Extensions of Complex Varieties
across C! Manifolds

YEREN XU

Introduction

More than twenty years ago, Shiffman [Sh] proved that a closed subset E in
an open set Q@ C C” with zero (2k —1)-dimensional Hausdorff measure does
not obstruct complex varieties, in the sense that if V' is a k-dimensional com-
plex variety in Q\E and if ¥ is the closure of V in Q, then ¥NQ is also a
k-dimensional complex variety in Q. Intuitively speaking, the set E is too
small to obstruct the variety V, since the topological dimensional of E does
not exceed 2k —2 while the boundary of V has dimension less than or equal
to 2k — 1. Later on, Alexander [A] and Becker [ Be] considered the case when
E is a real-analytic set with dimension as large as 2k —1 but, in addition, V'
has certain symmetric properties. In this paper, we consider the following
problem: If E does not obstruct the variety ' topologically (for the precise
definition see 1.5 below), is it necessary that ¥ N Q also be a complex variety?
We give an affirmative answer to this question when E is a (2k —1)-dimen-
sional C! manifold. In a subsequent paper we will show that the same con-
clusion holds when E is either a rectifiable curve or a high-dimensional rec-
tifiable set subject to certain requirements. For a general closed set E, the
problem is far from being solved.

The author would like to express his appreciation to Professors Stout and
Chirka for their advice.

1. Basic Definitions and Main Result

We start with some basic definitions and properties of analytic varieties.

Suppose that  is an open subset in C”. A subset V of Q is a complex ana-
Iytic variety if, for each point p in (2, there exists a neighborhood U of p and
a family of functions that are holomorphic in U such that VNU is the set of
common zeros for the functions in the family.

A complex variety V is called irreducible if it cannot be decomposed as
V=V,UV,, where V; are two distinct proper subvarieties of V. A variety is
irreducible if and only if the set of its regular points, Ve, =V —Vp,, is a
connected set. The irreducible components of the variety V are the sets W},
where the sets {I¥}} are the connected components of Vi.,.
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A complex variety V is said to be irreducible at a point a eV if there is a
fundamental system of neighborhoods {U;} about a such that each VNUj is
irreducible. Therefore the variety V is locally irreducible if and only if it is
irreducible at every point.

Throughout this paper, we shall use A” to denote the m-dimensional
Hausdorff measure in C”.

DEeriNITION 1.1.  Let E be a closed subset in an open set Q C C”, and let V be
a complex variety in Q\ E such that VNQ =V UE. For p in E we say that the
pair (V, E) has property(F) at p if the following condition is satisfied: For
every neighborhood B of p in Q, there exist a neighborhood U< B and a
positive integer A= Ay, g)(p) such that

A
(P\E)NU=UJ 4;,
i=1

where the sets { A;} are the connected components of (V \E)NU. If the con-
dition is satisfied at every point of E, then we say that the pair (V, E) has

property(F).

From the preceding definition, we can make the following observations.

(1) If A*~1(E)=0, then Q\E is connected. Moreover, E is nowhere sep-
arating in Q; that is, if B is an open connected subset of 2, then B\ E is also
connected. But this is not true if Q is replaced by analytic varieties, as the
following example shows: Let k=n=1, and let V' be the union of two open
unit discs with centers (—1, 0) and (1, 0), respectively; if we choose E to be
the origin, then ¥V is connected, while ¥ \ E has two connected components
at the origin.

(2) If E is a (2n—1)-dimensional C! submanifold in a domain ©, then
A@\k, g)= 2. Therefore, the pair (Q\ E, E) has property(F).

We now give some examples in which the pair (V, E') does not have prop-
erty(%) either at finitely many points or at a set of points with nonzero linear
measure.

ExaMpLE 1.2. Let k=n=1, and let E be defined by

_ ® / 3m+2 3m+4 B
E—{[O’l]\mgl<3m(m+l)’ 3m(m+1)>}U[ 1,0l

- 2 (LY 422 ““I_—N
mLi{(x,y)eR .(x m) +y‘=< 3mmiD) |
Then, by letting V= C!\E, (V, E) has property(%) at all p e E\(0, 0), but
/\(V,E)(O’ 0) = 0o,

ExampLE 1.3. Let the sets E; and E, be given by
E ={(x,0): —1=x=<1} and

E,={(x,x3sin(1/x)): -} =x=<1},



Extensions of Complex Varieties across C! Manifolds 401

and let ¥;= D\ E;, where D is the unit disc in C'. Then Ay, ny,, £,uE,(0,0) =
o0, while Ay £,(0,0) =2 for i=1,2.

ExampiE 1.4. In C! we define, for m=1,2,3,...,

2=1(21—1 1
E,= [L;_Jl{ X }X[O,W] and

21 21-1Y 3V 1
— 2, —
B,,= 1=U1 {(x,y)eR .(x— o ) +(y— sz) = 24m},

and let
E= UJ (EnUBn]U[0,1]x {0}}.

m=1
The set E is thus a union of disjoint circles and lines in [0, 1] X [0, 1] such
that all the points on I =[0, 1] X {0} are limit points of the circles, and such
that each circle is connected to I by a unique line in E. Note that AY(E) =
1+ 7 <oo. If we let V=C!\E, then (V, E) does not have property(F) at any
point p {0, 1] X {0}.

To consider continuation of analytic varieties, we noticed that property(F)
alone cannot give any positive result about the problem we are dealing with.
A simple example to show this is to consider a 1-dimensional variety

V=1{(z1,22):21=0,|2,|<1/2}

inside the unit ball B, C C% Then E={(0, z,): |z2|=1/2}, and Ay g (p) =1
for all p e E. Certainly the set V is not a variety in B,. Notice that in this ex-
ample the variety V has only one branch at every boundary point. To exclude
this case, we introduce a definition.

DEFINITION 1.5. Suppose that (V, E) has property(F) at a point p € E, and
that Ay, g)(p) =2. Then we say (V, E) has property(Q) at p. The pair (V, E)
has property(Q) if it has it at every point of E.

In other words, if the pair (V, E) has property(Q), then there are two
local components of V at every point on E. This excludes the example in the
remark just before Definition 1.5. In fact, we can prove thc following theo-
rem as the main result of this paper.

THEOREM 1.6. Let E be a closed (2k —1)-dimensional C' manifold in a
domain Q C C" and let V be a k-dimensional complex variety in Q\E with
(V\VYNQCE. If (V,VNE) has property(Q), then VN Q is also a k-dimen-
sional complex variety in .

Shiffman [Sh] proved that if E is a closed subset in an open set  with
A**~YE)=0, and if V is a k-dimensional complex variety in Q\E, then
VNQ is a variety. Together with this, Theorem 1.6 leads to the following
corollary.
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CoroLLARY 1.7. Let E be a closed subset in Q C C" such that:
(1) E=E|UE, with E, and E, closed in Q; and
(2) A**~YE))=0, and E, is a (2k —1)-dimensional C* submanifold in
O\E;.
If Vis a k-dimensional complex variety in Q\E with (W \V)YNQCE, and if
the pair (V, VN E) has property(Q), then VNQ is a complex variety in Q.

2. Some Prefatory Results

The idea of the proof given in the next section is to use a result of Harvey
and Lawson that gives a characterization of odd-dimensional submanifolds
in C" to bound complex subvarieties. To make this paper complete, we quote
this result and its related definitions as follows.

Suppose M is an oriented C! submanifold in C” of dimension 2k —1 with
k>1. We denote by J the standard complex structure in C”. If the complex
tangent space

H,(M)=T,(M)NJT,(M) = {ve T,(M): Jve T,(M))

has complex dimension £ —1 at each point z € M, then M is said to be maxi-
mally complex. In case k=1, M is maximally complex if the following ro-
ment condition is satisfied: For every holomorphic 1-form w in C", {3, =0.

A compact set M in C” is said to be a scarred 2k —1 cycle (of class C") if
it has the following properties:

(1) thereis a closed subset S (called the scar set) in M such that S has zero
(2k —1)-dimensional Hausdorff measure, and such that M\S isa C”
oriented (2k —1)-dimensional submanifold in C"\ S for a positive in-
teger r;

(2) the set M\ S has finite volume; and

(3) the current [M] defined by integrating over M\ S has no boundary—
that is, {7\ s do =0 for every C*® (2k —2)-form w in C” with compact
support.

A scarred (2k —1)-cycle M is said to be maximally complex if the submani-
fold M\ S is maximally complex.

THeEOREM (Harvey and Lawson [HL]). Suppose M is a maximally complex
scarred 2k —1 cycle of class C' in C". (It suffices to assume that M\S is an
oriented immersed submanifold of C"\S instead of an embedded submani-
fold.) Then there exists a unique holomorphic k-chain T in C"\M, with
supp(T) CC C”" and with finite mass, such that dT=[M] in C". Further-
more, there is a compact subset A of M with zero (2k —1)-dimensional Haus-
dorff measure such that, for each point of M\ A near which M is of class
C', 1<l <o, there is a neighborhood in which supp(T)UM is a regular C*
submanifold with boundary. In particular, if M is connected, then there exists
a unique precompact irreducible complex k-dimensional subvariety V in
C"\M such that d[V]1= +[M] with boundary regularity as above.
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In order to verify that the current [M] is closed, we need to invoke the fol-
lowing result of Chirka, which allows us to apply a generalized Stokes’s
formula [St, p. 10] to complex varieties with C! boundaries.

THEOREM (Chirka [C1]). Let D be a domain in C", M a submanifold of D
of dimension 2k —1 of class C' with =1, and V a purely k-dimensional
complex variety of D\M with M CV. Then there exists a (possibly empty)
closed subset E C M with zero (2k —1)-dimensional Hausdorff measure such
that the pair (V, M) is a C' manifold with boundary in a neighborhood of
every point in M\ E.

To obtain volume finiteness required in the definition of scarred cycle, we
need a technical lemma. We shall use the notation that for p e C", G, ;(p)
is the set of all complex k-planes through the point p, and =y is the orthog-
onal projection from C" to X for every X € G, x(p).

LEMMA 2.1. Let E be a closed subset in a domain QC C", peE, and let V
be a k-dimensional complex variety in Q\E such that VNQ=V UE. Fur-
thermore, suppose that near the point p,

(1) E=E,UE, with E,, E, closed subsets, A*~\(E;) =0, A*(E,) =0,
and
(2) there is a subset GC G, x(p) of positive measure such that for every
Y €q, the pair (wg(VUE)), mc(E,)) has property(F) at the point
e (D).
Then V has locally finite volume at p; that is, there exists a neigshborhood
U(p) CQ of p such that

AN NU(p)) < oo.

Proof. By using Shiffman’s result, we can assume without loss of generality
that E; is empty, and hence E=F,. We need to show that there exists a
neighborhood U(p) about p in 2 such that

AKU(p)NTV) < oo,

We can assume that pe ENV is the origin of C”. First we prove a claim
about projection mappings, which also can be found in Bishop [Bi], Shiff-
man [Sh], and Stolzenberg [St]:

Let U be a domain in C" with 0 e U, and let S be a closed subset in U such
that A***1(S)=0. Then, for almost all coordinate systems z,, ..., 2, of C"
and for every permutation o of (1, ..., n), there exist a neighborhood A% of
0 € C* and a neighborhood A"~ % of 0 € C"* such that, for A, = AF x A"~F,
the projection map w,: SNA,— A¥ defined by

To(Z15 o5 Zn) = (Zo(iys +++s Za(k))

isa prbper mapping onto its image.
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For if A**1(S)=0, then for almost all £ € G, ,_;(0), A/(ENS)=0. Thus
for almost all coordinate systems (zj, ..., z,) of C*, A{(SN=;1(0)) =0.
Hence we can find an (n— k)-ball B2 C =;!(0) such that

bB2NS=0.
Since the set S is closed, we can also find a k-ball B} C (7, 1(0))* such that
bB2NSN=; 1(Bl)=0.

Thus by taking A% = B! and A" ~* = B2, the projection mapping =, is proper
from SN A, onto its image. This establishes the claim. O

Applying this claim to the closed set S=ENV and using the hypothesis in
(2), we can assume that the following conditions are satisfied for some co-
ordinate systems (Z;, ..., Z,)-

(a) For each fixed permutation ¢, a small neighborhood A, = A% x A7~*
exists such that the projection m,: A,N(V UE) — A is a proper map-
ping onto its image. For the sake of simplicity, we drop the lower
index o for the neighborhood A, in the following argument.

(b) The map =,: AN E — A¥ is proper to its image, since the set E is closed.

(c) m,: ANV \x; 'x,(ENA)— A¥is also a proper mapping onto its image.

d) m,: ANV - A¥ is a locally biholomorphic mapping outside a proper
subvariety W,! C V. Note that A2*~}(W!) =0.

(e) The set m,(FNANT,(ENA)C A*\7,(ENA) has only finitely many
connected components.

We denote by W2 the preimage set 7 !(m,(ENA)), and let W = W} UW?2.
Then the map

7yt (V\W)NA = 7 (ANV\WH\7,(ENA)
is a finite-sheeted covering map, since the map =, |, \w3)na is again a proper
map to its image. As the map is nonsingular, it must be a finite-sheet cover-
ing map. Let
n, )
TAANV\WOINT,(ENA) = U E/,

Jj=1
where EJ is connected and n, is a positive integer. If we let m;/ be the number

of sheets of w, over each component E/, then m; < o. Therefore we can
take U=, A, and obtain

NEUNT) = SAH(A, NV + DA, Ve NI))

n,
=3 3 mINKEN+ZT AK ANV, NWP).
g j=1 o

The first part on the right-hand side of above inequality is finite, since it is at
most (X, 27%, mi)A**(A¥). The second part is also finite, as we demon-
strate below.

For each fixed ¢ we denote A, by A, and apply Eilenberg’s inequality from
geometric measure theory [BZ, p. 101; F, p. 188] to obtain
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*
j AENANT () dA*(p) < Cp L AZHENA) = 0.
7, (VNA)

(Note that the projection , is a Lipschitz map.) Thus there is a subset W,* C
T, (VNA) with A%*(W,*) =0 such that A%ENANTY(»)=0 for all ye
T,(VONANW,. That is to say that for those y, ENA is disjoint from = 1(y).
Therefore ENA N« (w, (VN ANT, {EHN) = ENAN 77 W (7, (VN AN
is the empty set; that is,

TAENA) N7, (VNANT,{(EY)) =0.
Consequently,
Ty (T (ENA) N((VNANT, (E3)) =0.
Thus, to estimate the volume of the set VNA ﬂWf, we need only consider

its subset VNAN T, Y (w (ENA)Nx; {(W,*), which can be decomposed as
AL U A2, where

AL = Y (m (ENA) Nx  (WHNWwINA
and
Al=r Y (ENA) N\ (WHNV\WHNA.

Since AZ*(W}!) =0, A%¥(W,*) = 0; since =, is a local biholomorphism on
VNAW}!, A%*(AL) = A?¥(A2) =0 and the result follows. This completes our
proof of the lemma. O

3. Proof of Theorem 1.6

We can assume that £ UV =¥V NQ; otherwise we simply replace E by ENV.
Our problem is purely local, so we suppose that Q =B,. Without loss of
generality, suppose that 0 € E. We need to show that ¥NQ is an analytic
variety at the origin. To do this we first introduce some notation.

Let E be a closed subset in C”, and let V be a k-dimensional complex
variety in C"\ E. For ¢ > 0 we define

S'={zeC":|z|=1},
B'={zeC":|z|<},
Vi=vNS', and
(Vieg)' =ViegNS’s  (Veing)' = Viing N S".

Note that V' is a real-analytic subvariety in S\ E for all ¢ > 0. Therefore we
let (V*)eg be the set of regular points in V7, and let (V') gy, be the set of
singular points in V.

(1) Local finite volume of V near E: Since E is a (2k —1)-dimensional C!
manifold, A**(E)=0. For almost all £ € G, (0), wx(E) is also a (2k —1)-
dimensional submanifold near 0 € £. Thus, by Lemma 2.1, V has locally
finite volume near the origin.
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(2) Generic position of V*: Let
Ti={0<t<1:V!'is a (2k—1)-dimensional real analytic variety}.

Then AY((0,1)\T;) = 0. Let T, = {t € T;: A* ~!(¥7) < o). Then T, differs
from T; by a set of zero linear measure. For if « is a number close to 1
then A2*(V N p~1[0, a]) < o0, where p(z) =|z|. The map p satisfies a Lipschitz
condition, and we can apply Eilenberg’s inequality to obtain

*
S A¥*=Y TN~ (1) dAN(2) < Cyp | AP (A) < o0
[0, o]

Thus A*~1(V7) < for almost all 0<¢=<a, and the conclusion follows.
Applying a similar argument to the closed set E satisfying A%%(E) =0 gives
us a set T3={feT,: A*~1(E*) =0} with the property that AY(T)\T3)=0.
Hence T; differs from (0, 1) by a null set.

(3) Maximally complex scarred cycle in VNS! for t € Ty: To apply the
theorem of Harvey and Lawson, we fix a ¢y € 73. By Chirka’s result in Sec-
tion 2, there exists a closed subset E¥ C E with A*~1(E*) =0 such that
(V, E) is a manifold pair at each point pe E\E*. Let M=V NS%. Then M is
a compact subset in B”. Define the scar set S of M by (V) g, U (Vsing) *UE .
Then M\S C (V)N (V)" is an oriented (2k —1)-dimensional submani-
fold with orientation inherited from V.. By our choice of #y, A* /(M) <o
and A%*~1(S)=0.

LemMMA 3.1. The current [M] is closed; that is, d[M]=0.

Proof. Let ¢ be a (2k—2)-form in C” with compact support. We want to
show that
(@IMI)0) = [M(de) = | i*dp=0,
M\S

where i: M\ S — C” is the natural inclusion map. To apply the generalized
Stokes’s formula to the manifold V., N B, we write

ViegNBO\(V;eg N B%) = (M\S)USU{E\E*")N BN},

where 6 = (V;,, UE*US)NB% is a compact subset of B% with A*~1(8) =0,
and (VN B", (M\S)U(E\E*)NB") is a manifold pair. Then, for every
(2k—1)-form do,

0=§  d(dy)=

S __i*de.
ViegN B0 (M\SYU{(E\E*)NB'0)

Since 75 (E) is a (2k —1)-dimensional manifold near 0 € £ = C¥, there exists
a neighborhood A C C* of 0 € C* such that 7y (E) divides A into two parts,
say A, and A_. By the property(Q), we can choose a neighborhood U C C"
of 0 so small that 7z (U) C A, and so that VNU=A,UA,, where A, and A,
are two disjoint connected sets. Thus wx(A,) and wx(A,) are two subdo-
mains of A. By shrinking A if necessary, we can assume that bA, and bA _
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are of class C! and that both contain wx(ENU). Moreover, we assume that
wx(A) =A,. We claim that 7y(A,) CA_. In fact, we can show that

wr(AD)Nag(Ay) =0.

To prove this, let us first assume that 7y is proper on 4; and on A,.
Since wz(A;) is an open set, brz(A;) = wx(bA;) CbAU g (ENU) and
A;Nagleg(ENU)Y=0 for i=1,2. Therefore brys(A;) Nbrg(A4,) =
wo(ENU). Let N=nx(A)Nwe(A,). If O +#0, then it is an open set con-
tained in A, . If 1+ A, then we can find a point p that lies in bITNA .
Thus

peA N(mg(ENU)U(D(A N7 (END))),

since b C bAUx(ENU). The set A, meets the A_ only along the set
wx(ENU). Therefore A, N(bA \wx(ENU))=0. Thus pe A Nag(ENU).
But the latter set is an empty set, since A; N7z 7 (ENU)=0. This implies
that either =0 or N =A | = w5 (A;). We show next that the latter case will
never happen.

For if it occurs, then w5 (A,) C wx(A,). For g € mx(A,) we let D_(q) be the
discriminant polynomial for the analytic covering map =y [C2, p. 44]. Then
D is a nonzero holomorphic function defined on 7y (A,). But on the other
hand, since AN A, CE, D,(gq)— 0 when g — nx(ENU) C bws(A,). There-
fore the uniqueness theorem for holomorphic functions gives that D, =0,
a contradiction that shows our claim.

For the general case, the mapping 7y is proper on VNU \r3'7c(ENU).
Therefore

T (ANTS T (ENU)) Nag(ANTs  np (ENU)) =0.
This implies that 7o(A;)) N7y (A45) —7x(ENU) =0, that is,
me(A)Nwg(Ay) Crg(ENU).

But the set wx(ENU) is a closed set with empty interior, while the set
wx (A1) N7y (A,) is open. The contradiction from the above inclusion proves
our claim for the general case.

By what we proved above, if on (E\ E#) N B% we use the induced orienta-
tion from V,, then at every point of (E\E YN B* we will have exactly two
opposite orientations, one induced from A4; and the other from A,. This
leads to

S i*dp=0,
(E\E*)NB'0)

and hence establishes the lemma. ]

Next we show that the manifold M\ S satisfies the maximally complex con-
dition or the moment condition. If £ > 1, we need to show that

dimc(T,(M\S)NJT,(M\S))=k—1.



408 YEREN XU

Let W)=V, NB%. Then W, is a smooth complex submanifold of (complex)
dimension k. Since M\ S C bW, the above equality holds naturally. In fact,
T,(M\S) =T,(bW)) by considering their real dimensions. Similarly, if k=1
and if w is an arbitrary holomorphic 1-form in B,,, then from the generalized
Stokes’s formula and from the proof of Lemma 3.1 we have

S w=S dw=S dw=0.
M m Wi

This shows that M satisfies the moment condition.

(4) Completion of the proof: By what we have obtained so far and by the
result of Harvey and Lawson, there exists a unique irreducible k-dimen-
sional complex variety W in B\ M such that d[W]= +[M]. The sign be-
fore [M] indicates the consistency of two orientations, one from W and the
other from [M]. Let us assume that they coincide, that is, d[{W]=[M]. So
for every (2k —1)-form ¢ in B” with compact support,

S dy = S v.
w M\S
On the other hand, we already know that {5 ¥ = {pn 5% d¥. Therefore

dW]=[M]1=d[VNBY].

(Note that ¥ N B0 defines a current by the choice of the number #,.) Unique-
ness implies that W |gipn g =V | g, and thus ¥ N B is an analytic variety in
B, The variety ¥ N B’ thus can be extended across EN B for every ty € T;.
In particular, V is an analytic variety at the origin. This completes our proof
of the theorem. O

4. Final Comments

Before ending this paper, we would like to make some comments about our
proof and raise some questions that are likely to be solved by the method
adopted here.

1. In the proof of Lemma 3.1 we showed that if 4; and A, are two local
irreducible components of ¥ near a point p € E, then for almost all projec-
tions 7y to k-dimensional complex planes X, ny(A;) and wy(A,) are dis-
joint. This shows that the number of local irreducible components of V at p
cannot exceed 2. Thus our property(Q) can be generalized to have the fol-
lowing weak form:

The pair (V, E) has property(Q’) at point p if, for every neighborhood B of
D, there exists a neighborhood U C B and an integer A(p) = 2 such that

A(p)
vnu=UJ 4,,

i=1

where Ay, ..., Ayp) are disjoint k-dimensional proper subvarieties of V.
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The pair (V, E) has property(Q’) if and only if property(Q’) holds at almost
all (with respect to (2k —1)-dimensional Hausdorff measure) points of E.

From the proof of Lemma 3.1, we know that if (V, E) has property(Q’)
then V can only have two irreducible components near almost all points
p €E. Therefore the conclusion in Theorem 1.6 still holds if we replace
property(Q) by property(Q’). Thus, as a corollary of our Theorem 1.6, we
have the following result, which (when m =2 and E is connected) is proved
by Chirka [C2, p. 258] using a different method.

COROLLARY 4.1. Let E be a closed (2k —1)-dimensional C' submanifold
of adomain QC C”, and let V,, ..., V,, be distinct k-dimensional irreducible
complex varieties in Q\E (m =2) such that

EcCUFNvnQ).

i%j

Then (UL, V;UE)YNQ is a k-dimensional variety in 2.

2. The proof of our main result could be carried out if, instead of using
the result from Harvey and Lawson, we used the following structure theo-
rem [K]}:

Let S be a locally rectifiable current in C" of dimension 2k. Suppose that
bS =0 and that S is a positive current. Then S € Z;,(C"); that is, S € Zn;[ X]],
where {X;} are k-dimensional subvarieties in C" and {n;} are nonzero in-
tegers.

The advantage of using the result of Harvey and Lawson is that the method
also works for varieties in P?—P”~9, where P” is the complex projective
space. (Note that C” =P”—P"~1.) This may provide a way to solve the first
problem stated in comment 5.

3. Generally, suppose that £ is a (2k—1)-dimensional orientable recti-
fiable set and that V=V UE. Furthermore, suppose that d[V]=[E]. Then
V'NQis a complex variety, provided that (V, E) has property(Q).

4. We cannot in general claim that the variety ¥ N Q is regular at all bound-
ary points in E, though it is regular on E\ E, for some closed subset E,C E
with A‘”‘"(Eo) =(. But a result from Harvey and Lawson [HL] and from
Rossi [R] leads to the conclusion that ¥ N is regular at E (and therefore
has only finitely many isolated singularities) if E is class C? and Levi nonflat
at every point.

5. Two problems arise naturally from our paper. (a) Let E be a closed C!
manifold in an open subset @ C C” of dimension 2n—1, and let 7 be a closed
positive current in Q\E. Find a similar topological property for the pair
(T, E) so that the trivial extension 7 of T is a closed positive current in Q.
(b) Formulate some topological properties (similar to property(Q)) for a
pair (V,E) in P"—P"~9 (g > 1) to ensure the extendibility of the variety
Vc(P"—P" I\E.
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