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1. Introduction

We are concerned here with the orbital integral formula for the direct inte-
gral decomposition of an induced representation of an exponential solvable
Lie group. This is an explicit formula for the spectrum and spectral multi-
plicities and measure in terms of coadjoint data. Such a formula is derived
for nilpotent groups in [2] or [8], and for completely solvable groups in [9].
The work in this paper originated at the time the author extended the results
of [9] to arbitrary exponential solvable groups [13]. Whereas in [9] the co-
dimension-1 (nonnormal) case was the critical subcase to understand, in ex-
ponential solvable groups [13] one must deal with codimension-2 (nonnor-
mal and maximal) subgroups. Indeed, one can carry out the analysis and
prove [9, Thm. 2.2, or alternatively Thm. 5.1] in the generality of exponen-
tial solvable groups [13]. However, Fujiwara has recently obtained the proof
[4] by a different method. In this paper we shall therefore present only the
codimension-2 analysis. It has independent interest for the following rea-
sons: (i) exactly as in nilpotent [5] or completely solvable [9] groups, wherein
the codimension-1 analysis is used in many different aspects of representa-
tion theory and harmonic analysis, one expects the codimension-2 theory
to play a similar role in exponential solvable groups; (ii) the codimension-2
theory might be useful in applications to differential equations [7]; and (iii)
the most intriguing reason—namely, that although all orbital multiplicity
formulas that appear in the theory are known to hold only generically (i.e.
almost everywhere), we shall prove that in the case of a maximal subgroup
(which includes codimension 1 or 2) all the orbital formulas are valid every-
where.

Now we explain the point of the paper in more detail. Let G be a simply
connected exponential solvable Lie group, and H a closed connected (there-
fore simply connected) subgroup. Let g, §) be the Lie algebras, g* h* their real
linear duals, and p: ¢* — §* the canonical projection. Let » be an irreducible
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unitary representation of H, and let O, be the corresponding coadjoint orbit
in §* (The reader is referred to [9, p. 128] for a summary of the Kirillov-
Bernat parameterization of the dual A by coadjoint orbits h*/H.) We recall
the orbital spectrum formula (see [9, Def. 2.1 and formulas (2.1), (2.2)]) for
the induced representation:

®

s du”o,H(¢)=§ nmy dits, g(@).  (L1)

®
IndGy = S
G-p~'(0))/G

r 'O VH
We shall be concerned less with the canonical measures p, i (see [9] for their
definition) than with the multiplicity function

n}; = multiplicity of m, in Ind$;» =#(G- 9N p~1(0,))/H. (1.2)

Formulas (1.1) and (1.2) are proven in [8] when G is nilpotent, and in [9]
when G is completely solvable. The case dim G/H =1 plays a critical role in
both. A generalization to G exponential solvable is carried out in [4]. In this
paper we shall consider the situation G exponential solvable, dim G/H =2
and H is maximal in G. This is worthwhile for the reasons (i) and (ii) indi-
cated above; and also because the comparison and reconciliation of orbital
and Mackey parameters that is effected is interesting and because the seven
different structures that are manifested are illuminating. But the most in-
triguing feature of the presentation is the following.

The induced representation Ind$, » is typically not of uniform multiplicity;
that is, ny is not constant (see e.g. [2; 10]). In the completely solvable case it
is known that nj is either identically infinity or finite and bounded a.e. [12].
It is suspected, but not known, that the same result is true for arbitrary ex-
ponential solvable groups. The CG (for Corwin-Greenleaf) condition

dimG-¢=2dim H-$—dim©, for generic ¢ € p~1(0,) (1.3)

is necessary and sufficient for finite multiplicity in the completely solvable
case [12], but only necessary in the exponential solvable case [2; 8]. However
even in the case of uniform finite multiplicity: condition (1.3) holds only
generically, not everywhere; and the number of H-orbits on G-¢Np~10,)
agrees with the (uniform) multiplicity only generically, not everywhere. Il-
lustrative examples of the degenerate pathologies are given in Section 2. In
this paper we shall prove the following theorem.

THEOREM 1.1. Let G be simply connected exponential :s"olvable, and let
H C G be a maximal closed connected subgroup. Let v € H with O, the cor-
responding coadjoint orbit. Then:
(i) Ind$ v is of uniform multiplicity.
(i) The number
dimG-¢—2dim H-¢+dim O,
is a nonnegative constant on p~1(0,). The multiplicity is finite if and
only if that number is zero.
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(iii) The number
#HG-¢Np~'(0,))/H

is constant on p~'(0,); it is the multiplicity of Ind$v.

REMARKS 1.2. (1) Of course in Theorem 1.1 the maximality combined with
the exponential solvability forces dim G/H =1 or 2. It may be that the maxi-
mality of H is governing the phenomenon occurring in Theorem 1.1 more so
than the exponential solvability. Another famous maximal situation is: G
connected semisimple, K a maximal compact subgroup. Theorem 1.1 is true
for the quasiregular representation of G on L*(G/K). It should be interest-
ing to explore other maximal situations outside of exponential solvable Lie
groups.

(2) In the course of the proof we shall see that, in codimension 2, the in-
duced representation is actually multiplicity-free except in one (of the seven)
situation(s) where it has infinite multiplicity.

(3) There is a companion theorem to Theorem 1.1 for restricted represen-
tations 7 |5, * € G. The same results are true—the variable this time being
¥ € p(0,). But I shall leave the details of that theorem to another time and
place.

Here is the organization of the paper. In Section 2 we prove Theorem 1.1 for
codimension-1 subgroups. We also give the promised examples of its failure
without maximality—actually in codimension 3. In Section 3 we present
some canonical structure results on codimension-2 maximal subgroups. This
should be compared with section 3 of [9] where corresponding results are
presented for codimension-1 maximal subgroups. In Section 4, we derive the
seven possibilities for the structure of a representation induced from a co-
dimension-2 maximal subgroup. We also prove Theorem 1.1 in that general-
ity. As in [9], we have to spend some time reconciling the orbital parameters
with Mackey parameters that arise from the canonical structure subgroups
determined by H. Finally, in Section 5 we briefly illustrate the seven possi-
bilities with examples.

2. When Generic Means Everywhere —
and When It Does Not

In this section we show how codimension-1 inductions are special in that
both the CG condition (1.3) and the multiplicity formula (1.2) are valid for
all points in the orbital spectrum—generic or degenerate. One of the main
results of this paper is that the same situation obtains for codimension-2 in-
duction (see Section 4). However, when H is not maximal of codimension 1
or 2, typically both the CG condition and the multiplicity formula fail to
hold on sets of lower dimension. We shall illustrate this with two codimen-
sion-3 examples later in this section. But first we examine codimension 1.
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Let G be simply connected exponential solvable, H C G a closed connected
(therefore simply connected) subgroup, and suppose dim G/H =1. As usual,
p:g*—b* denotes the canonical projection. Let » € A and let O, C §* be the
H-orbit corresponding to ». One knows [9] that Ind$ » is multiplicity-free.
Therefore our goal here is to prove that for every ¢ € p~1(0,) we have:

dimG-¢=2dim H-¢$—dim O, 2.1
and
G-¢Np~'(0,)=H-¢. 2.2)

Now we now, from [2], [8], or [9], that generically on p‘l(O,,) the truth of
(2.2) implies that of (2.1). Moreover, we also know [9] that (2.2) is true ge-
nerically on p~!(0,). We are now going to show that both are true every-
where on p"((‘)y). However, we shall have to handle the two formulas dif-
ferently. We shall prove (2.1) by demonstrating an equivalent formula. No
case-by-case analysis is required, though such an analysis will be necessary
to prove formula (2.2).

LEMMA 2.1. Forany ¢ e p~(0,), set y = ¢ lg- Then formula (2.1) is equiva-
lent to
dimg,/hs+dimb,/h, =dimg/h. (2.3)

Proof. We have

dimG-¢—2dim H-¢+dim O,=dimg/g,—2 dim §/f, +dim h/b,
=dimg/h—dimg,+2 dim b, —dim b,
=dimg/h—dimgy/hy—dimbp,/h,. O

REMARK 2.2. When dimg/h=1, both dimg,/h, and dim},/h4 are 0 or 1
(because of Proposition 2.3(a)). Thus formula (2.3) is true exactly when one
of g4/b4, by /b4 has dimension 0 and one has dimension 1. It could only fail
if both have dimension 0 or both have dimension 1. That is not possible, as
we now show.

ProprosITION 2.3. In the codimension-1 situation, we have:

(a) dimg,/h,+dimb,/h,=1;
(b) 1—dimg4+dim}, is even.

Proof. (a) The following argument—generously supplied by the referee—
replaces an earlier (incorrect) version. By the proof of Lemma 2.1, it suffices
to prove that dimG-¢—2dim H-¢+dim O,=0 for all ¢ € p~1(0,). Even
if G-¢Np~Y(0,) is not a manifold, we have H-¢ C p~1(0,). Thus §-$ C
Ty( p~1(0,)), the tangent space at ¢ to the smooth manifold p~1(0,). There-
fore h- ¢ Cg-dNTH(Pp 1O))=g¢-6Np~(H-¥). In [8, p. 450] it is shown
that the latter intersection has dimension dimg-¢ —dimb-¢+dimbph-¢y. So
dimg-¢—2dimbh-¢d+dimh-y =0 and the proof of (a) is done.
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(b) The orbits G- ¢ and H -y are even-dimensional. By the codimension-1
assumption, it must be that

dim g/g, —dim b/, =0 or 2.
That is,
1—dimg,+dimf, =0 or 2.

Finally, combining Lemma 2.1, Remark 2.2, and Proposition 2.3(a), we see
that (2.1) can only fail if g, =§, =1,. But that possibility is excluded by
Proposition 2.3(b). O

Unfortunately we cannot derive the universal truth of (2.2) by the same kind
of case-free reasoning. So we begin its proof by first considering H to be
normal in G, an automatic condition of course if G is nilpotent. Then one
knows [2; 8] that either:

(i) Ind§v == is irreducible and = = mg, where @ =Q_ is the unique G-
orbit satisfying 2 D p~1(0,); or

(i) Ind§» = [g m dt, where if ¢ € p~(0,) and X e g, X ¢} then m, ==,
¢t = ¢ + tX*

In (ii) we understand X* to mean the functional satisfying X*(X) =1,
X*(h) = 0. The orbits of ¢, form a 1-parameter disjoint family, and they ac-
count for all the G-orbits meeting p~(0,). In fact it is proven in [8] that: in
case (i) we have G-¢Np~1(0,)=H-¢; and in case (ii), G-¢,Np~1(0,) =
H-¢, for all teR.

Now we drop the normality assumption. Then the structure of the induced
representation is elucidated thoroughly in [9]. In that paper it is assumed
that G is completely solvable. However, both Proposition 3.2 and Theorem
3.3 of [9] are valid for any codimension-1 pair H C G provided G is expo-
nential solvable and H is not normal. Drawing the distinctions somewhat
less finely than in [9], we see there are three possibilities:

(i) Ind§» == is irreducible and = = 7y, where Q = Q.. is the unique G-
orbit satisfying 2 D p~1(0,).

(ii) Ind§» = |y dt, where ¢ € p~!(0,) and there is a nonzero functional
a €g* such that 7, = Ty, O =@ +1a, teR. The orbits G-¢,, teR,
form a mutually disjoint family which exhausts the G-orbits that
meet p~1(9,).

(iii) Ind§ vy =m @, a direct sum of two inequivalent irreducible repre-
sentations. In this case there are precisely three G-orbits that meet
p~1(0,), only two of which are generic (i.e. of maximal dimension—
see [9, p. 138]).

The facts we want are proven completely in cases (i) and (ii) in [9]. There
it is shown that, for all ¢ € p~1(0,),

G-¢Np~0,)=H-¢.
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The same is proven in [9] for the two generic orbits in case (iii). The only
unverified fact that remains to be substantiated is the formula (2.2) for the
one degenerate orbit in case (iii). We look more closely at [9, proof of Thm.
3.3]; in particular, we utilize the terminology of Theorem 3.3, case (v) [9,
pp. 138-140] (except we substitute A for G;). Having chosen ¢ € p'l(O,,),
there is a nonzero o € h* and a unique s, € R such that ¢®= ¢+ sy lies in
the degenerate orbit. Let g- ¢%¢e p~1(0,) for some g € G. Then thereis he H
such that hg - ¢0|b = . In particular, hg-$°= ¢ + sa for some seR. But
the G-orbits G (¢ +sa) are disjoint from G-(¢ +spa) if s# 5y [9]. Hence
hg-$%=¢? that is, g- ¢%c H- ¢°.

The results of this section so far amount to a proof of Theorem 1.1 in
the case dim G/H = 1. We will prove Theorem 1.1 for codimension 2 in Sec-
tion 4. The remainder of this section is taken up with examples showing that
the generic requirement for formulas (2.1) and (2.2) cannot be dropped in
codimension 3.

ExAmPLES 2.4. 'We consider the standard 4-dimensional nilpotent Lie group
G. Its Lie algebra g is spanned by four generators X, Y, Z, W satisfying non-
zero bracket relations

[X,Y]=2, [X,Z]=W.

The elements ¢ € ¢* are parameterized ¢; , ¢, = §X*+9Y* + {Z* + wW?,
£, 1, ¢, w €R. The coadjoint action is

g Pt n, 5,0 = Pr—yr—(z+xp)w, n+xt+(1/2)x%, {+x0, 0

if g=-exp xX exp yY exp zZ exp wW. There are three families of coadjoint
orbits:

Q57'=G-¢; 00, £:n€ER (points);
Qe=G-9g,0,t,05 $#0 (planes);
Q,,0=G-90,,0,0 MTER, w#0 (parabolic sheets).

(i) First let H=expRZ. Obviously dim G/H = 3. The irrt_aducible repre-
sentations of H are characters x;, {€R, where x;(e'?)=¢"¢, teR. Take
¢ =1 and write » = x;. Of course, O, = {x;} and dim O, = 0. We have

p_l(ﬁv) = [¢E,n,l,w: E’ n,w ER}’

Ifwo#0thenG-¢=Q,_ 124, and H-0={d;_,, » 1,0, ZER},50dim G- ¢ =
2dimH-¢—dim0,=2. Butif o=0then G-¢={d;_, ;1 x1,0: X, YER} =
while H-¢ = ¢; and so formula (2.1) is violated for this degenerate orbit.

(ii) Now set H =expRY. Again dim G/H = 3. This time take » = xo = the
identity character of H, xo(e’Y)=1, teR. Then O,={0} and p~1(0,) =h'=
(D050 8 GHwER). Ifwf+#0then G-o=Q_;25, o, H-d=1{d¢ 0,1, EER]},
and

G-oNp~1O,)= {#4,0, 5,0 EER}.
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Thus #(G-¢Np~1(0,))/H =2 generically. But if w{=0 then it is easy to
check that
G-¢Np~1(0,)=H-¢.

Thus the number of H-orbits on G-¢Np~1(0,) differs on the degenerate
orbits from the generic value of the multiplicity function.

3. Basic Structure for a Codimension-2
Maximal Subgroup

We continue to assume G is simply connected exponential solvable and H
is a closed connected subgroup. But now we suppose dim G/H = 2. More-
over, we assume that A is a maximal (connected) subgroup of G. That is,
no intermediate subgroup HC G, C G, dim G, = 3(dim G+dim H), exists.
In particular, G cannot be completely solvable. We start with the following
lemma.

LemMma 3.1. H cannot be normal in G.

Proof. If H is normal in G, then G/H is a 2-dimensional simply connected
real solvable Lie group. Hence G/H is either abelian or isomorphic to the
(ax+ b)-group. In either case there is a 1-dimensional normal subgroup of
G/H. 1ts pullback to G would be an intermediate subgroup between H and
G. This completes the proof. ]

Next comes the basic structure result. This generalizes the codimension-1
structure found in Proposition 3.2 of [9]. In order to preserve some nota-
tional similarity with [9], I will use the notation g, for §.

ProPoSITION 3.2. Let g be exponential solvable, and let g, C g be a maxi-
mal subalgebra of codimension 2. (In particular, by Lemma 3.1, g, is not an
ideal.) Then there exist a codimension-1 subalgebra g, of 9, which is a co-
dimension-3 ideal in g, as well as three elements X, Y, Z and a nonzero real
number r such that

g=go+RX+RY+RZ, g1=g0+RX,

[X,Y]=Y+rZ modg,, (3.1)
[X,Z]=—rY+Z mod gy, (3.2)

and
[Y,Z]=0 modg,. (3.3)

Proof. Let n be the nilradical of g. Then g; + n = g since by hypothesis g;+n
must be either g; or g. But if g; +n=g,, then nC g, which would force g, to
be an ideal. Now adg/, g, is irreducible. In fact, by the assumption of expo-
nential solvability, there must exist linearly independent Y, Z € g (both & g;),
a real linear functional 6: g; = R, and a real number r such that
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W, Y+iZ]=6(W)(1—ir)(Y+iZ) mod(g;)., Weg,. 34

By the maximality of g; we must have 6 # 0 and r # 0. Moreover, by the
equation g, +n =g, it is no loss of generality to assume Y, Z e n.

Set go=keré. Since 6 is a Lie mapping, we have gy <t g;. In fact, g, is an
ideal in g. To show this, since g = g; + n it is enough to show that [n, g¢] C go.
But clearly

go={X€g;:[X,0]Cagy}.
In particular, [gy, g] C g;. Hence, since n is an ideal,
[g0,n] CnNg;.

Thus it is enough to show nMNg; C g¢. Now, since n is a nilpotent ideal in g,
this ensures that the only eigenvalue that can arise in ad,n is zero. Hence
0lgnu=0=g;NnCgo.

Now return to equation (3.4). There must be a linear functional 7: g; -
(g1). such that

W, Y+iZ1=6(W)A—irY}(Y+iZ)+7(W).

But Y+ iZ en,, which is an ideal, implying 7(W) € (g;). Nn.= (g, Nn).C
(g0).- Then, choosing X € g, to satisfy 6(X) =1, we see that (3.1) and (3.2)
are satisfied. Finally, for We gy,

W, Y, Z1=[W,Y), Z]+1Y, W, Z]1 = 26(W)[Y, Z] mod g,.

No such real eigenfunctional can exist (by the maximality of g,), and there-
fore [Y, Z] =0 mod g;. Invoking the inclusion nNg; C g, yet again, we see
that (3.3) is also verified. O

We observe that g, and r are uniquely determined by g;, but that the elements
X, Y, Z are not. Clearly g, =go+RX. We set g, =go+RY, g3 =go+RZ, and
gs=¢o+RY+RZ. g4 is a codimension-1 ideal in g (also uniquely determined
by g;). We write G, G, Gy, G,, G3, G4 for the corresponding simply con-
nected groups. Then we have the diagram shown as Figure 1, where each

G

7\
/

Go

Figure 1



Representations Induced from Maximal Subgroups 307

group is codimension 1 in any group lying on a line immediately above it
(except codimension G/G, = 2). Moreover, both Gy and G, are normal in G.
(In fact it is easy to verify that g, is the only codimension-1 subalgebra con-
taining g,.) We continue to write 6 € gj(g;) and extend it to an element (also
denoted 8) of g7 (g) by setting §(Y) =8(Z)=0. We shall also have occasion
to utilize two linear functionals «, 8 € gi(g) determined by a(Y) =8(Z) =1,
a(Z)=p(Y)=0.

The reader might compare the structure developed here with that of co-
dimension-1 maximal subgroups in [9]. We shall write g, for the Lie algebra
a/go—that is, the 3-dimensional Lie algebra with generators X, Y, Z satisfy-
ing bracket relations [X,Y]=Y+rZand [X,Z]=—rY+Z.

4. Orbital and Mackey Theory in Codimension 2

We continue with the notation and terminology of Section 3. We are ready
to enumerate the possibilities for the induced representation

— G A
7r—IndGl v, VEGI.

We first fix a functional Y € O, Ch*. We also select a specific ¢ € p(_;‘ o, (¥) by
requlrlng d(Y)=¢(Z)=0. We set w=¢|,, and §=¢ lgo Finally, we write
v =10 € G and o = g, € G, for the corresponding Kirillov-Bernat represen-
tations.

In the following theorem the key determining invariant will be the stabil-
ity group G,. A special feature occurs when G, = G4. Then G,/Gy= R? but
there could be a Mackey obstruction to extending y from Gy to G,. It is well
known (see [3]) that the obstruction to extending v to G, is exactly the same
as the obstruction to extending x4 from (Gg) to (G4)y, and that is deter-
mined by whether the bilinear form By(-,-) =0[-,-] is nondegenerate or not
on (g4)p/(g0)e- With that in mind, we state our next theorem.

THEOREM 4.1. One of the following seven mutually exclusive possibilities
obtains:

(i) G,=Gy. Then G-$ D p~(G,-¥) and © = =, is irreducible.

(ii) Go C G, C Gy, each of codimension 1. Then the linear functionals
o, =0¢+sa, s €R, liein distinct G-orbits. These exhaust the G-orbits
that meet p~(G,-¥) and

@
T= S To, ds.
R

(iii) dim G,/Gy=1, but G,NG,=G,NG,=Gy. Choose § € g5(g) as in
Sectton 3. Then the Imear functzonals oY uniquely determined by
o"=¢+ud, ueR, liein distinct G-orbits. These exhaust the G-orbits
that meet p"l(Gl -y) and

&)
7T=S ’H'¢udu.
R
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(iv) G,=G,. Then, asin (i), G- ¢ D pNGy-¥) and = = w4 IS irreducible.

(v) G, =G, and By is degenerate. Then the linear functionals ¢, ,= ¢+

sa+1f, s,teR, lie in distinct G-orbits. These exhaust the G-orbits
that meet p~(G,-V¥) and

@
7r=S Ty, , dsdt.
Rz

(vi) G, =G, and By is nondegenerate. Then G-¢ is the only G-orbit
meeting p~ (G, V), but
™= °°7l'¢.
(vii) G,=G. Then, as in (v), the G-orbits G- ¢, , exhaust the G-orbils
that meet p~'(G,-y). But there is a unique Py=(s,, ty) such that
dimG - ¢5 ,, < dimG - @5 4, (5,1) # Py. The latter dimensions are

constant. Moreover, ¢ ;, ds  lie in the same orbit if and only if
(s, t),(s’,t") lie on the same spiral centered at Py—namely,

Py+e* =N (s+it—Py), AeR.
Thus, if C denotes the unit circle centered at P,, then

@
'IT=S 7l'¢‘_d§‘.
]

Note. There is a degree of similarity between Theorem 4.1 and [9, Thm.
3.3]. The first four cases correspond quite closely. The unusual case in [9,
Thm. 3.3] is the last case (v). In Theorem 4.1 we have three new cases beyond
the completely solvable or codimension-1 situation. Case (v) is entirely ex-
pected because of codimension 2. It is the last two cases that have no true
analog in previously considered situations. Case (vi) yields infinite multi-
plicity, whereas codimension 1 never departs from multiplicity-free. And
case (vii) mimics the prototypical 3-dimensional exponential solvable Lie
group—exactly as the (ax+ b)-group in codimension 1 yields the basic ex-
ample of case (v) in [9, Thm. 3.3].

Proof. The seven possibilities for the stabilizer (together with the form By)
enumerated in the statement of the theorem are manifestly mutually distinct.
We handle each case separately. In each case we verify the orbital facts by
matching with the Mackey parameters. This differs from the proof of [9,
Thm. 3.3], where we actually derived the orbital spectrum formula in each
case. We could so that here also, but there is no need since one already knows
[4] that the orbital spectrum formula is true. The point here of course is to
understand the special features of a codimension-2 induction (from a maxi-
mal subgroup) and thereby to prove Theorem 1.1.

Throughout all of what follows we use both normal and codimension-1
theory extensively, that is, [8, Thm. 6.1], [9, Thms. 3.1 and 3.3], and [9,
Lemma 2.4]. We shall do so repeatedly in application to the various exten-
sions in Figure 1.
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Case (i). G, = Gy. Then v, =Ind§! v, and so = =Indg, v, = Indg, v, must
be irreducible by the Mackey machine. The general orbital spectrum for-
mula tells us that there is one orbit lying over G, - generically, but it allows
for the possibility of some degenerate orbits also. That nothing of the sort
occurs is seen as follows: & = IndG Yo = IndG&(IndG0 ve)- We know, from
the normal theory applied to gy < g4 (see [9, Lemma 2.4]), that g, = (g4), =
8o, and so

(Go)gw=w+g5(84)-

Hence there is a unique Gy4-orbit lying over G- 6. Applying the normal the-
ory again to g4 < g, we also see there is a unique G-orbit lying over G4 w.
Hence there is a unique G-orbit lying over G,-8, and so there can be only
one G-orbit lying over G, -y. By the orbital spectrum formula we have

P~ UG- ¥) =Gy ¢.

Case (ii). GoC G, C G4, each of codimension 1. Thus g, =go+yoY+20Z
for some y,, z¢ w1th yé+z%#0. Replacing Y and Z (resp.) by y,Y +2z¢Z and
YoZ—2z,Y if necessary, we see it is no loss of generality to assume g, = g,.
Then gy = (8)9> 50 (81)p = (80)p = 7y = Ind&! ~,. Therefore

@ @
= Indgl vy = Indgo Yo = Indgz Indgg Y6 = Indg2 S O ds= S Indgz 0! ds,

where wg € g3, wi|y, =0, and wg(Y)=s. It follows from Mackey theory ap-
plied to Gy < G that the constituents of the above direct integral decompo-
sition are irreducible and pairwise inequivalent. Now the chain g, <1g4<g
and the codimension-1 theory applied successively says that if we extend w;
to gz by sending Z to 0, and then to g* by sending X to ¥(X), we obtain ex-
actly the functionals ¢, = ¢ + sa. They must lie in distinct orbits, and we have

@
7r=S Ty, ds.

By the orbital spectrum formula we know that, for generic s,
G-¢sNp (G- ¥) =Gy ¢s.

We prove it is true for all s. First we show no other orbits lie over G;-y.
Suppose ¢ € p~ (G- ), so ¢’'=g,-¢ restricts to ¥ on g;. Let 5o =¢'(Y).
Then ¢’|, =0 and the fact that (Golo* &5, = s, + g3 (from [9, Lemma 2.4])
shows we can select g € (Gp)y such that go- ¢, =¢". So only the G-orbits
G- ¢, lie over G- .

Next we verify that G-¢, N p~ (G, -¢¥) = G,- ¢, for all s. Of course the
right side is contained in the left. Conversely, if ¢'=g- ¢, p~(G,; - ) then
81+ ¢’|4, =¥ implies (as above, modifying g, by an element of (Gy), if neces-
sary) that g,-¢'= ¢, for some 5. That is,

81°9'=818 s = g,
The distinctness of the orbits implies s = 5.
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Case (iii). dim G, /Gy =1but G, NG, = G, N G4 = Gy. Then g, = go+
x0X+ YoY + ZOZ w1th xo(¥& +23) =# 0. Again (gl)g = (a0)e 1mp11es that ==
IndGl vy = IndGo 7. But this time we have (g4)3 =(gg)g also, so IndG Yo 18 ir-
reducible; write g, = IndG Y9, Where w € gy is defined by wl|,, =0, w(Y)=
w(Z)=0. Now 7 is not 1rreduc1ble (since G, # Gy), so by the codimension-1
theory (applied to g4 < g) we must have

®
= Indg4 o,= S Tp+us AU,
R

where 8 € g5(g), 6(X) =1, and ¢ as usual is given by dlg, =¥, ¢(Y) =
¢(Z) = 0. In particular, the functionals ¢* = ¢ + ué parameterize the dis-
tinct G-orbits that lie over G- 4.

Next we show that the orbits G- ¢¥, ¢“= ¢+ ué, also parameterize the G-
orbits that lie over G;-y. Set ¢, ,=¢+sa+1B, s,teR. Clearly p~'(y)=
{05, .25, € R}. Thus we must prove that, for all s, #, there exists a # such that
G- ¢ = G- ¢". We must solve the equation

g-(p+sa+tB)=do+ud. (4.0)

In order to do so, I recall from the g, <t g theory that one must have (by [9,
Lemma 2.4])

(GO)G : d’s,t = ¢s, ¢+ g'Jy-~ (4.1)

Claim: Gy-¢5,,=(Go)g-bs,,- In fact, it is enough to show by (4.1) that

dim gglg%t = 2. The reasoning does not depend on s, f, so we verify that
dim gy/gs = 2. We know (see [9, Thm. 3.1}) that

dimg-¢=dimg, - w=dimgy-0+4 = dim(gg)y=dimg,4+1.
But we also know that dim g,/(g4)s = 1. Combining these we obtain the claim.

Now, upon restriction to gq, equation (4.0) requires that g € Gy. Therefore

—¢—udegy,
which forces
uxy==syo+1zy. (4.2)

In fact, reading backwards, we see that if given any s,  we choose u to sat-
isfy (4.2), then because Gy ¢ , = ¢, ,+ g:YL we have

Gy~ &5,1= Gy " =(Go)g- d". (4.3)
Finally we demonstrate that for all # we have
G-¢“Np~ (G- ¥) = Gy- "

The inclusion D follows from (4.3). The reverse inclusion comes about as
follows. Let ¢’ = g- ¢ p~'(G; - #). Then g,8- ¢*|,, = ¥. Hence g,g- ¢* =
¢+sa+1B for some s, t. But the above reasoning shows that then we must
have uxy=syy,+1z,. This in turn forces the existence of gq € (Gy)y such that

818" =gp 0" = ¢’ G- "
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Case (iv). G, =G,. Then g,=1(g1)s 2 (80)s- Therefore vy is not induced,
but rather v, | g, =y. Therefore
7|6, = (Ind§,»y) |6, = Indg!(vy|,) = Indg: vs =,

is irreducible because (g4)s = (g¢)s- Thus = itself must be irreducible. Apply-
ing the codimension-1 theory to g4 < g, we see that

|G, =0, = =Ty, for some ueR.

In fact u=0. To see this, we can generalize the argument of {9, Thm. 3.1,
case (iv)]. Let b be a real polarization for ¢ satisfying the Pukanszky condi-
tion. We have y[b, b] =0 and

(a1)yChbCagy, dim g,/b=dimb/(g;),.

We claim that b is also a real polarization for ¢ satisfying Pukanszky. Again
using the normal theory, we have

dimg-¢ =dimg,-w=dim(gy)y+4=dimg, -y +4.

Also,
86 C 89 =1(81)9 = 84 C (31)y-
Therefore,
dim g —dim g4 = dim g; —dim(g,), +4
and
dimg=dimg;+2
yield

dim(g;)y /g4 =2.

Then b is a real polarization for ¢. (Note: it is not a real polarization for ¢* if
u # 0.) Next we show that b satisfies Pukanszky. We know B-¢ C ¢ +b*(g).
Let {€b*(g). Then {; = $lg € b*(g,). Since b satisfies Pukanszky for i, there
must exist b € B such that b-y =y + ;. Suppose b-¢p=¢+ {’. Then

{—¢'=sa+tB for some s,feR.
Set g1 =>b-¢, ¥1=¢1l,, and 6;=¢,|,,. Then
(Go)o,- d1=91+0i .

We also know (g0 < g,) that (g;)y, = (81)s, = (Go)s, C (G1)y, C B (since b is also
a real polarization for ¥, [1, p. 69]). Hence there exists g, € (G,)y, C B such
that g,- ¢, =¢; +sa+1¢3. Thus

glb-¢>=g1-¢1=¢1+Sa+t6=b-¢+sa+t6
=¢+{'+sa+18
=+¢.

This verifies the Pukanszky condition, and therefore

7 =Indg,», =Indg, Ind§ x, = Ind§ x, = 7.
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Now we show that G- ¢ is the only orbit over ¥, and in that case
G-¢Np~ (G P) =Gy ¢

follows automatically from the truth of the orbital spectrum formula (al-
though as in (i), it is very easy to demonstrate this directly). Suppose ¢’e
PN Gy-¥). Then gi- ¢’ |, =¥ = g,- ¢’ =¢+sa+18. But (Go)y-d=d+ai =
g1 9'=gy ¢ for some gye Gy C G.
Case (v). G, =G, and By is degenerate. Then (g,)s = (go)s implies, as in
cases (i)-(iii), that
™= Indgl vy = Indgo Yo-

But since we are assuming that By is degenerate, the representation -, has an
extension to G, as an ordinary representation. Thus, if we set w € pg:fgo(ﬂ),
w(Y)=w(Z)=0, and w, ;= w+sa+13, then clearly

G @
IndGs vy = SRZ 0, dsdt;

in fact,

Ou,, = OwXs,t»
where x; , is the unique character of G, trivial on G, and satisfying

Xs t(eyYezZ) = elly+iz)
Moreover, by Mackey theory we must have that Indg , 0., , 18 irreducible.
Thus ¢, ;= ¢+ s+t parameterizes the distinct G-orbits, and

@
w=| "m,, dsdr
R

We have clearly accounted for all the G-orbits over . We conclude this case
by verifying that G- ¢, ,N p N G,-¥) =G, - ¢, for all s, ¢. One inclusion is
obvious. As for the reverse, if ¢'=g- ¢ ; € p~ (G, ¥) then

gl'¢'|g,=‘/’ = g1'¢l=¢s0,to for some S0, loeR
= &5y 1, =818 s, = S=5g and t =1,

(since the orbits are all distinct).

Case (vi). G, = G4 but By is nondegenerate. The Mackey machine says, be-
cause the projective irreducible representation of R? is infinite-dimensional,
that

Indgg Yo = 00,
Therefore
7=1Ind§ v, =Ind§ yy=Indg, oo, = Indg, o,

an infinite multiple of an irreducible representation. Since ¢ € pg:}g(w), it
must be that Ind§, o, = 7, and so = = com,. We must verify that G- ¢ is the
only orbit over G- ¢. This follows from known facts—namely: by the pro-
jective representation theory of R2, G,- w is the only orbit over G,-0; then,
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by codimension-1 theory, G- ¢ is the only orbit over G4-w; and, as in case
(i), this implies that G - ¢ is the only orbit over G;-y. Since the orbital spec-
trum formula is known a priori, the desired multiplicity equation must a
fortiori be true. However, unlike cases (i) and (iv), here I will actually give
an independent proof (which in fact I will use later). Namely, I prove that
dim(G- 6N p~ G- ¢)) >dim G, - ¢.

By [8] (generic is no problem since there is only one orbit), this is equivalent
to showing that

dimg-¢+dimg;-y>2dimg;-o.
We know

dimg;-y=dimgy-0+2=dimg, - w=dimg-¢—2.
In particular,
dim g, —dim(gg)y =dimg—dimg,—4
=dimgy—dimg,—1
= dim(gg)y=dimg, +1.
But
(Go)o+ ¢ = +a7 = dim(gp)y—dim(ge)y =1.
Hence g4 = (g¢)y. But
86 =(80)¢ = (81)¢ =gy = dim g, - ¢ =dim g, —dim(g,),
=dimg—2—dimg,
=dimg-¢—2.
Thus
dimg-¢+dimg,-y=2dimg-¢—2
>2dimg-¢—4
=2dim dr° o.
Case (vii). G, = G. In this case, the quotients gy/(d¢)p, (81)9/(80)9, and
(g4)e/(80)s have dimensions 3, 1, and 2, respectively. In particular,
7|, =Indg vy |, =Indg: v, (4.4)

but unlike case (iv) the latter is not irreducible. We structure the ensuing
argument somewhat like the case (v) of [9]. To begin, though, we need to
rule out a splitting of the case (as occurs when g, =g,).

THEOREM 4.2. G/G, supports no co-cycles. In particular, there is no ob-
struction to extending v,y to G.

Proof. In fact, there does not exist a nonsplit central 1-dimensional exten-
sion of g,:
0-R—->g—g,—0.

If so, the Lie algebra § would have generators 7, X, Y, Z satisfying bracket
relations: 7 is central and
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[X,Y1=Y+rZ+4T,
[X,Z]=—rY+Z+1,T,
[Y,Z]1=1;T.

If 3 # 0 then the Jacobi identity applied to X, [Y, Z] forces [ X, T] = 27. This
contradicts the centrality of 7, so ;3 =0. Then, replacing Y and Z by Y+#,T
and Z+ 1,7, where 7, = (t; —rt,)/(r?>+1) and 7, = (rt; +1,)/(r?+1), we can
split the extension. ]

Continuing with the argument for the proof of Theorem 4.1, we know that
ve must extend to an ordinary representation of G; hence it extends to an
ordinary representation on G4, whence from (4.4) we have

@
wlo,=| o, dst, (4.5)
R?

with w; , as in case (v). Now we examine which of the representations
IndG4 ., are irreducible and the equivalences among them First we claim
that there is a unique point Py = (sg, o) such that Ind , is irreducible if
and only if (s, f) # Py. In fact, we need to see when gw = (g4),,, First we
have (g4)9 = (84)., - This is because of the equations

dimg,-ws ,=dimge-0 and g4=1(84)9+ g0,
which imply that

dim g4/(g4)e = dim go/(80)g = dim 94/(g4).,, -
Hence (g4)., , = (94)9- Therefore

8w, , C 80 =1(81)9+(94)s = (81)0 + (84) 0, ,-

We examine g, N (g;)y. There exist a# 0 and We g, such that aX +We
(g1)s- Then

[aX+W,Y]=a(Y+rZ)+ U for some U, €gyp;
laX+W,Z]=a(—rY+Z)+U, forsome U, € gq,.
Set w; =60(U;). Then
ws,([aX +W, 841D w5, [aX +W,splY, Z}]
=0 a(s+rt)+wi=a(—rs+t)+wy,=0

P |

a
m(wl —I'wy, rwi+wy)

-1

e (s, 1) =

1+ir

Define Py = (—a~'w)/(1 —ir). Then, using ¢ = R(aX + W)+ g4, 84 = go+
RY+RZ, and aX+We(g1)y We see:

& s+tit=

) W=W1+iW2.
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if (s,¢) =Py then w; JaX+W,0,1=0= g, , 2 (84)s, 5
if (Sa Z‘) qEPO then gws', = (94)@,_,'

Therefore
Indg, o, , is irreducible & (s, 1) # P,.

The resulting representations are clearly m;_,, ¢s (|, = ws,s, and ¢ |, = ¢.
Two of these, say ¢, , and ¢y ,-, will be equivalent precisely when there exist
geG>og- ¢, = ¢y . Alternatively, we can characterize when the equation
g-ws ;= wy o is satisfied. And for that, since

G=expR(aX+W)G,,

it is enough to examine the action of exp A(aX+ W), AeR, on w; ,. For this
we continue the use of complex notation. We know that

eXpAaX+W)-w g, = ws, ¢ g, =0
Also, we know
[aX+W,Y+iZ]=a(l—ir)(Y+iZ)+ U, U=U,+iU,.
Therefore
ws, JaX+W,Y+iZ]=a(l—ir)(s+it)+w.
Exponentiating and setting g, = exp{—A(aX+ W)}, we obtain

8xws,tlg,=0 and

ra(l—ir) eAa(l—ir)_l
. Y+iZ)=e" " "N s+it) + ————w.
8 C"s,t( +iZ) (s+1it) a(l—ir)
Thus
gst,t=ws,t<=>5+if=‘a—(l‘_—,-rj=l’o,

and obviously the orbits are spirals around the point Py: if we set o+ i7=
s+ it — P, then its orbit is

Py+er U =iN(g+ir), AeR.
It follows from (4.5) and {6] that

®
'ﬂ'=§ 7r¢r d§',
e

where C is the unit circle in C, ¢ |, =V, and ¢ (Y +iZ) = Py+ { (or alterna-
tively 7y, = Indg, wp 4 ).

Now we turn to orbital parameters and the multiplicity formula. Since the
representations Ty, SE€C, are inequivalent (by the above Mackey theory),
they lie in distinct orbits. It is clear that the only orbits lying above ¢ are
G-¢p, and G- ¢, {€C. The latter are generic, which is further corrobo-
rated by their dimensions:
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dimgy-60=dimg4-w;, forall s,¢;

_ { dimg-¢;—2, {eC;
dimg- ¢p, .
Furthermore, we have

G-(b;ﬂp—l(Gl'l//):Gl'(b;, (e@.

Indeed, if ¢'=g-d;€ p~'(Gy-¥), then gy-¢'|, = ¥. Thus g;-¢'=¢ + {'w,
w=3(a—iB), for some {’e C. Also,

=0+ (Py+{w.

But this says that ¢, and ¢ + {"w= g, ¢'= g, g ¢ are in the same orbit. Pre-
viously we saw that the orbits are swept out by elements of (G,),. Hence
there exists g1 € (G,)y such that

g1°¢'=0+{w=g{ ;= d'€ Gy ;.

Finally, we verify that the same formula obtains for the degenerate or-
bit—namely,
G-ép,Np~ (G- ¥) = Gy bp,.

Let g- gbpoep‘l(Gl-\b) for some g€ G. Then there exists g,€ G158,2- ¢p, |, =
y. In particular, g;8-¢p, = ¢ + {w for some {€C. But any orbit G- ¢, =
G -(¢p,+ {w) is disjoint from G - ¢p, for { # 0. Hence g,g- ¢p, = ¢p,. That is,
g op,€ G- dp,. O

This completes the proof of Theorem 4.1. In fact we have done more. A re-
view of each of the seven cases reveals that we have actually proven com-
pletely items (i) and (iii) in Theorem 1.1 for codimension-2 maximal sub-
groups. Having observed that, we now attend to the remaining item (ii).

Proof of Theorem 1.1. We already observed in Remark 1.2(1) that the max-
imality of H in an exponential solvable group G forces dim G/H to be 1 or
2. The theorem is proven for codimension 1 in Section 2 (relying of course
heavily on [9]). As just observed, for codimension 2, parts (i) and (iii) of
the theorem are demonstrated within the proof of Theorem 4.1. It remains
to prove part (ii); that is, that the CG number

dmG-¢—2dimH:-$+dim0O,

is constant on p~!(0,), and that its vanishing characterizes finite multiplic-
ity. It turns out to be more difficult than the corresponding proof in co-
dimension 1 (Section 2). Originally, we gave a non-case-by-case argument in
analogy with Proposition 2.3. But as the referee pointed out, there was a
gap in the argument. I shall convey it here as far as it is accurate, and then
complete the proof with case-by-case reasoning. We begin my mimicking the
arguments in Section 2 as far as possible. (To utilize the notation of Theo-
rem 4.1, we again replace §) by g,.)
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Fix ¥ egf and let ¢ € p~! (G, ¥) be any linear functional in the pullback
of the orbit. Lemma 2.1 says, since dim g/g; =2, that

dimG:-¢—-2dimG;-¢p+dim G-y =0
© 2—(dimg4/())¢ +dim(g;)y /(81)4) = 0.
Of course both expressions to the left of the equality signs can only be non-
negative. The possibilities for the dimensions of g4/(g;), and (g,),/(a,), are
obviously 0, 1, or 2. Furthermore, the analog of Proposition 2.3(b) clearly

yields that
2—-dimg,+dim(g;)y is even;

a consequence of the fact that dim ¢/g,—dim g,/(g;)y can only be 0, 2, or 4.
The corollary of all these conclusions is that the following table of values
encompasses the only possibilities.

dimg,/(g,)s  dim(gy),/(8;)s 2-—(dimg,/(8;)4+dim(g;),/(8)4)

(1) 2 0 0
) 1 1 0
3) 0 2 0
(4) 0 0 2

The gap in the original argument ignored the theoretical possibility that
generically we could be in row (3), for example, and have a degenerate func-
tional whose g and g, stabilizers each increase in dimension by 2—thereby
bouncing us to row (4). (Or generically we are in row (2) and have a degen-
erate functional whose g stabilizer has unchanged dimension, but whose g,
stabilizer increased in dimension by 1.) We proceed to a case-by-case analy-
sis which shows those eventualities do not occur.

Once again, we must show that for y € g}, the numbers

ny,9)=dimG-¢—-2dim G- +dim G-y

are constant on p~!(G;-y), equal 2 in case (vi) of Theorem 4.1, and equal 0
in every other case. In case (vi) we know that only one orbit G- ¢ lies over
G-V, and from the additional computation in part (vi) of the proof of
Theorem 4.1, we know that n(y, ¢) = 2. For the remaining six cases we em-
ploy the reasoning of [8, Prop. 3.4]. In every case, we know that for any
¢ € p~1(G,-¥) we have

G-¢Np~(Gy-¥) =G+ ¢.
Therefore
dimg;- ¢ =dim G- ¢ =dim G-oNp~ (G V)
<dimg-¢Np~'(g-¥)
=dimg-¢—dimg;-p+dimg;-y.
But generically, the inequality is an equality. Therefore, for generic ¢ €

p NG, y), the numbers n(y, ¢) =0. We examine the six cases to see that
n(y, ¢) vanishes for all ¢ € p~ (G- ¥).



318 RonaLDp L. LiPSMAN

There is nothing to do in cases (i) and (iv) since there is only one orbit
lying over G, -y in those cases. We complete cases (ii), (iii), and (v) by prov-
ing that in those instances the numbers dimg, and dim(g;), are constant
on p~Y(G,-y). We rely heavily on the notation and proof of Theorem 4.1.
Choose the specific functional ¢ € p~!(G; - ) that satisfies ¢ l, =¥, ¢(Y) =
#(Z)=0.

Case (ii). The orbits over G-y are parameterized by ¢, = ¢ +sa. Using
[8, Thm. 0.1], we see that

dim G ¢y =dim Gy:-0+2=dim G, - w;,=dimG-¢,—2 for all seR.

Hence dim(g),, is constant. Next we observe that, since ¢;|,, =0, for all s
we have g, C gy Cg, Cg4. Therefore, (g;),, C 811N g4 = go. But since a(ge) =
0, we have ¢[g, gl =¢l[g, gl. That is, (1), is independent of s.

Case (iii). The orbits over p (G, -y) are parameterized by ¢*= ¢ +us,
u€R. But 6(g4) =0and [g, g] C g4. It follows that ¢*[g, ¢] = ¢[g, g]. In par-
ticular, neither g,« nor (g;),~ depends on u at all.

Case (v). This case is very similar to (ii). Namely, the orbits over G-y are
parameterized by ¢, ; = ¢ +sa+ 8. Also, for any s,  we have

dimG,-¢y=dim Gy-0+2=dim G4 w, ;+2=dim G- ¢ ,.

Thus dim g,_, does not depend on s, ¢. Also as in (ii), g4, C g4 = (gl)d,s ,C 9o,
and since a(gg) B(g0) =0, we obtain that (g;)_, is independent of s, 7.

It remains to consider case (vii). Unlike the other cases, the dimensions of
the stabilizers do experience jumps at a degenerate point. In fact, the orbits
over G,-y are parameterized by ¢ , again. Moreover, we saw in the proof
of Theorem 4.1 that

) dimggy-0+2, s,t+ Py,
d . =
m Q- &, {dimgo-ﬂ, s, t=P,.

For s, t # Py, the number dim(g,),, , remains constant. For if it jumped any-
where, the corresponding n(y¢, ¢) would be rendered negative—an impossi-
bility. When s, t = Py, dim 865, jumps by 2. We must show that dlm(gl)¢P
jumps only by 1, not 2. But note that since bs,¢1q,=0, forany s,z and g, =g
we have (by [9, Lemma 2.4] yet one more time) that

(GO)H . ¢s,t = qu,t for any s, .
In particular, ( 80)g, , = (30)o for any s, f£. But then we have
dim(go)e = dim(go)y, , = dim(g,)y, , = dim(go)y, ,+1
=dim(gg)g+1, s,¢# Py.

This ensures that the jump in d1m(g1)¢P is at most 1 (in fact it is exactly 1).
This completes the proof of Theorem 1. 1. O

REMARK 4.2. As mentioned in the introduction, it is possible to prove ana-
logs of Theorems 1.1 and 4.1 for restricted representations. One can also de-
velop an analog of [11, Sect. 5]; that is, we can use restrictions to distinguish
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the like cases of Theorem 4.1. For example, one can distinguish between
cases (i) and (iv)—in both of which the induced representation is irreduc-
ible—by examining the difference in the resulting restricted representations.
We leave the details to another time.

5. Examples

We give examples of each of the seven structures of a codimension-2 induced
representation from a maximal subgroup. We also give an example to dem-
onstrate that maximality, even in codimension 2, is critical for the truth of
Theorem 1.1.

In the following, “sp” denotes the real linear span. Note that [ X, W] =
(1 —l)Wl is shorthand for [X, Yl] = Yl +Zl’ [X, Zl] = —'Yl +Zl'

(1) g=sp{X, Wy, W, W3}, W;=Y;+iZ; complex:

[Xs Wl] = (I_I)Wls [X9 W3] = (1 _i)W3a [Wl’ WZ] = WB;
a1= Sp{X, WZ: W3}’ go= Sp{Wz, W3}9 04 = Sp{u/l’ W29 W3},
v =W3.

(2) g=splX,Y,Z,W,U,V}:

(X, Y+iZ]=0-)(Y+iZ), [Y,Z)=W, [X,W]=2W,
ly,Ul=V, [X,V]=V;

81=sp{X, W, U, V}, go=sptW,U,V}, g, =sp{Z, W, U, V},
g3 = Sp{Y’ I/I/s Uy V}’ Q4= {Y’ Z’ Ws Us V}s ‘10"'_‘ V*+W*'

(3) g=sp{X, W), W, W3}, W;=Y;+iZ; complex:

[X, Wi]=(10—-)W,, [ X, W,]=—-(1—-DW,, [W), W,]=Ws5;
a1= Sp{Xs WZ’ WS}s Go= Sp{WZ: W3}s 34 = Sp{le W2a W3},
v=2Z3+23.

(4) Same as (3) except ¥ =Z3.

(5) a=sp{X,Y,Z, W}

(X, Y+iZ]l=QQ—-i)Y+iZ), [X,W]=W,;
g1= Sp{X’ W}, Go= Sp{W}, G4 = Sp{Ys Zs W}s ‘l/ = W*'

6) g=sp{X,Y,Z, W}

(X, Y+iZ]=(1-)(Y+iZ), [Y,Z]=W, [X,W]=2W,;

1= Sp{Xs WL o= Sp{W]a Q4= Sp{Y, Za W}: ‘lb = W*-
(7) g=sp{X,Y,Z}:

[X,Y+iZ]l=(1-i(Y+iZ);

1= Sp{X}’ 3o = [O}s 34 = Sp{),s Z}s Vf =0.

Finally, here is the example to illustrate the dependence of Theorem 1.1
on maximality—even in codimension 2. Actually, it is enough to look at the
(ax+ b)-group G and take G, to be trivial. Certainly dim G/G;=2. The in-
duced representation Indgll is the regular representation of G which is an
infinite multiple of the direct sum of two inequivalent infinite-dimensional
representations. Thus the generic functionals ¢ € ¢* = gi = p~1(0) satisfy
dim G- ¢ N p~1(0) >dim G, ¢. But, for the linear functionals ¢ € g* which
are trivial on the nilradical of g, their orbits are points that satisfy

G-¢Np~1(0)=G,-¢.
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