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Introduction

If (X, @, m) is a probability space and ® is a g-subalgebra of @, then the
conditional expectation operator & = &( |®) acts on L*(X, @, m) as the or-
thogonal projection onto L2(X, ®, m). In this note we introduce an (associa-
tive) algebra D of bounded operators on L2(X, @, m) such that each of the
operators in O has its range contained in the kernel of &. D is in fact the set
of operators adjoint to a Banach-Lie algebra £= £(Q | ®) which is defined in
terms of & and whose members form a dense linear manifold in L2( X, @, m).

In Section 1 we introduce the basic notation and terminology employed
in this article, review the properties of conditional expectation relevant to
our investigation, and define the operator algebra D to be studied. We also
establish the existence of a set By in @ which is maximal with respect to a
condition equivalent to carrying no information about &. Examples are pre-
sented of sigma algebras where B, has positive measure and sigma algebras
where this set has measure zero. As these examples indicate, the case of By
having measure zero appears to be the more natural of the two and, in any
case, it is shown that the operator algebras under consideration and the
sigma algebras can always be decomposed into direct sums along these lines.
Moreover, D restricted to L2(B,) is the zero operator algebra. In Lemma 7
we show that when B, has measure zero there is an almost everywhere non-
zero bounded function whose conditional expectation is zero. This fact turns
out to be especially useful.

Section 2 deals with the algebra D of extensions to all of L? of the oper-
ators adjoint to £. It is shown that when By has measure zero, D is closed in
the weak operator topology. The range of each operator in D is carefully
analyzed, and its spectrum is shown to consist of zero and the essential range
of the expectation of its defining function in £. It is hoped that the detailed
information about ranges will prove useful in later investigations of the fine
structure of the kernel of &. This seems to be a difficult matter in general.
The commutant of D is studied in Section 2, and is shown to be the von
Neumann algebra of multiplications by L*(®) functions, which also turns
out to be the diagonal DN D* of D.
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Section 3 is devoted to a brief discussion of £ as a Lie algebra. It is shown
that £ has trivial center precisely when B,y has measure zero, and that in this
setting £ is in fact a Banach-Lie algebra. When B, has measure zero, so
that by the Corollary to Lemma 3 the adjoint representation is faithful, the
operator norm on D is equivalent to the norm induced by the Banach-Lie
algebra norm of £.

The authors, in conjunction with J. Daughtry, have begun the examina-
tion of algebras analogous to D in the case that & is a conditional expecta-
tion on a von Neumann algebra or, more generally, a C*-algebra. The results
of this investigation will appear elsewhere. The present measure-theoretic
setting is of special interest because of its relation to and potential applica-
tions in probability and measure theories, as well as its wealth of examples.
Moreover, certain constructions, such as the function of full support in the
kernel of & when By has measure zero, do not seem to have natural analogues
in the general setting.

1

Let X be a set, @ a o-algebra of subsets of X, and m a complete probability
measure on the measurable space (X, @). In this paper all algebras of sets
are assumed to be complete o-subalgebras of @. Also, equalities of sets or
functions, set inclusions, and inequalities between functions are interpreted
as being valid up to an m-null set. In describing sets, we shall use abbreviated
notation such as {g > n} for {x € X: g(x) > h(x)}. We shall denote the char-
acteristic function of a set by x 4. The reader will note that each argument
concerning supports of elements of L2 involves only countably many such
elements. For each function f chosen in such an argument, we assign a mea-
surable set Sy, referred to as the support of f, such that Sy and {f+ 0} are
equal modulo the null sets.

Suppose that ® is a subalgebra of @. For f e L!(X,®, m) we denote by
&®4( ) the unique B-measurable function with the property that

XB fdm= SB £%¢( £) dm

for all Be®. The function §®¢(f) is called conditional expectation of f
with respect to ®&. If there is no possibility of confusion we write &®(f) or
simply &(f) in place of §8¢(f).

The operator £®¢ is called the conditional expectation operator. Its re-
striction to L2(X, @, m), which is of primary interest in this paper, is the
orthogonal projection onto L*(X, ®, m). We will need the following stan-
dard facts concerning conditional expectation operators.

e £§%g =g if and only if g is B-measurable.
e If f is B-measurable then E®(fg) = f&%(g).
o [8%(f2)|? = 8%(|f]*) - 8%(|g|?) (conditional Cauchy-Schwarz inequality).
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 If fe L™(X,®, m) then 8%(f) e L*(X, ®, m).

o If f=0then &(f)=0; if f>0then &(f)>0.

e If £, 1T fa.e. then §f, T Ef a.e. (conditional monotone convergence
property).

It is known [3] that various subsets of this list of properties actually charac-
terize conditional expectation operators.

The following proposition lists some elementary properties of conditional
expectation which will be used in this investigation.

PROPOSITION. Let @ D ® and let & =8%C, Then

(i) For each nonnegative G-measurable function f, Sy C Sg;.
(ii) For each @-measurable set @, {Ex4=1} is a subset of @ (modulo
null sets), and is the largest ®-set contained in Q.
(iii) If A is an @-set that contains no ®-set of positive measure, then
&x 4 and x 4— Ex 4 have identical supports.
(iv) For each G-measurable set A, Sg, , is the smallest B-measurable set
containing A.

Proof. (i) For f=0,

0= g &f dm = S fdm,
X—Sgy X—Sgs
so that f=0 a.e. off Sg;.
(ii) We have

m@Exa==|  &xa dm={  xidm=mAN(Ex,=1).

{€xa=1} {€xa=1
Thus {Ex 4 =1} C A. If B is a ®-subset of A then m(B)={px 4dm={pEx 1 dm.
Since §x4=<1a.e., Ex4=1a.e. on B.

(iii) Suppose that A contains no B-set of positive measure. It follows
from (ii) that x4 <1 a.e. Thus {x4—8x4=0}={x4=0 and &x4=0}. By
(i), this set is the complement of the support of Ex 4.

(iv) Let B be a B-set containing A. Then {x_p&xdm={x_px,dm=0.

1
We now introduce the basic construction which motivated this study.
Let ® be a subalgebra of Q. For each g, fe L%(Q) let

Ds(g)=(8%)g—(E%g) f.

(Where necessary for clarity we will write D or D®® in place of Dy.) We
define £(@| ®) to be the set of fe L*(®) for which Dy is a bounded operator
on L*(®). It is clear that L®(®) C £. We also denote by D(®|®) (or sim-
ply D if there is no possibility of confusion) the set of all operators D, with
fin £(@|®). A straightforward calculation shows that D is an (associative)
algebra of bounded linear operators on L?(@®). Indeed, D¢D,=Dgfyg. As
we note in Section 3, £ is a Lie algebra with respect to the multiplication
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[/, g1=Dyg, so that Dy acting on £ is just ad f. The following example com-
pletely describes the algebras D(@|®) in the finite-dimensional case.

ExaMPLE. When X ={l, ..., n}, @=2%, and m = normalized counting mea-
sure, we identify L2(X, @, m) with C” so that the algebras D are algebras of
n X n matrices. If P is a partition of {1, ..., n}, let B, denote the s-subalgebra
of @ generated by P. Without loss of generality we can assume that the ele-
ments of P are of the form {(X; <, n;)+1,...,m}, 1=k =<d, with X n,=n.
We use the notation P=([n;:n,:---: nyz]. When P=[n], so that 8p= {0, X},
the conditional expectation operator §%7¢ is defined by the matrix E, = (),
where g;; = n~for all i, j. The algebra D in this case has dimension # (unless
n=1) and consists of all operators D,, a € C", defined by

D,x=(a,e;,)x—(x,¢€,)a,

where x € C”, (-, +) is the standard hermitian inner product on C”, and ¢, =
(n7Y,...,n71Y. (When n=1, D = {0}.) In the general case, where P = [n,:
ny:---:ng], we decompose C" as C""@--- @ C", and if a € C” we write ¢ =
a;®---Day. Then E¥C=E, ®---@E,, and D consists of all operators of
the form D, @ ---® D, , so that D has dimension n— p, where p is the num-
ber of singletons in P.

The algebra H(R | B) should prove to be a useful tool in studying the rela-
tion of the o-subalgebra ® to its parent algebra @. In general, the condi-
tional expectation & is used to relate and connect @-measurable functions
with B-measurable functions. However, the kernel of & is usually far less
tractable. For example, there are no positive functions in ker &, and it is dif-
ficult to analyze ker & effectively. Since each operator in D(Q|®) has its
range contained in ker &, H(R|®B) opens a window through which one may
observe ker &. The fact that D(R|®) is an operator algebra gives us more
than just the vector space structure of ker & to work with.

If @ is a subalgebra of @, we denote by &, the family of sets

{Se@:ANSC®},
where @N S denotes {7TNS: Te®}.

LemMA 1. For each subalgebra B, the family B, contains a maximum set
By; that is, there exists By € 8 such that each set S € @ of positive measure
which is disjoint from B, contains an Q-measurable set which is not ®-
measurable.

Proof. Let r=sup{m(S): @NSC®]}. If r=0 there is nothing to prove, so
suppose r > 0. Let {S,} be a sequence of sets such that

aNsS,c® and m(S,)—r.

Let Bp=US,. If BC U S, then B=UJ(BNS,) e®so that RN By C &. Thus
m(By) =r, so that every set of positive measure disjoint from B, contains a
set of positive measure which is not B-measurable. a
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ExampLEs. (i) Let X =[—1,1] with normalized Lebesgue measure. Let &
be the subalgebra consisting of sets symmetric about the origin. If S is any
set of positive Lebesgue measure then either SN[—1, 0] or SN[0, 1] has posi-
tive measure; hence, in this example, B, has measure zero.

(ii) Let (X, @, m) be as in the previous example. Define 7: X - X by

1

Lx+1), —1=x=0,
T(x)={ 2
(%) {1—|x—{;, 0=<x=<I,

and let 8 =T "!(@®). Then B,=[-1,0].

Given a subalgebra ® C @, the set By of Lemma 1 has a number of interest-
ing properties.

LeEMMA 2. Dr=0ifand only if RNS;C .

Proof. If D=0 then (§f)g=(Eg)f for every g. Choosing g=1, we see
that §f = f; that is, f is B-measurable, in which case §fg =(Eg) f. Let AC Sy
have positive measure. Then §;NSg, =S NA=A. But S§;NSg, €B.
Conversely, suppose that every @-measurable subset of Sy is in fact G-
measurable; indeed, every measurable function supported in Sy is B-measur-
able. Thus, for each g, D;g= fg—(8g)f=fg—8E(fg). But S;, CSs, so fg
is B-measurable; hence Dy =0. ]

CoroLLARY. The mapping f— Dy is one-to-one if and only if By has mea-
sure zero.

LemMA 3. L3(B,) =(Mycgker Dy.

Proof. Let g e L*(B,). Then g is in fact ®-measurable as a consequence of
Lemma 2. Thus, if fe€ £, we have Dy g = (f—&f)g; that is, D, g is supported
on By and hence is @-measurable. But ED;g= 0, which shows that D;=0
on L2(By).

Conversely, let g € (N ker Dy. Then for each fe £, (§f)g=(Eg) f. Choos-
ing f=1 shows that g is ®-measurable. It then follows that for each fe £,
(f—&f)g=0. Let BC(X—By)NS,. If m(B)> 0 then B contains a set C of
positive measure which is not 8-measurable, so that 8x. # xc. But by part
(iv) of the Proposition, the support of Ex is the smallest B-measurable set
containing C and (X —By) NS, is a B-measurable set containing C. Thus

supp(xc—8xc) C(X—By)NS,.

But (xc—8&xc)g=0, so xc = 8xc. This contradiction shows that m(B) =0,
so that B, contains S,. 1

LeMmMA 4.
(@) If fe&L then Dy is given by D}g = (6f)g—&(fg).
(b) Df €D ifand only if f is B-measurable. In this case Dy = M;(I — &) =
D},
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Proof. (a) We have
(Drh, g)=(hEf—fEh, g)
= (h,&fg)—(Eh, f2)
= (h, &fg)—(h, 8(f2))
=(h, (§f)g—8&(f2)).
(b) Suppose Df=D,,. Then, for each g,

(&f)g—8&(fg)=(8u)g—utg.

Thus for each B-measurable function g, (6u)g—uEg=0. Choosing g=1,
we conclude that Eu = u; that is, u is B-measurable. Then D, =M, (I—-§)
and D= Dy =(I—-8)M;=M;(I—8)=D;. By Lemma 2, f—ii, and hence
f, is ®-measurable. O

COROLLARY. LZ(BO) (and consequently L*(X — By)) reduces D.

Proof. By Lemma 3, for each fe £, D;=0 on L*(B,). By Lemma 4,
Drg=(&f)g—&(fg).

But g € L2(B,) implies that g is ®-measurable, so
Dig=(8f+8&f)g=0. O

NotaTion. For each subset L of L?(®) and each subspace 8 of L%(®), let
M(L, 8)={ueL*(@): uL C$}. When 8 = L*(®) we write (L) for M(L,S).

LEMMA 5. IM(LA(®)) ={f:8&|f|*eL").
Proof. Let fe L*(@), g e L*(®). Then

[17P1grdm = [@lrPolel am.

Therefore f € M(L*(®)) if and only if VE| f|? e M(LA®B), LA(®B)) = L™(®).
O
DEFINITION.
(a) ® is a type-0 subalgebra of @ if m(Bg) =0.

(b) ®is a type-1 subalgebra of @ if every 8-measurable function in
M(ker &) is in L=(®).

REMARKS. (1) In light of the preceding Corollary, we concentrate our at-
tention on the study of D(Q®|®) in the case where & is a type-0 subalgebra.
(2) The following result will be strengthened in Theorem 2.

LeEMMA 6. If ® is type O then & is type 1. Conversely, ® is type 1 but not
type 0 if and only if By consists precisely of a finite number of atoms.
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Proof. Suppose ® is type 0. Then every set of positive measure contains a
set of positive measure which is not ®-measurable. Let ¢ be a B-measurable
function in M (ker &), and let L denote the linear transformation of multi-
plication by ¢ on ker &. Then L maps ker & into ker &, and it follows easily
from the closed graph theorem that L is bounded. Let ¢ = || L|| as an operator
on ker &. We show that c is the essential supremum of ¢.

Let e>0 and let S={|¢|=c+e}. If S has positive measure then there
exists TC S which has positive measure and is not B-measurable. Let g=
xt—&xr. Then g is a nonzero vector in ker &. But S e ®, so S contains the
support of Exr, and consequently g is supported in S. Therefore

<c+e>2ngn2s§S|¢|2|g|2dmsc2ugn%

which is impossible. Thus S has measure zero.

Suppose B is type 1. If g e ker & then g=0a.e. on By. If m(B,) # 0 and B,
does not consist of a finite number of atoms, then there exists an unbounded
measurable function ¢ supported on B,. This ¢ would be @-measurable and
belong to 9M(ker &). Conversely, if By does consist of a finite number of
atoms, then B-measurable multipliers of ker & are bounded on B,. But the
argument in the previous paragraph shows that 8@-measurable multipliers
on ker & are always essentially bounded on X — B,,. O

THEOREM 1. Let B be a type-0 o-subalgebra of Q. Then
L={feL*(Q): 8| f]>€ L™(®)}.
Proof. By Lemma 5, if fe L*(®@) and &|f|>€ L™(®) then feNM(L*(®)).
Also, §f € L*(®). Thus f e £. Conversely, let ¥ € £. For f e L>(®) we have
[(I—8)f1[8u]l—[(I—&)u][Ef1 L.

Choosing f e ker & shows that Eu e M (ker &).
Thus, by Lemma 6, & is essentially bounded. Choosing f € L%(®) shows
that (I — 8)u € M(L*(®)), so that &(|(—8)u|?) e L=(®B). But
&(|(I—8)u[*) = &(|u[>+|8ul>*—2 Re(i16u))
= §&|ul*—|8u|*eL™
But §u € L>, hence |8u|* € L™, hence &|u|*> e L™. 0O

ReMARK. As the proof shows, Theorem 1 is also valid under the hypothesis
that ® is type 1.

ExaMpPLEs. (i) Here is an example where ® is type 0 and £=L%: Let X =
[—1, 1] with normalized Lebesgue measure. Let @ be the subalgebra of sets
symmetric about zero. Then £(Q®|®) = L*(®). As was shown previously, in
this case By = 0. Also, in this case we have



366 ALAN LAMBERT & BARNET M. WEINSTOCK

(&%) (x) = 2(f(x) + f(—x)).

Thus, by Theorem 1, £= L.

(ii) Let ® be an algebra for which B, has positive measure and does not
consist of a finite number of atoms in &@. Then £ contains an unbounded
function. With these hypotheses, L?(B,) contains an unbounded function f.
Since Dr=0, feL.

(iii) In this example ® is type 0 but £ contains an unbounded function:
Let X be the unit square with Lebesgue area measure on the Lebesgue seis @
in X, and let ® be the o-subalgebra of @ generated by C X [0, 1], where C is the
Lebesgue algebra in [0, 1]. Then, for each f in L2(X, @, m), (§%f)(x, y) =
4 f(x,t)dt. It is not hard to see that & is type 0, but there are functions in £
which are not bounded; for example, g(x, y)=y *.

(iv) & = L*®) if ® is generated by a finite partition of X. Let ® =
[By, ..., B,). Then 8%f =X m(B;)~ (|, f dm)xp . Thus, for any f, g€ LX(Q),

ng=5_3m(Bi)“l[(Lifdm)g—OBigdm)f]xB,.,

so Drge L2

Conversely, if ® is type 0 and contains a countable number of disjoint
sets {B;} of positive measure, then there exists f € L>(®) with f ¢ £. Indeed,
if f=3X c;xp, then §®f|* = X|c;i|*xp, However, fe L*(@) if and only if
Elc,lzm(B ;) <oo. Since 3] m(B;) <1 we can choose an unbounded sequence
{c;} with fe L*(®). Then §®|f|? is unbounded; hence f¢ £.

The following result will be particularly useful throughout Section 2.
LEMMA 7. Let B be type 0. Then there exists ¢ € ker & with 0<|p|<1a.e.

Proof. Let R={feker&:S;e® and | f|<1 a.e.}. Since ® is type 0, there
exists a set 4 of positive measure that contains no @-measurable set of posi-
tive measure. By part (iii) of the Proposition, the support of x 4 — Ex 4 equals
the support of Ex 4 and thus x 4 — &x 4 is in &, so R is not empty. We order ®
by the relation f< g if §;C S, and g|S,;=f.

If {f,} is a chain in & let r =sup m(S;,). Choose a sequence f, = f,, such
that m(Sy)Tr. Let S=U S, and define f on § byfls = f,. By the defini-
tion of ® and <, f is well-defined, has essential supremum =<1, and is in
ker &. Moreover, S e®. By Zorn’s lemma, ® contains a maximal element ¢.
We need only show that S, = X. Suppose to the contrary that m(X—S,) > 0.
Then X —S, contains a set A containing no (3-measurable set of positive
measure, so that x 4 — 8x 4 is a member of ® whose support is disjoint from
S,. Let G=p+x4—8x4. Then |Gllo=<1, Sce®, and EG=0. Thus GeR
and ¢ < G, which contradicts the maximality of ¢. O

LEMMA 8. Let 0<a< b <oo. Then there is a sequence { p,} of polynomials
such that p,(t) converges uniformly to Vt on [0, a] and p,(t) — + o point-
wise on [ b, o).
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Proof. By the Weierstrass approximation theorem we can choose p, such
that

|p.(t)—VE|=<1/n, tel0,al,
and
|pn(t)—n|<1/n, te[b,b+n].

This sequence has the desired properties. 1
The following theorem substantially strengthens the first half of Lemma 6.

THEOREM 2. If ® is a type-0 subalgebra of Q@ and u is an @-measurable
Sunction such that ug € ker & for every g e ker 8, then u € L(Q®).

Proof. Since ker & is closed under conjugation, |u|? is a multiplier on ker &.
Define L on ker & by Lf = |u|2 f. It follows from the closed graph theorem
that L is bounded. Also, (Lf, f)=0 for feker&. Let H be the positive
square of the operator L. Fix € > 0 and choose polynomials p,, as in Lemma
8 corresponding to a=||L|| and b=||L||+e€. Then p,(L) converges to H in
the uniform operator topology. Choose ¢ as in Lemma 7. Then

Pr(|t)De=p,(L)p - Hop

in norm. Hence there is a subsequence {p, } such that p,, (|u(x)| )go(x) con-
verges pointwise almost everywhere to (He)(x), and hence Dn. (|u(x)| ) con-
verges a.e. to ¢(x) " (Hy)(x). But {pn ()} diverges a.e. for £ =||L|+e. Thus

{lu|>>||L|1+€} has measure zero. Since ¢ was chosen arbitrarily, |u|<||L|
a.e.

2

In this section we examine the algebra D =D(®|®) introduced in Section
1. Since the corollary to Lemma 4 implies that L2(X — B,, @, m) reduces D
(and D restricted to L2(B,) is {0}), we assume throughout this section that ®
is type 0.

THEOREM 3. D is closed in the weak operator topology.

Proof. (In what follows, — refers to weak convergence.) Let {f,} be a net
in £ such that D; — D for some bounded operator D. Then Dy & » D& and
D, (I-¢€) —>D(I &). In particular,

(I-8)fo=Ds(—1) > fi,
where f;=D(—1). Then, for all g,
Dy &g =(88)(&fo—fo) > —/188.
Also, if Eg =0 then
(6f.)g=Dy g— Dg.
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Invoking Lemma 7, we choose an essentially bounded function ¢ in ker &
which is nonzero a.e. Then, for each g in ker &,

el(€f,)gl=>eDg and [¢(Ef,)1g— gDe.

It follows that Dg = ug, where u = D¢/p. But the range of D is contained in
ker &, so that u-ker & Cker &. But then Theorem 2 assures that « is essen-
tially bounded.

We show next that « is B-measurable. Let @ and b be the real and imag-
inary parts of u, respectively. Both @ and b are essentially bounded func-
tions which multiply ker & into itself. Fix e > 0 and let A = {§a = a+¢}. Since
xa—8x41s in ker &, so is a-x 4 —a-Ex 4; hence E(ax 4) = &(a)E(x4). But

E8lax4) =8E((Ea—e)xq) =(Ea—e)Ex 4,

so that —e&x4=0 a.e. Since Ex,4=0 a.e., it follows that E&x 4, =0 a.e. and
consequently m(A) = 0. Since € was chosen arbitrarily, 8a <a a.e. A similar
argument applies to sets of the form {Ea < a+ ¢} so that Ea=a a.e. The same
reasoning applies to b, so that Su=u a.e.

Now let f= f;+u. (Note that this exhibits the orthogonal decomposition
of f induced by I—§& and &.) Let U be the linear transformation defined by
Ug =1[f, g], where the domain of U is {g in L%(@®): [f, g] € L*(®)}. Noting
that sequential L? convergence yields subsequential a.e. convergence, it is
easily verified that U is a closed linear transformation whose domain con-
tains L=(Q®). Let g be an arbitrarily chosen member of L”(®). Then both &g
and (I — &)g are essentially bounded and

Ug=[I-8)gll&f1-1(I-8E) f1llg]l=[(I—-&)gllul—-[/1][Eg]
=D({I—-8)g—(wk.)lim[(/—8) f,1[6g]l=D(I—-8)g+DEg
=Dg.

But then the closed operator U agrees with the bounded operator D on
the dense set L*(®), and consequently (see [1]) U=D. Thus f is in £ and

We now examine the commutant D’ of D. Recall that the commutant of a
set of operators is the collection of all operators commuting with each mem-
ber of that set. We use the notation M, for the bounded operator of multipli-
cation by the essentially bounded function ¢, and L, for the linear transfor-
mation of multiplication by the measurable function p. The domain of L, is
taken to be {g in L?: pg € L?}, so that L, is closed and densely defined [1].

THEOREM 4. D'={M,: ¢ in L7(®)].

Proof. A routine (and omitted) calculation shows that ’ contains the indi-
cated set of multiplication operators. Let 7 be a member of 9’. Then for
each fin £ and g in L%(®),

[Ef1[Te] - [f1ETe]=T([Ef ][] —Lf][EgD). (1)
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Letting f=1in (1), we have (/—8)Tg= T — 8)g. This shows that T com-
mutes with &. Let ¢ =T1. Then 8¢ =8T1=T81=T1= ¢, showing that ¢
is B-measurable. Now fixing f in £ and taking g =1in (1), we see that

TUI-8)f=L,(I—-8)f forall fin£L. (2)

By Lemma 7, we now choose an essentially bounded function f in ker &
which is nonzero a.e. Let g be an arbitrary member of £. Then D;8g=
—Dg, f, so that

TD;8g = —TDg, f = —Dg,Tf
= _DSgSOf: ""p'Dng

=[—o][Eg]f].
On the other hand,

TDség=Ds;TEg=Ds8Tg=—[f1[8Tg}=—[f1[TEg]. €)

Since f#0a.e., T6g = ¢-&g. It then follows from (2) and (3) that for every
ginL,

Tg=T(I—-8)g+TEg=pg=L,g.
Since £ is dense and L,, is closed, L,=T=M,,. L

REMARK. Inthe general case (i.e., without the type-0 assumption), L2(B,)
is an invariant subspace for every operator T commuting with D because
L%(By) is contained in the kernel of every operator in ». However, this sub-
space need not be reducing for O’. Consider the following special case of the
example discussed prior to Lemma 1: Let X = {1, 2, 3} with uniform proba-
bility distribution, @ = 2%, and let ® be the o-algebra generated by the parti-
tion {{1}, {2, 3}}. The L? space under consideration is C3? and relative to the
standard orthonormal basis,

1 0 0
&E=[0 1/2 1/2 |;
0 172 1/2

and for f corresponding to {a, b, c¢),

0 0 0
Ds=|0 «¢/2 —b/2 |
0 —c/2 b/2
It follows that
Xy Jy
D'={10 z 0|:(x,y2)eC3}.
0 0 z

Since By = {1}, L?(B,) does not reduce 9.
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We will use a detailed analysis of the ranges of operators in D in character-
izing the spectra of operators in . For each operator 7, ranT is the range
of T, and for each set S in L2, S denotes the norm closure of S. The follow-
ing observation will prove helpful.

LEMMA 9. Let u bein £. Then u-L*(X—Sg,, ®)CranD,.

Proof. Let f be an element of u-L*(X—Sg,,®). Then §f=f and f=0o0n
Seu, S0 that D, f=—u- f. O

THEOREM 5. Let u bein £. Then

(i) ker 8N L3(Sg,, @) Cran D, C ker 8N L3(Sg|,|, ®); and
(iiy ranD, =ker 8N L*(Sg,, @)+ (u-L2(X — Sg,,, B)).

Proof. Since both u and &u have their supports in the support of &|u/|, and
since ran D, C ker &, (i) will follow directly from (ii). For notational con-
venience let

U=ker SNL%(Se,,®) and V=u-L*(X—Sg,, ®).

We have already seen that VCranD,,. Let feU. For each number r > 0 de-
fine the set S, to be {|Eu|> r}. Then each S, is a B-subset of the support of &u.
Define the function g, =(g/&u)xs,. Each g, is in U and D, g, =[8ul[g,]=
Jxs,- Since f vanishes off the support of &u, (wk.)lim,,o fxs = f. But the
weak and norm closures of convex sets in L? agree; hence f is in ranD,.
This proves that W CranD,,.

We have shown that U4V Cran D,,. In order to establish the stated equal-
ity in (ii), let f be an arbitrary function in L%(®). Then

D, f=[8ullf1-[ull&f1=1f118ulxs,, —[u][Ef]
= [(fxs,,)0u —u8(fxsy, ) —[uE(fxx-s.,)]-

The bracketed term immediately to the right of the last inequality sign is a
member of U, while the other bracketed expression is a member of V. In
summary,

UCranD,; VCranD,; ranD, CU+V.

Now U is closed and (because of the disjointness of supports) ‘U LV. Con-
sequently ran D, = ker 8N L2(Sg,,, @) + (1 - L2(X — Sg,,, B)). O

REMARKS. 1. If #>0, or more generally if Eu and &|u| have equal sup-
ports, then ran D, = ker § N L(Sg,,, @).

2. Theorem 5 holds even if @& is not type 0. Now, for any set 4 in G,
ker §NL%(A, ®) = {0} if and only if BN A=QRNA [4]. (Note that BN A is
not a subset of ®.) For A in &, this happens if and only if AC B,. But u
and 8u agree on By. Thus ranD, = (u-L?*(X —Sg,, ®)) if and only if the
support of u is contained in Bj.
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Since D, u =0 for every u in £, 0 is an eigenvalue for every operator in D.
We shall prove that the spectrum of D, is {0} U (essential range &u). This
will follow from the following two lemmas.

LEMMA 10. Let fbein £ and let A be a nonzero complex number. Then A is
an eigenvalue for Dy if and only if &f=A on a set of positive measure.

Proof. Suppose that g#0 and Dyg=Ag. Since A#0 and ED;=0, Eg=0.
But then Dyg=[&f1[g]l, so that §f=A on §,.

Conversely, suppose that L is a set of positive measure on which §f = A.
Invoking the type-0 hypothesis, we may assume (by choosing a subset of L
if necessary) that L is not a member of ®. Let g=(I—8&)x;, so that Eg=0
and g # 0. Moreover,

Drg=[8f1[g]l =T =8)((Ef)xL) =AU —E)xL=Ag. U

ReEMARK. Lemma 10 remains valid without the type-0 hypothesis if the
operative condition is weakened to “§f=A on a set of positive measure in
X—By”.

Suppose now that f is in £ and that A is not an eigenvalue for Dy. Let u =
JS—A. Then &u # 0 a.e. We will make frequent use of the fact that D;—AT=
D,—\E.

LemmMma 11.  With f, A, and u as above,

(i) ran(Dy—ATI) D ker & if and only if 1/8u is a multiplier on ker &;
(ii) ran(D;—AI) D LA(®) if and only if &|u|*/|8ul* e L™(®).

Proof. Let g be an arbitrary member of ker &, and suppose that
g=(Dr—AI)G

for some L? function G. Then, since A # 0 and both g and D;G are in ker &,
€G=0. But then g=(D;—A(I-8))G=D,G=[8ulG; whence g/&u is in
L%(®). This shows that if ran(Dy—AT)Dker & then 1/6u multiplies ker &
into itself. Conversely, suppose that 1/8u is a multiplier of ker &, and let g
be in ker §. Then

g g
D,—A8)—=D,—=
(Dy~A8)g-=Du%-=8,
showing that ker & Cran(Dy—AT).
In order to establish the validity of (ii), suppose that for each function #
in L2(®) we have a function H for which (D,—A8&)H = h. For such 4 and

H, since §D, =0, we have —AE H = h. This shows that D, H =0, so that

[8u][H]=[8H][u] = —%[h][u],
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which proves that (¢/8u)-L*(®) C L*(®). It then follows that &|u|?/|8ul* e
L*(®).

For the converse, if §|u|?/|8u|? is essentially bounded, then (u/&u is a
multiplier of ker & and) for each 4 in L%(®),

-1 ¥\ _1 LA v
so(359) - ol

u
+8(€Eh)-h. U

THEOREM 6. For each fin £, the spectrum of Dy is {0}U (essential range

of &f).

Proof. Let f bein £ and let A be a nonzero complex number. Then Dy —A\T
is invertible if and only if, for u=f—A,

(i) 8u+0a.e. (i.e., Dy—Alis 1—1); and

(ii) 1/8u is a multiplier of ker & and &|u|%/|8u/|? is essentially bounded.
But since the first condition in (ii) forces 1/Eu to be essentially bounded (by
Theorem 2), and since &|u|* is essentially bounded because u is in £, we have:

Dy—AI is invertible if and only if Eu is invertible in L*(®);

that is, A is not in the essential range of &f. Since 0 is in the spectrum of Dy,
the asserted conclusion follows. O

CorOLLARY. Let R={D—-AI:DeD,AeC}. Then R is a weakly closed
and inverse closed algebra of operators.

Proof. Let {D; —A, I} be a net in & converging weakly to the operator L.
Since 6Dy =0 for each «, {A,} converges to a number A. But D is weakly
closed, so {Dy} converges weakly to some operator Dy in D, and so L=
Dy—AlI. Thus & is weakly closed.

Now suppose that for some f in £ and scalar A, Dy—A[ is invertible in
the algebra of bounded operators on L2(®). Then A 0 and §f— ]\ is invert-
ible in L=(®). Define the function

1 f
E=NEr—A
Noting that the denominator of the preceding rational expression is ®-mea-
surable, we see that

2 __ 1 8|f|2 oo
SleP =P ier—xp <X

so that g is a member of £. Moreover,

1 1
(Dg—xf>(pf—/\1) =D, Dy~ ~-Dy=ADy+I

=Digg1r—Damyferg +1-
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Now,
1 1 S 1 &f
—_ = = — = 8 .
v tAe ,\f+af—,\ ASf—Af [Eg]Lf]
We have established the following formula:
— 1
(Dr=AD™'=Dyper-m =y T -

REMARK. Relative to the orthogonal decomposition of L%(®) as L2 (®R)®
L*(®)*, each operator Dy in D has a matricial form
Df:[—MO & M 0— ’

(I-8)f gr(I—8)
where M indicates the operation of multiplication. It must be noted that
although the operator in the lower left corner of this matrix is bounded, the
multiplication operator M(;_g, r need not be bounded. Also, even though
Mep is a bounded operator on all of L?(®) whose spectrum is the essential

range of &f, it was not clear a priori what the spectrum was for the restric-
tion of this multiplication to the kernel of &.

We conclude this section with the characterization of the self-adjoint, nor-
mal, seminormal, and projection operators in D.

THEOREM 7. Let f be in £. The following are equivalent.

(@) fel™(®).
(b) Dy is normal.
(¢) Dy is seminormal (i.e., either Dy or Df is hyponormal).

Proof. (c) = (a) For any g in L%(@®),

D}D;g=28fD;g—&(fDsg) =[6F11(6S)g— (88) f1—&(F(&f)g—F(E8)S)
=16f*g—1/118f1[6g]1 —[E(fIIES1+16] f|*1[Eg);
while
D;D}g=§&fDfg—f8(Djg)=|8f e~ &f8(fe)—f(8f)Eg+ fE(fe),
so that
(D}Dy—D;D})g = (8| f11)6g—fE(S2).
We have

((DfD;—D;Dy)g, g) = S(Slflz)(ﬁg)(g) dm— S(f)(g(fg))(g) dm

= [c@rrmresmr—1ecsor) am.

It follows from the Cauchy-Schwarz inequality for conditional expectation
that if g is B-measurable, then the integrand above is nonnegative. On
the other hand, if £¢=0 then the integrand is nonpositive. Thus if Dy is
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hyponormal then for every g in ker &, {|8(fg)|*dm=0, and so &(fg)=0
a.e. In particular,

0=8(f(f—&f)=8|f*—|6f P =8|I-8)f|%

(This is just the formula for conditional variance.) But then f=§&f a.e.
Now if Dy is hyponormal then the above commutator equation and the
Cauchy-Schwarz inequality show that for each ®-measurable g, 8| f|*|8g|* =
|8(fg)[> Letting g =1, we are led once more to the conclusion that §|f|*=
|&f |2, which shows that §f = f. Thus (c) = (a). Since (b) = (c) for any oper-
ator, we need only show that (a)= (b). But if f is B-measurable then, by
Lemma 4, Df= Dy, and so DfDy= Dsp= D;Dy;. O

The next corollary follows immediately from the proof of Theorem 7.

COROLLARY.

(i) Dy is self-adjoint if and only if f is a real-valued member of L™(®).
(ii) Dy is an orthogonal projection if and only if f=xpg for some set B
in ®.

3

As we remarked previously, the set £ also possesses a natural Lie algebra
structure if, for f, ge £, [ f, g] is defined to be D,g. Indeed, [-, -] is clearly
bilinear, while a routine computation shows that [ f, f] =0 and that

L/, (g, hll+1g, A, f11+1A, [/, g]]=0.

(To verify the latter identify it is useful to observe that for f, geL3(Q),
&([f,g)=0.)

In this Lie algebra setting, Dy acting on £ is just ad f. Also, if B is a G-
measurable set and £(B) = £NL%(B), then £(B) is an ideal of the Lie alge-
bra £; in particular, £(By) is the center of £. Also, £ is a Lie module over
L*(®). (That £(B) is an ideal follows from the fact that Sy C B implies
SgrCB.)

We recall from [2] that a Banach-Lie algebra is a Lie algebra £ together
with a norm f— || f||¢ that satisfies ||[ f, 2]||c = M| flg||#||ec for some posi-
tive M and all f, 4 in £. In the type-0 case we have the following result.

TueoREM 8. Let ® be type 0. Then £ is a Banach Lie algebra with respect
to the norm || fll ¢ =V||&|f ||| -

Proof. Routine use of the Cauchy-Schwarz inequality for conditional ex-
pectation and the positive definiteness of conditional expectation shows that
the formula above does indeed define a norm on £. Suppose that {f,} is a
Cauchy sequence with regard to this norm (henceforth referred to as £-
norm, £-Cauchy sequence, etc.). Since for all f, (x| f|>dm =[x &|f|*dm,
{f,} is a Cauchy sequence with respect to the L2 norm and so converges in
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L? to some function f. We shall show that f is in £ and that { f,,} converges
to f in the £-norm. Let € > 0. Then there is an integer N such that, for all
n=N, 8| fn—fal*<e. Let S={(8|fy—f|*>2¢}. Then S in in ® and

em(S) = lim S &\ fy—ful? dm= S &l fy—f[? dm=2em(S).
n—oowvs§ S
Thus S has measure 0, and consequently fy— f is in £. This shows that f
is in £. It also shows that for each ¢ >0 there is an integer N for which
|l /v —f||% < €. This establishes a subsequence of {f,} converging in £-norm
to f. Since { f,} is an £-Cauchy sequence, it must converge in £-norm to f.
It remains only to show that for f and 4 in &, ||[f, hl|le=<2|flcll#| -
Now,
8|/, h1[>=8|(&)h|*+&|(&h) f|*—2Re &((EF)A(ER) f)

= |81 28| >+ 8| f|*|8h|*—2 Re((EF)(ER)E(AS))

= 28| f P& | k2 + 2VE[FF-ET R -E[AP-E[ 7T

=48| f|*8|n|~

Consequently,
ILf Alle=VI8ILS APl <2V ]6]/ PE] A0 <2 flle-2le. O

CoRrOLLARY. In the type-0 setting, the operator norm | Dy| and the £-norm
| f|le define equivalent norms on D.

Proof. For fand gin £,

1Dreli=l€N) el +Ir8gl=lENell+ VSIS P|6g|* dm
=[&)zell+VIE|/P|8gl* dm = ||&f |2l + ] /|l clEell
=2|flelell-

This shows that the surjection f+~ Dy is continuous from the Banach space £
to the Banach space . The inequality || f| ¢ = c|| Dy|| for some positive con-
stant ¢ and all f in £ follows from the closed graph theorem. il

Remarks and Questions

(1) For which o-subalgebras @ does £(Q® | B) = L*(®)? Equivalently, when
is §7IL™(®) = L™(@®)?

(2) Note that for fin L*(®), | fl2<||flle =|fll~ (where the subscript of
2 indicates L? norm). Is L®(®) £-norm dense in £7?

(3) Suppose that @ and C are o-subalgebras of @ and that 7" is a measure-
preserving automorphism of (X,Q®) such that T7'@=@®. It is known [5,
p. 21] that for each f in L3(@), &7 €(foT)=(8%f)T. Letting W be the
unitary operator W: g~ goT, it follows readily that for each f in £(®@|C),
WDFW ~'=Df} ;. If D(@|®) and D(R|C) are unitarily equivalent, must a
measure algebra isomorphism exist between @ and C? If so, must there be
such an isomorphism that extends to an automorphism on ®?
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