefficients in the I'-module V. We
abuse notation for the cases of V=Q@; and Q; by denoting the cohomology
groups associated to the actions ®; induced from ¢ simply by H (I'; @;) and
H\(I'; Q;). The following result is almost folklore, but we include the proof
here as the author has not found it in the literature, and the techniques of
proof are useful in the general study of affine actions on nilmanifolds.

THEOREM 3. Let ¢:T'X X — X be an affine action of a finitely generated
group T' on a compact nilmanifold X. Suppose that H(T'; Q@;) =0 for each
1<i=<k; then the action has a periodic orbit and the periodic points A(y)
are dense in X. If, in addition, H*(I"'; Q ;) is torsion-free for each 1 <i <k,
then ¢ has a fixed point.

A finitely generated group I' is a said to be a higher-rank lattice if T is a dis-
crete subgroup of a connected semisimple algebraic R-group G, where the
R-split rank of each factor of G is at least 2, G has finite center, G% has no
compact factors, and G/T" has finite volume. A remarkable result of Mar-
gulis [16, Thm. 3] implies that H'(I'; R?”)=0 for I" a higher-rank lattice,
where p is any representation.

COROLLARY 2. Let ¢: ' X X — X be an affine action of a higher-rank lattice
I" on a compact nilmanifold X. Then the periodic orbits of ¢ are dense in X.

The existence of a fixed point for an affine action of a higher-rank lattice
is more delicate to show, for this requires knowledge of the torsion in the
groups H*(T"; Q;) for 1 <i < k. Very little seems to be known about torsion
in the second cohomology group of lattices with coefficients in a Z-module
(cf. [4; 5)).

We conclude our discussion of results with the following problem.

ProBLEM 1. Let ¢:I'X X — X be an Anosov action of a higher-rank lat-
tice I on a compact manifold X, and suppose that there exists a probability
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measure p on X invariant under the action. Show that the set of periodic
points A(y) is dense in X.

R. Trapp has observed that there is an affine action of the semidirect product
I'=8L(n,Z) X Z" on T" without fixed points, and this action preserves the
Haar measure. The group I' is a uniform lattice in SL(#n, R) X R", which is
not semisimple. Thus, the hypothesis in the problem that I'" is a lattice in a
semisimple Lie group is necessary.

The remainder of the paper is organized as follows. The special case of
an affine action on a torus is discussed in Section 2. Generalities about affine
actions on nilmanifolds are discussed in Section 3, where we give the general
form of the criteria for the existence of a fixed point for the action. Section
4 gives examples and constructions that prove Theorem 1, and Section 5
gives the constructions for abelian actions proving Theorem 2.

The author is grateful to J. Lewis for helpful conversations, especially
for his careful explanations of the material of Section 2 on toral actions,
and for raising the question of whether it was possible to have Anosov ac-
tions without fixed points.

2. Affine Actions on Tori

The study of affine actions on the torus X =T"” =R"/Z" is the most straight-

forward to describe, as it can be approached from a purely group-theorzetic

perspective using the abelian group structure of T”. In this section, we recall

this basic background material (cf. the discussion preceding [14, Lemma 2.6]).
Fix an action of I' on T” by automorphisms,

¢o:T' > Aut(T")=GL(n, Z).
A map 7:I' > T" is a 1-cocycle over the action ¢, if for each v, vy, €T,

7(v172) = 7(v1) - e0o(71) (7(72)) (2)

A 1-cocycle is trivial if there exists a point x, € T" such that

7(7) = @o(7)(x0) " x0 3)

for all v eI". The cohomology group H(T'; T, ) is the quotient space of the
1-cocycles modulo the trivial 1-cocycles.

The basic structure of affine actions is expressed in terms of 1-cocycles
and 1-cohomology in the following manner.

ProrosiTiON 1. Let T' be a finitely generated group, and fix a representa-
tion ¢o: ' > GL(n, Z).

(1) There is a one-to-one correspondence between the affine actions ¢ of
I’ on T" with linear part ¢y and the 1-cocycles T over the action ¢,.

Let 7, denote the 1-cocycle over ¢ associated to an action ¢. The transla-
tional class associated to ¢ is the cohomology class [7,] € H ur; T;,).
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(2) An affine action ¢ with linear part ¢q has a fixed point if and only if
[7,] is trivial.

(3) An affine action ¢ with linear part ¢, has a dense set of periodic
points if and only if [7,] is torsion.

Proof. (1) Given an affine transformation ¢(v), define the translational part
7,(v) € T" by its action on the identity element 7(y)(0) = ¢(v)(0). The group
law for the action ¢ translates into the cocycle law (2) over the linear action
¢o- Conversely, given a 1-cocycle 7: I' - T” over ¢, define an affine action
by the rule o (y)(x) =7(y) - @o(v)(x) for xe T" and y €T

(2) Let x, be a fixed point for the action. For each y €', 7(y) - @o(v)(x0) =
Xg O

7(7) = X0 Po(1)(X0) ™' = w0 (1) (X0) ™ - X0,

so that 7 is a trivial 1-cocycle. Conversely, let x; satisfy equation (3); then
calculate

@,(7)(x0) = 7(7) - o (7) (X0) = 7(¥) - T(y) " X0 =Xo.

(3) Suppose that ¢ is an affine action with a periodic orbit xy € T”. The sta-
bilizer of the full orbit of x; is a normal subgroup I'’C I" with finite index. Let
R: H\T; T}) > H'(I'"; T2 ) be the restriction map, and let T: H(I"'; T;) -
H(T'; T2) be the transfer. The restriction class R[7,] € H'(I''; T2 ) is zero
by (2). The composition ToR=[T":T"]-1Id (cf. [6, Prop. 10.1]), so that 0=
T°R[7,]=[T":T"]-[7,], which implies that [7,] is annihilated by the order
[T': T''] and hence is a torsion class.

Conversely, suppose that there exists p > 1 such that

P-7(v) = 0o(y)(X0) " - Xg
for all v e I". Then choose yy e T”" so that p-yy=xg, and calculate that

P(7(7)-o(¥)(¥0)-¥5 ) =eeT".

Hence 7 is cohomologous to a cocycle 7” which takes values in the subgroup
((1/p)-Z)/Z C T". The proof of the proposition is now completed by the
following lemma.

LemMMA 1. Let ¢ be an affine action defined by a translational cocycle 7,
with values in a finite subgroup ® C T". Then the action ¢ has a dense set of
periodic points.

Proof. The isotropy subgroup I'p CT" of the set ® for the linear action ¢ is
a normal subgroup of finite index. The restriction of 7, to I'p is a homo-
morphism 7,: I'p — ® with kernel I''C I'p of finite index also. The restriction
of the action ¢ to I'’ is just the standard action. It follows that every rational
point of T” is a periodic point for the action ¢. t

Next we consider the long exact sequence of homology groups associated
with the exact sequence of I'-modules 1 - Z"->R"->T" > 1:

o> H\(T;RY) S HND; TRy S HYTG 20 ) > HX (T, RE ) > -+ (4)
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As pointed out to the author by J. Lewis, one can identify the kernel
of H*(T';Z7 ) - H*(I'; R}, ) with the torsion subgroup of H*(I'; Z" ). We
therefore have this corollary.

CoroLLARY 3. Let I be a finitely generated group, and fix a representation
wo:I' > GL(n,Z). Suppose that

HY(T;R.)=0 and

H?*(T;Z1,) is torsion free.

Then every affine action ¢ with linear part ¢, has a fixed point.

3. Group Structure of Affine Actions

In this section we consider the general case of an affine action p: I'X X - X
on a nilmanifold X = A\9U of a simply connected, nilpotent Lie group I by
a cocompact lattice A C 9. Examples of single Anosov diffeomorphisms on
nilmanifolds have been constructed in varying degrees of generality in the
literature [2; 3; 7; 17]. These constructions can be extended to yield linear
Anosov actions of arithmetic lattices on nilmanifolds, and the methods of
the next section yield affine actions on the same nilmanifolds, without fixed
points. In this section, we establish some basic properties of affine actions
on compact nilmanifolds. Propositions 2 and 3 extend the conclusions of
Proposition 1 to the case of nilmanifolds. We use the definitions and termi-
nology formulated in Section 1.

Let G denote the real algebraic group of (left) affine transformations of 9T.
Thus, G is an extension of the linear algebraic group Aut(91) of Lie group
automorphisms by the normal subgroup N of left affine translations. We
write a typical element g € G in the form (¢,, 4,), with A, € Aut(9N) and
t, € J; the product is given by

(tgl’ Agl) ) (tgz’ Agz) = (tgl 'Agl(tgz))’ AglAgz)’ (5)
corresponding to the left action on 9, first by Aut(91), then by translation.

LemmA 2. For each vy €T, the diffeomorphism () of X lifts to a difjeo-
morphism g;(";) €G of OT.

Proof. Choose a lift qof("y/) of ¢(v). Set 7(5(';))=53G)(e) €N, and com-

pose with translation on the left by T(g;?y))_l to obtain a diffeomorphism -y,
which fixes the identity element e € 9. It suffices to show that v, € Aut(M).
By the assumption that ¢(vy) is affine, Dy, induces a linear map on the Lie
algebra n of left-invariant vector fields on 91. The induced action is a Lie
algebra automorphism, as a diffeomorphism preserves the Lie bracket oper-
ation on vector fields. Hence v, is a Lie group automorphism of 9. ]

Let I'y C G be the transformation group of 9 generated by the lifts q;(.’;) of
the diffeomorphisms ¢(v) to the universal cover 9 of X, together with the
left translations by elements of A.
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CoROLLARY 4. The action ¢ determines an exact sequence of groups

where Uy is the image of T in Dift(X') and = is the restriction of the quotient
map G - Diff (X).

The basic plan for extending the results of section 2 is to use the fact that
every compact nilmanifold X admits a fibration with base a torus and fiber
a nilmanifold of lower rank. This suggests an obvious inductive approach,
which can be implemented using two additional observations: This fibration
is defined algebraically, and so is preserved by the actions of elements of
Aut(90) which induce actions on X; the translational actions of elements
of 91 on X induce translational actions on the toral quotient. In the follow-
ing, we carefully establish the technical aspects of this inductive procedure,
but the reader is advised to view the process as “finding a fixed point or
periodic orbit one torus factor at a time”.

First, consider the translational action. For each ge 9l and s €91;, the
conjugate ghg~'h~'eN,;, . Note that this implies that for any right coset
Niy1-h, g-9;11-h=9;,,-gh, so that left translation by any g € 3 preserves
the right cosets. We conclude that for each 1<i<k there is an induced
translational action of g € 9T;_; on the quotient manifold

T =(Aj_- TN\ .

If we restrict to g € A, then conjugation by g maps A; into A;,; and hence
g A,h = A,'gh.
Next define the homomorphisms ®;: I' - Aut(Q;) of Section 1. Fix 1<

i <k; then, for each yeTI', choose ¢(vy) eIy which maps to g;("):) and let
v4 € Aut(I) be the projection defined in Lemma 2. The action of Aut(91)
on I preserves the filtration (1), so for y € I0;_; set

®;(v)(y mod ;) = y,4(y) mod N;;

we obtain a well-defined action on @; =9T\9;_;. We need the following
extension of this remark to the action on lattices as well.

LEMMA 3. The induced action of " on 9; preserves the subgroup A;-3; ;.

Proof. For each v €T, the action of q;T';) on I descends to an action on
each quotient space X; = A\91; (as these quotients are themselves coverings

of X), so that g;(‘y/)(A,--x) = A,--g;(";)(x) for all x € 9;. That is,

(@) Ya(Aj-%) = A 7(0(7)) - ya(X);

hence 'r(m)) “va(A})=A; -'r(g;(";)). The commutator of T((,;F):)) with A; lies
in 91,'_;_1, so this yields 'yA(A,--ETl,-H):A,--fR,-H. U

Let ¢; denote the induced action on the toral quotient
T =(A;_ - TN = QNG
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ProposiTION 2. Let ¢ be an affine action of T' on a compact nilmanifold
X. Suppose that H\(T; Ty) =0 for 1<i=<k. Then the action of ¢ has a fixed
point.

Proof. As noted above, for a lift g;("yj) of ¢(7y) there are induced actions of
v4 and 7(92(‘1?)) on the toral quotient T" = (A-9;)\9. Moreover, the in-

duced action of 'r(g;(-';)) is independent of the choice of lift (,5(")//), since the
action of A on (A-9U)\N is trivial. Thus there is an induced affine action ¢!
of I on T". By our cohomology assumption and Proposition 1, there is a
fixed point x; € T™ for ¢!. Choose a lift #; € 9T of x;; then define a new action
of I on X by translating on the right by the element ¥;. That is,

01(7) = R(F) loo () R(%y).

Then the lift @,(y) of ¢;() to G has translational part T(g;l‘(';)) eMN,;.
This procedure sets up an induction: Given the action ¢; of I' on X

whose elements lift to G with translational components 7(¢;(7y)) € 9,, we
use H(I'; T™+) =0 to obtain %, €N, so that

@141(7) = R(%151) Tepi(v) o R(%41)

has translational component in 9, ;.
Finally, we obtain that ¢ fixes a point in T". The corresponding ¢, fixes
the identity coset in X, and hence ¢ fixes the point x, =x; -+ Xi. O]

We deduce that the fixed point conclusion of Theorem 3 follows from Prop-
osition 2, the cohomology exact sequences

> H\(T;@) - H(T; Tp) > HX(T; Q) > HA(T; @) — +++, (7)

and the remark that the kernel of the map H*(I'; Q;) » H*(I"; R;) is the
torsion subgroup of H*(I'; Q).

The preceding proof can be modified to yield periodic orbits for the ac-
tion on X under the weaker hypothesis that H(I'; ®;) =0 for 1<i<k. We
prove the following, which implies that the action has a periodic point.

PRroPOSITION 3. Let ¢ be an affine action of I' on a compact nilmanifold
X. Suppose that H l(I‘;(J't{‘},';) =0 for 1<i<k. Then there is a finite-index
subgroup I'"C T such that the restricted action ¢(I'’') has a fixed point.

Proof. Let ¢! denote the induced affine action of I' on T™, as defined in the
proof of Proposition 3. The hypotheses H 1(I‘;'(if:;l) = (0 and Proposition 1(3)
imply that there is a periodic orbit for the action of I' on T™. Therefore,
there is a subgroup of finite index I'; CI" which fixes a point x; € T".

We then proceed as before: Choose a lift ¥; € 9T of x;, and then define a
new action of I'; on X by translating on the right by the element X;. That s,

01(7) = R(X) "'op(7)°R(%y)
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Then the lift () of ¢,(y) to G has translational part T(m)) e N, for all
v € T';. Repeat this construction inductively to obtain an action ¢ ¥ of a finite
index normal subgroup I', CTI'y_; C --- CT" which fixes a point in T"*. The
corresponding action ¢ (I';) fixes the identity coset in X, and hence the re-
stricted action ¢(I';) fixes the point x, =x; -+ X;. Then take I''=T. L]

The proof of Proposition 3 shows somewhat more than asserted above. The
inductive procedure first finds a periodic point for the quotient action on
a torus. This yields a compact fiber which is invariant for a subgroup of
finite index. The induced action on this fiber has a quotient action on a
torus, which also has a periodic point, and so forth. At each stage, thereis a
“free choice” of the periodic orbit in the quotient torus. By Proposition 1(3),
each quotient toral action has a dense set of periodic orbits to choose from.
Therefore, we can conclude the following also.

COROLLARY 5. Let ¢ be an affine action of T" on a compact nilmanifold X.
Suppose that H\(T; Q@g) =0 for 1<i=<k. Then the set of periodic points
A(p) is dense.

The existence of a dense set of periodic orbits can also be deduced from
arithmetic considerations, as in the proof of the Theorem in [3, §3].

4. Affine Actions without Fixed Points

In this section, we construct affine actions that have dense sets of periodic
orbits yet no fixed points. The method is first developed for the congruence
subgroups of SL(n,Z), using the cohomology interpretation of affine ac-
tions on T”. The method produces groups I'(n, p) C SL(n, Z) with nontrivial
torsion classes in H(I'(n, p); T,,), where ¢ is the standard linear action of
I'(n, p) on T". By Proposition 1, this yields affine actions on T” with dense
periodic points but no fixed points. We then give a dynamical reformulation
of the method which is applicable to more general affine actions.

Let Z/pZ denote the cyclic group of order p. For each n>1, there is a
natural “mod p” quotient map I1,: SL(n, Z) — SL(n, Z/pZ) whose kernel is
the congruence p-subgroup denoted by SL(n,Z),. Given a subgroup I' C
SL(n,Z), define I',=T'"NSL(n,Z),. Observe then that I', is normal with
finite index in T.

Recall that ¢q: I' X T” —» T"” is the standard action. For a subgroup I' C
SL(n,Z), define the subgroup of I'-invariants in T”,

I =(TH' = {xeT"| x=go(y)(x) forall y eT}.
LEMMA 4. There is a natural map Hom(I", T(I')) LN HYT; T;,)-

Proof. ¢ restricts to the trivial action on 9(I'), so the inclusion i: 9(I") C T”
induces a well-defined map Hom(T", 9(I")) = H {(T; gI,) = H\T; T,,)-
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We will show that this map is nonzero for appropriate choices of finite-index
subgroups I'C SL(n, Z). Let (1/p)Z denote the additive group of fractions
generated by 1/p, and let T, =((1/p)Z)" mod Z" be the “(1/p)-points” for
the n-torus.

LEMMA 5. Foreach p=1, 9(SL(n,Z,))=T).

Proof. Each element y € SL(n, Z,) is an invertible matrix with integer entries,
with v —I'= pA for some integer matrix A. Given a vector x =(Xxy, ..., X,) €
((1/p)Z)", calculate

v-x=x+pA-x=xmodZ".

Conversely, if v-x=xmod Z" for all x e (1/p)Z)", then v —I maps ((1/p)Z)"
to the integral lattice Z”, which implies that v —7= pA for some integer
matrix A4. ]

We now give the proof of Theorem 1 by exhibiting a lattice subgroup I'(#, p)
such that SL(n, Z),:CI'(n, p) CSL(n,Z), and

i»: Hom(T'(n, p), T;) » H'(T'(n, p); T})

is not trivial. Let U, denote the n X n matrix with all entries zero, except for
the top right entry which equals p, and let Id be the n X n identity matrix.
Then A=1d+U, € SL(n, Z), is an upper triangular matrix. Note that A? =
Id+U,2, so that 4 generates a cyclic subgroup of order p in the quotient
group SL(n, Z),/SL(n, Z),:. Define I'(n, p) to be the group generated by A
and the subgroup SL(n,Z),:. Let I1: I'(n, p) » Z/pZ be the quotient map
onto the cyclic group of order p, where the kernel of II is SL(n,Z),: and
[I(A)=1€Z/pZ.
For 1<i=<n, define homomorphisms 7;: I'(n, p) — T by

IT
o) -¢; mod Z”,

7i(y) =
where &;=(0, ..., 1,...,0) is the ith basis vector of Z".

LEMMA 6. The elements {i[7T3],..., x[7,]} eH‘(I‘(n,p);Tgo) are linearly
independent over Z/pZ.

Proof. Let a,, ..., a, be integers such that i,[ay 7+ - +a,-7,] =0 in
HYT'(n, p); T,,)- By Proposition 1, there exists zo € T” such that

(1) (xp) =T2(¥)® -+ 7,(v) "X (3)
for all v eI'(n, p). In particular, for y € SL(n, Z),:, this implies that
@ (v)(xg) = Xo;

hence xg € T;z by Lemma 5. Next, evaluate the identity (8) for y/=A=
I+ U} and multiply by x5! to obtain
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le-a, .  l-a
o(U})(x0) =72e2

=8, mod Z". 9)

This identity says that x; is a point whose translation under the “derivation”
go(Ulﬁ)(xo) = o(y)(X) - Xxg ! is in the span of the translates by the basic vec-
tors {(1/p)é,, ..., (1/p)é,}. However, o(U,)(x,) is calculated by left multi-
plication by the matrix U, on the coset xy, so the elements ¢ (U, ’)(xo) and
o(U, k)(xo) differ by an element of the subgroup of T” generated by the coset
of (1/p)é,. The subgroup of T” generated by the set {(1/p)é,, ..., (1/p)é,}
intersects the subgroup generated by (1/p)é; in the identity element, so we
must have that ¢;=0mod p for 2 <i < n, as was to be shown. ]

COROLLARY 6. There is an inclusion (Z/pZ)"~'c H(I'(n, p); T”

The points in the rational torus Q”/Z” are all periodic for the standard ac-
tion, and also for the translation action by a rational number. It follows
that Q"/Z" is contained in the set of periodic orbits for each affine action ¢,
associated to a class [7]=ay-[7,]+ -+ a,-[7,] eHl(I‘(n,p);T;}O), hence
A(p,) is dense. When [7] # 0, there are no fixed points for the affine action
¢,. Theorem 1 now follows. L]

We next reformulate the arithmetic constructions above with their dynami-
cal counterparts, thus broadening the scope of our class of examples with-
out fixed points. Assume that ¢:I'XT"” - T” is an affine Anosov action,
with A(¢) nonempty. A set X C T” is said to be ¢-saturated if x € ¥ implies
that ¢(y)(x) € X for all y eT.

DEerINITION 1. A filtration of A(p) is an ascending sequence of ¢-saturated
finite sets A\ CA,C --- CA,C --- whose union is all of A(p).

LeEMMA 7. An affine Anosov action ¢ admits a natural length filtration on
A=A(p).

Proof. For each positive integer p, let A, C A be the subset of points whose
@-orbit I'(x) contains at most p points. Clearly, A, C A, with the union
over all p yielding A. We must check that each A, is a finite set. Let y, €I" be
¢-hyperbolic. Observe that each xe A, is a periodic point for ¢(vy;), and
hence is a fixed point for some power ¢(vy;)? with 0<g=< p. Thus, A, is
contained in the set of fixed points for the Anosov diffeomorphism ¢(vy,)?",

and hence is finite. |

For each p =1 define I',, to be the stabilizer subgroup of A,. That is,
YeT,®o(y)(x)=x forall xeA,.

Clearly, I',; CT,, and A dense in T” implies that the intersection over all
T', is the set of y e I" which act as the identity on T".



572 STEVEN HURDER

LEmMMA 8. T, is a normal subgroup of T' with finite index,
[Tp: Tl = {Card(A,)}!.

Proof. The action of I" on A, defines a representation I' - Perm(A) into
the permutation group on the set A, with kernel I',, and the finite group of
permutations has order {Card(A,)}!. O

We also introduce X, = {x € T"|po(y)(x) =x for all y€I},}, which is the
I',-“saturation” of the set A,. The inclusion I'; C T, for p < g implies that
X,CX,.

LEMMA 9. Ifpy:I'XT"—>T"is a linear action, then X, p IS a finite subgroup
of T".

Proof. Each Ae GL(n,Z) acts as a group automorphism of T”, so that
A(xy)=A(x)A(y)=xy if x and y are fixed by A. This holds for each 4 in
the image of ¢(, hence X, is a subgroup. For each x € X,,, the orbit I'(x)
contains at most {Card(A,)}! points, so that X, CA,,. Thus X, is a finite
set. O

The p-adic filtration used previously can now be replaced with the length
filtration, and the remainder of the arguments work as before. Fix a pair of
integers ¢ > p>1. (In the previous case, we let g = p2.) We introduce the
following notation:

for y €T, let I'(q, v) CT, be the subgroup generated by I, and v;
given an auxiliary subgroup I'"C T, Der,(I'") C X, will denote the
subgroup generated by the subset

{0o(8)(x)-x 16T and xe X,}N X, C X,,.

ProposiTIiON 4. Let I' C GL(n, Z) contain a hyperbolic element. Then for
each q> p>1and vy €T, there is a homomorphism

Hom(I'(q, v)/ Ty, X,) = H'(T(q,v)/Tys X,) > H\(T'(q, 7); T, (10)
with kernel contained in the subgroup Hom(I'(q,y)/T,, Der,(I'(q, v))).

Proof. For a e Hom(I'(q, v)/T,, X,,), define 7,:T'(q,y)—>T" to be the
composition

I'(g,7) > T(q,7)/T; > X, CT".

Define j[o] = [7,]. Suppose that [7,]=[7g]; then there exists xoeT” such that
7o(8) 75(8) 1 = p4(8) (x0) - x¢ ! for all 6 €T'(q, 7). In particular, ¢(T,)(xp)=
Xo, SO that xp € X,. As 7,(8)74(8)”" € X, by construction, we have that
74(8) 75(8) ™" € Der,(T'(q, 7)). O

CoRrOLLARY 7. Let I' C GL(n,Z) contain a hyperbolic element. Suppose
there exist q> p>1and vy €', such that
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Hom(T'(g, v)/Ty, Dery(I'(q, v))) # Hom(I'(q, v)/ Ty, X,) .

Then there exists an affine action ¢ of I'(q,vy) on T" without fixed points,
such that the restriction ¢ |I'; is the standard action ¢y with fixed point set
X

P

5. Affine Actions of Abelian Groups

Assume that ¢: T' X T"” — T" is an affine Anosov action of a finitely generated
abelian group I, with ¢-hyperbolic element v, € I". The linear action asso-
ciated to ¢ defines a representation ¢o: I' = GL(n,Z). The fixed point set
Fix(¢ (7)) C T" for o(v,) is finite and (as I is abelian) is invariant under the
full action of ¢(I"). Thus, the existence of a fixed point for the action of ¢ is
equivalent to the existence of a fixed point for the restricted action of I'" on
Fix(¢(vy)). We use this remark to reformulate the cohomological obstruc-
tions to the existence of a fixed point in Proposition 1.

We introduce the relative cohomology group H (T, v.; Fix(eo(vn)) »,)
spanned by the 1-cocycles 7: I = Fix(¢o(ys)) over ¢, which vanish on +yy.
Note that this defines a subcomplex as 7(y;") = 7(y,)"”, using that ¢y(ys)
acts trivially on Fix(¢o(v4))-

PROPOSITION 5. Let ¢o: I' X T" = T" be a linear Anosov action of a finitely
generated abelian group T' with ¢y(v,)-hyperbolic element vy, €. Then the
set of affine actions of T" with linear part ¢, is indexed by the cohomol-
ogy group H\(T, vn; Fix(eo(vn))e,)- In particular, each nonzero class in
H(T, vy Fix(eo(va)) ,) &ives rise to an affine Anosov action without fixed
points, but with dense periodic orbits.

Proof. There is a natural map
HXT, vy; Fix(eo(v4)) ,) = H'(T5T)). (11)

By Proposition 1, it suffices to show that this map is injective, and that each
affine action ¢ as in the proposition yields a 1-cohomology class in the image
of this map.

First, assume that 7: I" — Fix(¢o(7y;)) is a 1-cocycle over ¢y which vanishes
on v, and is a coboundary as a map into T”. Then the corresponding affine
action ¢, admits a fixed point, and so is conjugate to the linear action ¢, via
translation by some x, € T". Translation by x, maps the fixed point set of ¢
to that of ¢y. The hypothesis 7(v,) = 0 implies that Fix(¢(+y;)) contains 0, so

X0 € Fix(¢0(7h))¢o

and thus 7 also defines the zero class in H(I"; Fix(oo(v4)) »,)- Note the corol-
lary of this argument: the fixed point sets Fix(¢(vy;)) and Fix(ey(y;)) agree
whenever 0 € Fix(¢(vy)).

Given an affine action ¢ as in the proposition, conjugate the action by a
translation so that 0 € Fix(¢(vy,)). Let 7,: T'— T” denote the corresponding
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1-cocycle. Fix(¢(yp)) is invariant under the action ¢(I"), so 7,(v) = ¢(¥;)(0) €
Fix(¢(vx)) = Fix(¢o(vy)). That is, we have shown that the class of [7,] is in
the image of (11). Cl

Proposition 5 almost immediately yields a proof of Theorem 2. Fix the hy-
perbolic element v, €I, and let I''CI" be the subgroup of finite index con-
sisting of elements which act trivially when restricted to Fix(¢(+,)). For any
abelian group @, let Hom(I", v;; @) denote the group homomorphisms that
map 7, to the trivial element. Theorem 2 now follows from Proposition 1
and the following observation.

LeEMMA 10. There is an inclusion
Hom(T", y4; Fix(eo(v4))) C H' (T, va; Fix(eo(v))4,)-

The group Hom(I", v,; Fix(po(7v4))) can easily be evaluated using the struc-
ture theory for finitely generated abelian groups. In particular, with the hy-
potheses of Theorem 2 there always exists a nontrivial homomorphism in
this group.
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