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Weighted spaces HVy(G) and HV(G) of holomorphic functions as well as
weighted inductive limits Vo H(G) and VH(G) of spaces of holomorphic
functions arise naturally in various applications of functional analysis, for
example, in partial differential equations and convolution equations, com-
plex and Fourier analysis, distribution theory, and spectral theory. How-
ever, many (structural) properties of these spaces which would be very help-
ful in concrete analytical investigations are rather hard to prove in a general
context. In the present article, attention is restricted to (increasing systems V
and decreasing sequences V of ) radial weights on balanced domains G C CV
(N=1), which makes it possible to apply arguments involving the Taylor
series of holomorphic functions about zero. In this way, we obtain some
progress, which is even interesting in the case of Banach spaces of this type.

More specifically, in Section 1 we use (Fejér’s result on) the contractive
properties of the Cesaro means of the Taylor series of functions in the disk
algebra to derive remarkable consequences for spaces of holomorphic func-
tions on arbitrary balanced open sets G C C¥. Our method leads to simple
proofs that the spaces HV(G) and V,H(G) have the bounded approxima-
tion property whenever they contain the polynomials, and that then the
polynomials are dense. Similar results are also true for the larger spaces
HV(G) and VH(G), but only under certain (quite natural) weaker topol-
ogies. The bidualities ((HVy(G));), = HV(G) and ((VoH(G))3); = VH(G)
(which were established in [5] under slightly stronger hypotheses) actually
hold in the present generality. The results of Section 1 serve as a basis for
the developments in the subsequent sections.

Section 2 is devoted to a problem which had already been raised in [6]
and [7] (and is part of a more general problem that has interested various
authors): Can one interchange the inductive limit Vo H(G) = ind,, H(v,)o(G)
and the e-(tensor) product with an arbitrary Banach space X, in particular
if ‘V satisfies the condition that for each n € N there is m > n such that v,,/v,,
vanishes at infinity on G? This is closely related to the important question of
whether one can obtain a projective description VyH(G, E) = HV,(G, E)
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for spaces of vector-valued holomorphic functions. Rather surprisingly, for
a (DFS)-space Vy H(G), such a problem is equivalent to asking if Grothen-
dieck’s “probleme des topologies” has a positive solution for every pair
(Vo H(G))p, X), X Banach. Since Taskinen’s counterexamples [34] to Gro-
thendieck’s (general) problem, some positive results have been obtained (see
[11] and [36]), but they involve the bounded approximation property. In-
deed, it was with this application in mind that we proved our results in Sec-
tion 1, permitting us now to deduce that the topological equalities

VoH(G)eE =ind,(H(v,)o(G)eE) and W,H(G, E) = HV,(G, E)

hold for quasicomplete locally convex (l.c.) spaces E with the countable
neighborhood property, and for (DFS)-spaces Vo H(G) in the present set-
ting (of radial weights v,, on balanced domains G).

In the first part of Section 3, we explain the relation of our results to some
of the work of Kaballo and Vogt {23] and Hollstein [19] on (lifting theorems
for vector-valued holomorphic functions and) tensor sequences. The articles
of Shields and Williams [30; 31] and of Kaballo [22] lead to interesting ex-
amples and give rise to a nice question in Banach space theory. At the end of
the paper, we establish some remarkable vector-valued generalizations of
the (bi-) dualities (HVy(G)3)p = HV(G) and ((Vo H(G))p)! = VH(G).

NotaTioN. Our notation on locally convex spaces is standard; see for ex-
ample Grothendieck [18], Jarchow [20], and Pérez Carreras and Bonet [29].
For a l.c. space E, E* denotes the space of all linear functionals on E, while
E' is the topological dual and E}, the strong dual; if X is a normed space, the
dual Banach space is simply denoted by X". A l.c. space E has the bounded
approximation property if there exists an equicontinuous net of finite rank
operators on E which converges pointwise to the identity. For l.c. inductive
limits and their (strong) regularity properties, see [29]; for topological ten-
sor products, see [18].

If G is an open subset of C (N=1), then H(G) will be the space of all
holomorphic functions on G endowed with the topology 7, of uniform con-
vergence on the compact sets K C G. For our notation on weighted spaces
and weighted inductive limits, see [7]. If V is a system of nonnegative upper
semicontinuous functions on G, we define the weighted spaces of holomor-
phic functions by

HV(G):={fe H(G): foreach veV, p,(f):=sup, g V(z)| f(2)| < =0},

HVy(G):={fe H(G): for each v € V, vf vanishes at infinity on G; that is,
for each € > 0 there is K C G compact with
v(2)|f(z)| < e for ze G\K}.

The weighted topology on HV(G) (and HV,(G)), denoted by 7y, is given by
the system (p,),cy of seminorms. If V is reduced to a single weight v, we
sometimes write Hv(G) and Hvy(G) instead of HV(G) and HV,(G), respec-
tively. If V= (V,),en is a decreasing sequence of systems ¥}, of weights (i.e.,
Vi1V, for each ne N, cf. [7]), we introduce the weighted inductive limits
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VH(G):=ind, HV,(G) and V,H(G):=ind, H(V,)o(G).

For a decreasing sequence V = (v,),en Of weights, the regularly decreasing
condition on V is discussed in [7]. We will also use the vector-valued analogs
of weighted spaces and weighted inductive limits, as well as the weighted
spaces of continuous functions (mainly in Sections 2 and 3).

1. Weighted Spaces and Weighted Inductive Limits
of Spaces of Holomorphic Functions:
Radial Weights on Balanced Domains

In this section, we exploit the properties of the (first) Cesaro means of (the
partial sums of) the Taylor series of a holomorphic function about zero, in
order to derive some interesting facts for weighted spaces of holomorphic
functions and for the corresponding weighted inductive limits in the case
that all the weights are radial on a balanced domain G C C¥.

Thus, unless something else is stated explicitly, G will always be a bal-
anced open set in CY (N=1). Then each fe H(G) has a Taylor series repre-
sentation about zero,

f(R)= 2 p(z), z€G,
k=0

where p; is a k-homogeneous polynomial (k =0, 1, ...). The series converges
to f uniformly on each compact subset of G. The Cesaro means of the par-
tial sums of the Taylor series of f are denoted by C,,(f) (n=0,1,...); that is,

n /
[Ca(N(2)= — > ( > pk(z)), zeG.
n+1,=o\r=0

Each C,(f) is a polynomial (of degree < n), and C,(f)— f uniformly on
every compact subset of G (fe H(G) arbitrary). By the Cauchy inequali-
ties, the coefficients of the Taylor polynomials, and hence the polynomials
C,(f), depend continuously on fe H(G) with respect to the compact-open
topology 79 (on H(G)). (Of course, it would be possible to treat domains
G C CY which are ¢-balanced for some £ € CY, but for simplicity we shall
take £ =0 here.)

The following lemma (which also motivates the definition of radial weights
on balanced open sets) is well known; for example, see (the proof of ) Mu-
jica [27, Prop. 5.2]. We include it here for the convenience of the reader,
together with a short and simple proof by reduction to the disk algebra.

1.1. Lemma. For fe H(G) and z € G, we always have:
I[Cn(f)](z)ls!rrTaXIf(Az)l, n=0,1,....
Al=1

Proof. Fix f and z. Since G is balanced, {Az: X eD}C G, where D is the
open unit disk in C. If we define the function g = g, of one complex variable
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A by g(A):=f(Az) for each AeD, then clearly g e A(D):={h: D— C con-
tinuous; #|p holomorphic}. (In fact, g is defined and holomorphic on an
open set containing D.) We note that for arbitrary A € D,

gM)=fA2)= Y p(Az)= 3 pr(z)AY, where f(2)=3 pi(z),
k=0 k=0 k=0

whereby the series on the right-hand side of the equality for g(A) is exactly
the Taylor series of g about zero. At this point, the well-known inequality
(e.g., cf. [25, p. 37])

Ir}l\r}arcl[Cn(g)]()\)lsIlgt\liavflg(/\)l for ge A(D), neN,
=1 =

implies the desired estimate

[Ca(N](2)|= I[Cn(g)](l)lslrﬁgflg(h)l =max| fAz)] L

Now let V be a system of nonnegative continuous functions on G such that
the topology 7,y of HV(G) is stronger than 7, and all v e V are radial in the
sense that

v(Az)=v(z) for allze G and all A e C with |A|=1.

We will also assume (unless stated otherwise) that the polynomials are con-
tained in HVy(G). For G bounded, this is equivalent to requiring that each
veV extends continuously to G with v|;5 =0, while for G=CY, the as-
sumption means exactly that each v eV is rapidly decreasing (at o).

1.2. ProrosITION. Let V be a system of nonnegative continuous radial
functions on a balanced open set GC CYN, We assume that 1y is stronger
than 1o and that HVy(G) contains all the polynomials. Then the sequence
(Cnen,, Cy: f = C,(f) for fe HV(G) and n € Ny, has the following prop-
erties:

(@) Each C, is a continuous linear operator of finite rank from HV(G)
into HVy(G).

(b) ForallneNy, veV, and fe HV(G), we have

sup; e g V(2)|[Cr(N1(2)| = sup; e v(2)| F(2),

whence (Cp), is equicontinuous in L(HV(G), HVy(G)). (If V is re-
duced to a single weight v, then (C,), belongs to the unit ball of the
space £L(Hv(G), Hvy(G)) of bounded operators.)

(c) There exists a basis B of absolutely convex bounded sets in HV(G)
such that for each Be 8 and n=0,1, ...,

C,(B) C BNHV,(G).

(d) Let 7 be the strongest locally convex topology on HV(G) which cain-
cides with the compact-open topology 1, on all bounded sets. Then
(C,), is also equicontinuous in the space

L(HV(G), T), (HVy(G), T | Hvy(6)))-
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(e) Foreach fe HVy(G), C,(f)— f holds in the weighted topology Ty of
this space; for each fe HV(G), C,(f)— f with respect to 7.

Proof. (a) Clearly, C, is a linear operator of finite rank, and our assump-
tion on the polynomials implies that C,(HV(G))C HVy(G), n=0,1,....
Continuity is clear since the topology of HV(G) is stronger than 7.

For (b), fix fe HV(G), veV, and n € Ny. Lemma 1.1 gives

sup v(2)|[Cr()](z)| < sup v(z)(maXIf(Az)I) = sup v(z)| f(z)|

zeG zeG zZeqG

because v is radial.
Concerning (c), we first note that the sets B= B((M,),),

B= M{feHV(G): v(z)| f(z)| =M, for all z € G},
veV
yield a basis B of absolutely convex bounded sets in HV(G) as (M,,), .y runs
through all systems of positive numbers (indexed by V). In view of Lemma
1.1 and the fact that each v eV is radial, we get for arbitrary Be 8, fe B,
veV, and ne Ny,

v(2)|[Ch(NH(2)|= v(z)(max|f()\z)|) nTax v(A2)| f(Az)| <M, forall z € G;
2

that is, C,,(B) CBﬂHVO(G), n=0,1,..., as claimed.

(d) 7 is a generalized inductive limit topology; the sets I'(Ug.g UgNB),
where each Uz (Be®, ® as in (c)) is a 0-neighborhood in HV(G) for the
compact-open topology 7, (and I' denotes the absolutely convex hull), form
a basis of 0-neighborhoods for 7. Since (C,),, is clearly equicontinuous on
HYV(G) with respect to 7, (see e.g. Lemma 1.1), the desired equicontinuity
easily follows from this description of a 0-neighborhood basis for 7 and
from (c).

To see the first part of (e), fix fe HVy(G), veV, and € > 0. There is a bal-
anced compact subset X of G with v(z)|f(z)|<e/2 for all ze G\K. Take
M > 0 such that max, . x v(z) < M. Since C,(f) — f uniformly on K, we can
choose NeN large enough so that max, x| f(z) —[C,(/)](z)|<e/M for
each n= N. For any such natural number n, we have

sup v(2)| f(z) —[C,(N]1(z)| = max(max v(z)| f(z) — [Ch()1(2)|, sup ...)

zeG zek zeG\K

smax(Mf/[—,5+ sup v(z)l[Cn(f)](z)I)

2 zeG\K

smax(e,—e--i- sup v(z)[maXIf(/\Z)l])
2 eG\K IAl=1

< max(e, %+ sup v(z)lf(z)|> <e,

z2eG\K
where we have again utilized Lemma 1.1 and v radial, as well as the fact that

z2€ G\K = Az € G\K for each [A|=1,
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which holds because K is balanced. The second assertion of (e) is obvious
since C,(f)—f in 7y for each fe HV(G), and the set {C,(f): ne Ny} is
always bounded in HV,(G) by (b). O

The definition of the topology 7 and the description of a 0-neighborhood
basis for this topology which is used in the proof of Proposition 1.2(d) re-
main valid for “arbitrary” systems V of (not necessarily radial) weights on
arbitrary (not necessarily balanced) open sets G C C". The next definition,
which is prompted by the classical case of the strict topology on H *(G) and
[8, §3], and the subsequent remarks also work in this (more general) context.

Let B (G) denote the set of all nonnegative upper semicontinuous (u.s.c.)
functions on G that vanish at infinity on G; each such function is bounded. If
G is balanced, and hence has a basis of compact sets which are also balanced,
then each ¢ € Bf (G) is certainly dominated by a radial function in B§(G),
and hence it will suffice to consider the radial elements of B (G). In general,
every ¢ € Bf (G) is dominated by a continuous y € Bi (G), and it is enough
to consider continuous functions in Bg (G). Now put

W:=B{(G)V={ev: p € B}(G), veV).

Considering the weighted spaces HW(G), HWy(G) of holomorphic func-
tions associated with the system W, it is quite easy to see (e.g., cf. Ernst [17,
Prop. 1 and 2] for the corresponding spaces of continuous functions) that
HW(G)= HW,(G) holds (algebraically, and hence topologically), and that
HYV(G) is continuously embedded into this space and equals it algebraically;
moreover, the two spaces even have the same bounded sets on which the
weighted topology 7y coincides with 7. Now we can clearly conclude that
Tw =T7.

Each bounded subset of HV(G) is 7g-compact, and hence 7-compact, by
Montel’s theorem; it is a fortiori Ty -compact. Conversely, it was already
stated that every 7-bounded set is bounded in HV(G). Thus, 7y, 7, and
7w have the same bounded sets. 7 and 7y, are semi-Montel topologies. 7y is
stronger than 7y and complete. On the other hand, if HV(G) is bornological,
then 7 must also be weaker than the original topology 7y of HV(G).

Some justification for the introduction of the topology 7 comes from Mu-
jica’s duality (see [26] together with [16, p. 417]). In fact, we can now show
the following.

1.3. ProrosITION. Let V be a system of nonnegative continuous functions
on an open subset G of CN such that 7y is stronger than 7y. If HV(G) is
bornological, then it is the strong dual of the complete barrelled space

F:=(HV(G), ), = (HV(G), T)e.

Proof. We utilize methods analogous to [5, Example 3.A]: HV(G) clearly
has a basis of absolutely convex 0-neighborhoods which are 7y-closed (in
HYV(G)). As one can see from the beginning of the proof of 1.2(c) (where
the stronger assumptions of that proposition were not yet needed), each



Weighted Spaces of Holomorphic Functions on Balanced Domains 277

bounded set in HV(G) is contained in an absolutely convex bounded set B
which is even closed in (H(G), 7¢) (or, for that matter, closed in H(G) with
respect to the topology of pointwise convergence on G). Since the topology
of HV(G) is stronger than 73, Montel’s theorem implies that B is 7y-compact
(in H(G) or) in HV(G). Since 7 and 7 have the same bounded sets and 7 is
semi-Montel, we may now apply [5, Thm. 1 and Cor. 2] to conclude. O

If HV(G) is a Fréchet space (e.g., V= (v,),enN is a sequence of positive func-
tions), then F in Proposition 1.3 is a (complete barrelled) (DF)-space, and
[5, Cor. 5] shows how additional topological properties of HV(G) are re-
flected in topological properties of F. In particular, for quasinormable Fré-
chet spaces HV(G), F must be a boundedly retractive (LB)-space (and hence
bornological).

In the (simple) case that V= {v} for a single (strictly positive continuous)
function v, one can prove that HW(G) = HWy(G) = (Hv(G), 7) holds topo-
logically and is a complete semi-Montel (gDF)-space (see [8, §3]).

Let us now return to systems of radial weights on balanced domains.
Proposition 1.2(e) and 7y < 7 imply the first part of the following remark.
The second part becomes obvious by looking at the proof of 1.2(b) (and
making use of the fact that one may restrict attention to radial functions in
Bj(G)).

1.4. ReMAark. Under the hypotheses of Proposition 1.2, C,(f) converges
to f in HW(G) for every fe HW(G), and also (C,), is equicontinuous in
L(HW(G), HW(G)).

We are now ready for the main theorems of this section.

1.5. THEOREM. Under the hypotheses of Proposition 1.2, the following
assertions hold:

(@) HVy(G) has the bounded approximation property (and even the met-
ric approximation property in the case of a Banach space; i.e., if V=
fv} for a single function v). Moreover, the polynomials are dense in
HYVy(G).

(b) (HV(G), 7) has the bounded approximation property, and the poly-
nomials are dense in this space, too. The same result holds for
HW(G) = HWy(G) instead of (HV(G), 7).

(c) For each bounded set BC HV(G), there is an absolutely convex
bounded set C in HVy(G) such that B is contained in the ty-closure
of Cin HV(G). (For V= {v}, the unit ball of Hv(G) is contained in
the 1y-closure of the unit ball of Hvy(G).)

(d) If HV(G) is bornological (which holds, for example, if V is a se-
quence (U,),en), then (HVy(G))p), is canonically isomorphic to
HV(G) (and the biduality holds isometrically for V=1{v}). In this
case, HVy(G) must be quasibarrelled and distinguished, and an alge-
braic identity HV(G) = HVy(G) implies that HVy(G) is reflexive.
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(e) If HV(G) is bornological then we also have the following canonical
dualities:

(HVy(G))p = (HV(G), T)p = (HV(G), 7). and (HV(G), 7)p)p = HV(G).

Proof. (a) is a simple consequence of Proposition 1.2(b) and (e), since the
equicontinuous sequence (C,, | v, (G)), of linear operators of finite rank con-
verges pointwise to the identity of HV,(G), and each C,(f) is a polynomial
(fe HVy(G), ne Ny). (b) follows similarly from Proposition 1.2(d) and (e)
(and from Remark 1.4). Keeping in mind that C,(f) converges to fe H(G)
in the compact-open topology, one sees that by (the proof of) 1.2(c), (c)
must be true (and the proof in the Banach space case is simpler).

To verify (d) and (€), one looks at the proof of Proposition 1.3, utilizes (c)
(and the argument in the proof of [5, Prop. 10] whereby condition (ii) of [5,
Thm. 6] is always satisfied) and then applies [5, Thm. 6 and Remark] (resp.
[8, Cor. 1.2]) to conclude. (The last equation in (e) holds “in general”—see
Proposition 1.3—and is included here only for completeness; however, the
first duality requires the property stated in (c) and is even equivalent to this
property.) O

Proposition 1.3 and parts (d) and (e) of Theorem 1.5 generalize and improve
[5, Example 3.A] and [8, §§2 and 3] to some extent.

We next turn to the weighted inductive limits (of spaces of holomorphic
functions) VH(G) = ind, HV,(G) and VyH(G) = ind, H(V,)o(G), where
V= (V,)nen is a decreasing sequence of systems of nonnegative continuous
functions on an open set G C C%, and where it will be assumed that each
HYV,(G) has a stronger topology than 7,. For each neN, 7, denotes the
strongest l.c. topology on HV,(G) which coincides with 7, on all bounded
sets, and W,:= B§(G)V,, n=1,2,.... Then (HV,(G), 7,),, and (HW,(G) =
HW,)o(G)), are inductive sequences; we write (VH(G), 7), (WH(G), Ty)
for the l.c. inductive limits and their topologies, respectively. The algebraic
equality VH(G) = VH(G) = “WH(G) holds, and we have 7y < 7«p < 7, while
7 is weaker than the original topology of VH(G) if all HV,(G) are bornolog-
ical, n=1, 2, ... (see the remarks before Proposition 1.3).

1.6. THEOREM. Let V= (V,), N be a decreasing sequence of systemsV, of
nonnegative continuous and radial functions on a balanced open set G C C¥.
We suppose that each HV,(G) has a topology which is stronger than 7, and
that each H(V,))o(G) contains the polynomials, n=1,2,.... Then we get:

(@) VoH(G) has the bounded approximation property, and the polyno-
mials are dense in Vo H(G).

(b) Both VH(G) and “"WH(G) have the bounded approximation property,
and the polynomials are also dense in these spaces.

For (c) and (d) below, we take each V,, to consist of a single (strictly positive
continuous and radial) function v,, n=1,2,...; i.e., VH(G) =ind, Hv,(G)
as well as Vo H(G)=ind, H(v,)o(G) are (LB)-spaces. In this setting, we
also get:
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(c) VoH(G) has a total bounded set (viz., the unit ball of H(v;)o(G)).

(d) (VoH(G))p)i=VH(G) holds canonically, and Vo H(G) is a topo-
logical subspace of VH(G). (In particular, an algebraic equality
Vo H(G) = VH(G) already implies that VyH(G) is reflexive.) If V
is regularly decreasing (in the sense of [7]), then we even have
(Vo H(G))p)p="VH(G).

Proof. (a) By Proposition 1.2(b) and (e), (C,),, which is now defined by
C,: f— C,(f) for all feVH(G), is an equicontinuous sequence of linear
operators of finite rank from VH(G) into VyH(G), and the restrictions of
C, to Vo H(G) converge pointwise to the identity.

(b) follows from Proposition 1.2(d) and (e) in exactly the same way. It is
also clear that (a) = (c) (under the more restrictive assumptions of this part).
Incidentally, up to this point, it would not even have been necessary to deal
only with countable inductive limits (as we have done here, for simplicity).

(d) is a direct consequence of [5, 13 (see also 15)] and Theorem 1.5. On the
other hand, it improves [5, Example 3.B] slightly. O

Keeping the notation introduced before Theorem 1.6, we can consider the
following associated system V =V(V) of weights (cf. [7, 0.2]):

V:={p=0u.s.c. on G: for each n € N there are v, € ¥, and o, > 0
with ¥ <inf, o,0,,}.

In our case (where G is locally compact and o-compact), the proof of [7, 0.2,
Prop.] shows that each function o € ¥ is dominated by some & € ¥ which, on
each compact set K C G, is actually a finite infimum of positive multiples of
elements v, eV, (n=1,2,...). It now suffices to consider only continuous
weights in ¥, and if all systems ¥}, consist of radial functions on a balanced
open set G C C¥, then it is also enough to restrict attention to the radial ele-
ments of V. From Theorem 1.5(a) and (b), we ¢ btain the next corollary.

1.7. CoroLLARY. Under the hypotheses of (the first part of) Theorem 1.6,
the three spaces HVy(G), (HV(G), 7) (wWhere 7 is the strongest l.c. topol-
ogy on HV(G) which coincides with 7y on all bounded sets), and HW(G) =
HWy(G), where W:=B§(G)V, have the bounded approximation property
and contain the polynomials as a dense subspace.

While it has not been our main concern here to study the relations between
the various spaces of holomorphic functions which were introduced before
Theorem 1.6 and Corollary 1.7, we will now state some of the relevant re-
sults. (This may also serve for the orientation of the reader.) In the sequel, it
is not necessary to assume that G is balanced and that the weights are radial.

First, it is immediate that ‘VH(G) (resp., Vo H(G)) is continuously em-
bedded into the weighted space HV(G) (resp., HV,(G)) and that the topol-
ogy 7y of this space is stronger than 7y. (Actually, these facts were already
used in the proof of Corollary 1.7.) If each V,, is reduced to a single (strictly
positive and continuous) function v,, n=1,2,..., then HV(G)=VH(G)
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algebraically, the two spaces have the same bounded sets, and VH(G) is a
regular inductive limit (see [7], where a sufficient condition for VH(G) =
HYV(G) is given). Since (HV(G), 7) is semi-Montel (by the remarks before
Proposition 1.3) and the corresponding space of continuous functions coin-
cides with the weighted space analogous to HW(G) (see Ernst [17, Prop. 3
and 4]), we can apply the Baernstein lemma (cf. [7, 0.4]) to see that

(HV(G), 7) = HW(G) = HW,(G)

holds topologically and is a complete semi-Montel (gDF)-space.
Next, as V = V(V) is associated with ©V = (V})),, the following system
V(W) is associated with W = (W,,= B (G)V,),:

V(W):={w=0u.s.c. on G: for each n € N there are w, = ¢,v, € W, and
o > 0 with w <inf, o,,w,, =inf, a,,0,0,,}.

Since obviously, in the notation of Corollary 1.7, W=Bf(G)V < V(W) <V
holds, we have the following diagram (in which arrows represent continuous
embeddings):

VH(G) - “WH(G)
i !
HV(G) - HV(W))(G) - HW(G).

As a consequence, we get HV(G)=H(V(W))(G) = HW(G) algebraically,
and the three spaces have the same bounded sets.

Stronger results can be obtained if each ¥V, consists of only one function
v,. Then we have VH(G) = WH(G) = HV(G) = HW(G) algebraically, and
all four spaces must have the same bounded sets—namely, the subsets of
positive multiples of the unit balls in Hv,(G), n=1,2,.... Hence WH(G)
is a regular inductive limit, too. Moreover, our previous considerations (be-
fore Remark 1.4) show that VH(G) = “WH(G) holds topologically, and that
this is a complete semi-Montel (gDF)-space. (One can also deduce directly
from [29, 8.1.7] that VH(G) must now carry the finest l.c. topology that
coincides with 7, on the bounded sets.) At this point, using WH(G) =
ind,, H(W,)o(G) as well as HW(G) = HWy(G), [8, §3], [7, Thm. 1.3(a)], and
(again) the Baernstein lemma, it follows that also WH(G) = HW(G) holds
topologically.

Some of the preceding definitions and results can be found in Napalkov
[28] (with slightly different proofs). In [28], it is proved that for a semi-
Montel space VH(G), the following additional topological equalities hold:

VH(G) = HV(G) = "WH(G).

Actually, this can now be deduced simply by another application of the
(ubiquitous) Baernstein lemma. (Under a slightly more restrictive hypothe-
sis, the first equation had already been proved in [7, Thm. 1.6].)

This is the appropriate point to discuss Mujica’s duality [26] for the (LB)-
space VH(G).
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1.8. ProprosITION. Let V=(v,), be a decreasing sequence of strictly posi-
tive continuous functions on an open subset G of Cch.

(@) Then VH(G) is the inductive dual F; of the Fréchet space
F:=(VH(G), I, =(VH(G), 7). = (WH(G), T9)p = (WH(G), T<9);

and hence complete. If V is regularly decreasing, F is quasinormable
and VH(G) = Fy.

(b) The strong topology of Fy is stronger than the weighted topology 1y
of HV(G).

(c) Consider the following assertions:
(1) VH(G) = HV(G) holds topologically;
(2) Fj=HV(G) holds topologically;
(3) HV(G) is a (DF)-space.
In general, (1)= (2) and (2) = (3); if the bounded subsets of HV(G)
are metrizable (which is true if V= (v,), satisfies condition (D) of
[3, II]), then also (3) = (1), and (1), (2), and (3) are equivalent.

Proof. (a) is a simple consequence of [5, Cor. 3(a)] (due to Mujica) and
Remark 1.4.

(b) HV(G) has a basis of absolutely convex 7,-closed 0-neighborhoods
(cf. the proof of Proposition 1.3), which must be 0-neighborhoods in F}, as
one can see from the proof of [5, Cor. 2].

(c) By (a) and (b), (1) = (2) is obvious, as is (2) = (3). Now let HV(G) be a
(DF)-space whose bounded subsets are metrizable. By the proof of Proposi-
tion 1.3, HV(G) has a basis of absolutely convex bounded sets which are 7,-
compact. Invoking [3, I, 1.5(a), 1.2(b), and 1.4(c)], we get that HV(G) is
bornological, which clearly suffices to conclude that VH(G) = HV(G) topo-
logically. ]

Returning to a sequence of radial functions on a balanced domain, we have
the following.

1.9. CoNSeEQUENCE. Under the hypotheses of Theorem 1.6(c) and (d), the
following dualities hold:

(VoH(G))p=(VH(G), T)p=(VH(G), 7); and ((VH(G),7))i="VH(G).

The second equation holds “in general” (see Proposition 1.8(a)), but the first
one is actually equivalent to a condition like (I) in [5, Thm. 7(b)].

2. The e-Tensor Product of a (DFS)- and a
Banach Space; Applications to Spaces of
Holomorphic Functions

Let E =ind, E, be an injective inductive limit of a sequence of Banach
spaces with compact linking maps, that is, a (DFS)-space. (Recall that the
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strong dual £}, of E is a Fréchet Schwartz space and that E = (E4)p.) In the
first part of this section, we investigate under which conditions the topologi-
cal equality

E®.X=(ind, E,)®. X =ind,(E, & X) (*)

holds for all Banach spaces X. Applications to weighted inductive limits of
spaces of holomorphic functions are given in the second part.

It turns out that (*) is related to a “dual” problem on the projective tensor
product of Fréchet spaces—namely, the famous “probléme des topologies”
of A. Grothendieck. The following notation is due to Taskinen [34]: A pair
(F, G) of Fréchet spaces is said to have property (BB) if every bounded sub-
set B of F®. G is contained in the closure of the absolutely convex hull of
the tensor product C&® D of a bounded set C in F and a bounded set D in G.
With this notation, Grothendieck’s probléme des topologies [18] asked if
each pair of Fréchet spaces satisfies (BB). After a long time, Taskinen [34]
finally gave the first counterexamples. In fact, as we show below in Proposi-
tion 2.1, question () is equivalent to asking if the pair (E}, X) has property
(BB) for each Banach space X.

Proposition 2.1 combines a number of results which had been scattered
in the literature. In its statement, C, (1 < p < o) denotes the Johnson spaces
as defined in, for example, Jarchow [20], except that these spaces will here
be selected in such a way that C,=C, for 1/p+1/g=1. (This amounts to
choosing a sequence (G,),n Of finite-dimensional Banach spaces which is
“dense in all finite-dimensional Banach spaces” and letting C,, be the /,-direct
sum of @, G, X D, G;.) Moreover, writing “C,” in Proposition 2.1, (1')-
(3), and (3”), we really mean that the conditions are supposed to hold “for
every Cp,, 1< p <o, or, equivalently, for just one such space.” For the defi-
nition of Schwartz’s e-product, see [7, §3].

2.1. ProposiTiON. For a (DFS)-space E=ind, E,, the following condi-
tions are equivalent:

(1) (Ep, X) has property (BB) for every Banach space X,
(') (E}, Cp) satisfies (BB);
(2) L£p(E}, X') is a bornological (DF)-space for every Banach space X,
(2) £4(E}, Cp) is a bornological (DF)-space;
(3) EQ. X =ind,(E,®.X) holds topologically for every Banach space
X; that is, E=ind, E,, is an inductive limit with local partition of
unity in the sense of Hollstein [19, 2.2, 3.2],
3) E@e C,= ind,,(E,,@GCp) holds topologically,
(3") E®.Cp,=ind,(E,&®.Cp) holds topologically.
These equivalent conditions are implied by:
(4) EeX =ind,(E,eX) holds (algebraically and) topologically for every
Banach space X;
conversely, (1)-(3) imply (4) if E has the approximation property. (In any
case, (1)-(3) imply condition (4) for every Banach space X with the a.p.)
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Proof. (1)= (1’)is trivial. Since Ej, clearly has the density condition (cf. [2])
and every Banach space is strongly representable in C, (see [10, §1]), a look
at [10, 2.2(2)] yields (1’) = (1).

It is well known that, in the presence of (1),

Lp(Ep, X') = (EpQ@-X)p
topologically for every Banach space X. By [4, Cor. 1.7], the Fréchet space
Ej ®WX also has the density condition, whence its strong dual must be bor-
nological, and we get (2). Next, while (2) = (2’) is (again) trivial, (2’) = (1")
follows directly from Taskinen [35, Prop. 1] (see also [12, 1.2 and 1.3]) since
E} and C, are separable and C,=C, (1< p<o, 1/p+1/g=1).

The equivalence (3) & (3’) is due to Hollstein [19, 3.2]. To see that (3') &
(3", obsgrve first that since C,, has the approximation property (1 < p <),
ind,(E,®.Cp) is an injective inductive limit. Then the density of E, ®.C,
in E,®,.C, for each n=1, 2, ... implies the desired result (use [29, 6.3.1] and
[7, 1.2]).

For (2’) ©(3”), we note that

£4(E}, Cp)=EeC,=E®,C,

since Ej, is Fréchet Schwartz and hence equals E; (and C, has the approxi-
mation property). As ind,, E, is compactly regular,v it follows from [6, 3.13]
that the spaces EeC, and ind,(E,eC,) =ind,(E,&®.C,) are equal algebra-
ically and havevthe same bounded sets. Thus (3”) holds if and only if
Lp(Ep, Cp) =E®,.C, is a bornological (DF)-space, but this means exactly
2").
Certainly, if (4) is true then
Lp(Ef, X)=EeX=ind,(E,eX)

must be a bornological (DF)-space for every Banach space X; in particular,
(2) holds. On the other hand, for any Banach space X, we know (say, from
[7, 5.10]) that EeX and ind,(E,eX) coincide algebraically, have the same
bounded sets, and even induce the same topology on these bounded sets.
If E or X has the approximation property, then £&®, X is dense in FeX;
thus, in the presence of (3), EeX must at least be a (DF)-space which, how-
ever, (by what we have just said) suffices to conclude (4). O

The proof of Proposition 2.1 suggests several variants of the properties (1)-
(4). We add that, in view of Hollstein [19, 3.4 and 3.2], (3’) is also equivalent
to the weaker condition that E®), C, is only quasibarrelled, while in (3) the
class of Banach spaces can even be replaced by the (much larger) class of all
l.c. spaces with the countable neighborhood property. Moreover, it is clear
that some of the implications in Proposition 2.1 remain valid if £ =ind, E,,
is only an (LB)-space which satisfies certain weaker hypotheses (than com-
pactness of the linking maps).

By Taskinen’s construction [34] and its modifications (e.g., see [13]), there
are examples of Fréchet Schwartz spaces F and nonnormable Fréchet spaces
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G such that (F, G) does not enjoy property (BB) and F§®, G, is not even a
(gDF)-space. Thus, we are led to an open question as follows.

QuesTtioN (Taskinen [36]). If F is a Fréchet Schwartz space, must then
(F, X) necessarily have property (BB) for each Banach space X?

Because of Proposition 2.1, this is an equivalent form of the known prob-
lem (Hollstein [19, end of §3]) of whether the e-tensor product of a (DFS)-
space and a Banach space must always be bornological (or, equivalently,
whether each (DFS)-space has a local partition of unity). None of the vari-
ants of Taskinen’s construction of counterexamples to Grothendieck’s prob-
Ieme des topologies seems to be applicable here; an answer to the question
would probably require new methods.

On the other side, if one is willing to admit additional hypotheses (in the
form of “strong” approximation properties), then the situation is not so bad.
Some positive results are indeed known (which will be helpful in the context
of weighted spaces of holomorphic functions below).

2.2. ProrosITION. (a) (Taskinen [36, p. 344]) Let F be a Fréchet Schwartz
space which is the reduced projective limit proj, F, of a sequence of Banach
spaces F, with the bounded approximation property. Then (F, X) has prop-
erty (BB) for all Banach spaces X.

(b) (Bonet and Diaz [11, Props. 4, 11, 12]) IfE=ind, E, is a (DFS)-space
with the bounded approximation property which has a total bounded set,
then

E®.X=ind (E,®.X) and EeX=ind,(E,eX)
holds algebraically and topologically for each Banach space X.

Concerning (b), note that a Fréchet Schwartz space £ has the bounded ap-
proximation property if and only if its strong dual E}, has the bounded ap-
proximation property. (This is quite obvious from the definition.)

As in the case of Proposition 2.1, it is also possible to extend 2.2(b) (from
Banach spaces X to larger classes of bornological (DF)-spaces). For in-
stance, we have the following.

Let E=ind, E, be a (DFS)-space with (one of) the equivalent conditions
(1)-(3) of Proposition 2.1 (e.g., in view of Proposition 2.2(b), we may take
E to be a (DFS)-space with the bounded approximation property and a
total bounded set), and let X =ind,, X,, be an injective (LB)-space. Then

E®.X=ind,(E,®.X,)
holds topologically if one of the following additional conditions is satisfied:

(i) each X, is a Hilbert space;
(ii) X is a w-space (cf. Hollstein [19]); or
(iii) X is a strong (DFG)-space (cf. [12, 2.2]).
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(In fact, it suffices to show that E®, X is a bornological (DF)-space. For (i)
and (ii), apply Proposition 2.1 and Hollstein [19, 3.3]; for (iii), again use
Proposition 2.1 plus [12, 4.10(b)].)

If, moreover, X =ind,, X,, is a compactly regular inductive limit and E or X
has the approximation property, the following topological equalities hold:

EeX =ind,,(EeX,) =ind,(E,eX) =ind, ,(E,eX,,)=ind,(E,eX,).

(By [7, 5.10], these spaces coincide algebraically, have the same bounded
subsets, and induce the same topology on the bounded sets; they are all con-
tinuously embedded into EeX. If F or X has the approximation property,
E®,. X is a dense subspace of EeX; now EeX must be a (DF)-space, and we
get the desired conclusion.)

Finally, we recall that, without any further assumption, the e-product
EeX of two (DFS)-spaces E and X is always again a (DFS)-space (see [6,
4.3]). At this point, we can turn to the consequences of the preceding results
for spaces of holomorphic functions.

2.3. ProrosITION. Let V= (v,),en be an increasing sequence of positive
continuous and radial functions v, on a balanced open set G C CN such that
HYV,y(G) contains the polynomials and

Jor each ne N, there exists m> n such that v, /v,, vanishes at infinity
on G.

Then HV(G) = HVy(G) is a Fréchet Schwartz space and, for each Banach
space X,

(a) (HV,(G), X) has property (BB);
(b) £4(HVp(G), X) =(HVp(G))peX = ind ,((H(v,)o(G))peX) is a borno-
logical (DF)-space.

Proof. By the condition on V, HV(G)= HV,(G) is obviously a Fréchet
Schwartz space, and can be written as the reduced (cf. 1.5(a)) projective
limit proj, H(v,)o(G) whose strong dual coincides with ind, (H(v,)q(G));.
By Theorem 1.5(a), all the generating Banach spaces H(v,)o(G) have the
bounded approximation property. Now (a) and (b) follow from Proposi-
tions 2.2(a) and 2.1 above. Ol

2.4. PROPOSITION. Let V= (v,),n be a decreasing sequence of positive
continuous and radial functions v, on a balanced open set G C C" such that
H(v)o(G) contains the polynomials and

(V) for each neN, there is m> n such that v,,/v, vanishes at infinity
on G.

If V=V(V) denotes the associated system of weights and X is an arbitrary
Banach space, then we have the following topological equalities:

VoH(G, X)="VH(G, X)=HV,(G, X)=HV(G, X).
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Proof. Let X be an arbitrary Banach space. By condition (V), we clearly
have the identity VH(G, X) ="VyH(G, X) and (as VH(G, X)=HV(G,X)
algebraically by [7, p. 125]) also HV(G, X) = HV,(G, X). Moreover, by [1,
Cor. 301,

VoH(G, X) =ind, H(v,)o(G, X) = ind,(H(v,)o(G)eX)

and
HVy(G,X)=HVy(G)eX

is true topologically. By Theorem 1.6(a) and (c), Vo H(G) has the bounded
approximation property and a total bounded set. Thus, we can apply the
second part of Proposition 2.2(b) and [7, Thm. 1.6] to conclude

Vo H(G, X) =ind,(H(v,)o(G)eX) = Vo H(G)e X
= HVp(G)eX = HVy(G, X). O

Under the hypotheses of Proposition 2.4, it follows that VyH(G, X) =
VH(G, X) is a topological subspace of the corresponding space of continu-
ous functions, V,C(G, X) = VC(G, X). Proposition 2.4 provides a (partial)
positive answer to a question raised in [7, pp. 115, 137]. The remarks after
Proposition 2.2 can help to extend 2.4 from Banach spaces X to l.c. spaces
with the countable neighborhood property.

2.5. COROLLARY.
VoH(G, X)=VH(G, X)=HVy(G, X)=HV(G, X)

also holds topologically (and VyH(G,X) is a topological subspace of
Vo C(G, X)) if X is only a l.c. space with the countable neighborhood prop-
erty (and V is as in Proposition 2.4).

Proof. While VH(G, X) =VyH(G, X) is still clear, the algebraic identity of
the spaces VH(G, X) and HV(G, X) now follows from Bonet [9, Thm. 8].
The proof of Proposition 2.4 actually shows that Vy H(G) is an inductive
limit with local partition of unity, and Hollstein [19, 3.2] implies

VoH(G)®, X = ind,,(H(v,)6(G)®. X) (*)

for each l.c. space X with the countable neighborhood property.

At this point, utilizing [7, 1.6] and [1, 30] (and working with the com-
pletion X of X, if necessary), we can easily see that the left side of (+) is a
topological subspace of HVy(G, X). Now, in view of () (and of [1, 30]),
HVy(G, X) and VyH(G, X) must induce the same topology on Vy H(G)R X,
and this space is dense in Vo H(G, X) since all H(v,,)(G) have the approxi-
mation property by Theorem 1.5(a), n=1,2,.... Then [7, 1.2] can serve to
conclude that Vo H(G, X) = HVy(G, X) topologically. O

However, Corollary 2.5 need not imply that, for a bornological (DF)-space
X, the locally convex space Vo H(G, X)= HVy(G, X) must also be borno-
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logical (DF). (In some particular cases, positive answers to such a question
would follow from our remarks after Proposition 2.2.)

3. Tensor Sequences and Vector-Valued Duality

In the beginning of this section, let v be a strictly positive continuous func-
tion on an open set G C C". For the Banach spaces Hvy(G) and Hv(G), the
existence of a sequence (C,), with the properties exhibited in Proposition
1.2(b) and (e), as well as the biduality Hvy(G)” = Hv(G), is related to a lift-
ing problem for vector-valued functions. To discuss this relation, we list the
following conditions:

(1) 0— Hyy(G) - Huv(G) D> Huv(G)/Hvy(G) -0
is a ®-sequence in the sense of Kaballo and Vogt [23];

(2) d®,7: F&®, Hv(G) > FQ (Hv(G)/Hvy(G))
is a (surjective) topological homomorphism for each l.c. space F;

(3) [d®,i: F®, Hvy(G) » F®, Hu(G)
is a topological embedding for each l.c. space F;

(4) 0 F®, Hoo(G) U2 F&_ Hu(G) 8% F& (HV(G)/Huy(G)) — 0
is an exact sequence for each Fréchet space F;

(5) 0 FQ®, Huy(G) 8 F&, Ho(G) &% F& . (Hu(G)/Huo(G)) » 0
is an exact sequence for each Fréchet space F;

(6) 0— (Hv(G)/Hvy(G))' = Hvo(G)li> Hv(G)’i Hyy(G)Y -0
(that is, the dual sequence of (1)) splits; that is, Hvo(G)* is comple-
mented in Hv(G)';

(7) i: Hug(G) — Hu(G) is approximately left invertible; that is, there are
C >0 and (7,), C £(Hv(G), Hvy(G)) with ||T,|| = C for all « such
that (7,,°i)(f) —>f in Hvy(G) for each feHvO(G),

(8) 1d® (): HvO(G)® Hu(G)' ——»HvO(G)® Huvy(G)' is surjective;

(9) Hvy(G)”"= Hv(G) holds topologically.

According to Kaballo and Vogt (see [23, 1.1, 1.5, and 1.8]):

(1) to (6) are all equivalent (actually, (1)< (2) could be considered as the
definition of a Q-sequence), and (7) or (9) = (1)-(6) = (8). Moreover, (8) =
(7) and (9) = (7) are true whenever Hvy(G) has the bounded approximation
property.

(For the last implication, see Kaballo [21, 2.4(iii)]. In [21, 2.8] it is also men-
tioned that, in the presence of (1),

id®. 7: F®, Hv(G) » F& (Hv(G)/Hvy(G))

must be surjective as well for, say, each complete l.c. space F which is a
compactly regular inductive limit ind, 7, of Fréchet spaces F,, with the ap-
proximation property.)

Now, if v is radial on a balanced G C C" and Hvy(G) contains the poly-
nomials, Proposition 1.2(b) and (e) clearly yield (7) (for the sequence (C,),,,



288 K. D. BIERSTEDT, J. BONET, & A. GALBIS

and with C=1) as well as the bounded approximation property of Hvy(G)
(see Theorem 1.5(a)), while (9) follows from Theorem 1.5(d). Hence we ob-
tain the following result.

3.1. ProrosiTioN. If vis a strictly positive continuous and radial function
on a balanced open set G C C" and Hvy(G) contains the polynomials, then
all the conditions (1)-(9) hold.

In this case, a glance at [1, 30] shows that for any complete l.c. space F, we
have the following representations of the complete e-tensor products of (4)
as spaces of holomorphic F-valued functions:

F®, Hvg(G) = Hvy(G,F) and F®,Hv(G)=Hv?(G,F),
and thus we can rewrite the space F ®€(H v(G)/Hvy(G)) in (4) as
Hv?P(X, F)/Hvy(G, F).

More generally, if V is a sequence (v,), of functions as in Proposition 3.1
(so that HV,(G) and HV(G) are Fréchet spaces), then, applying the Mittag-
Leflier technique as indicated in the proof of [21, Thm. 2.9], it is possible to
prove that (4) holds again, which yields the following proposition.

3.2. ProproSITION. If V=(v,),eN IS an increasing sequence of positive
continuous and radial functions on a balanced open set G C C» such that
HYV,(G) contains the polynomials, then

0—- HVy(G) - HV(G) - HV(G)/HVy(G) -0

is a Q-sequence.

Hence, by [23, 1.1 and 1.5], (1) to (5) above (and the remarks after Proposi-
tion 3.1) remain valid in this more general context.

As usual with ®-sequences, the passage to inductive limits presents some
difficulties. It is remarkable that the following result can be proved in full
generality, but our proof is nontrivial.

3.3. PrOPOSITION. Let V=(v,),eNn be a decreasing, regularly decreasing
sequence of positive continuous and radial functions v, on a balanced open
set G C C¥ such that H(v,)o(G) contains the polynomials. Then

0—- VoH(G) —» VH(G) » VH(G)/VyH(G)—0

is a ®-sequence.

Proof. In view of Theorem 1.6(d), V,H(G) is a topological subspace of
VH(G). V regularly decreasing implies that Vo H(G) =ind, H(v,)o(G) and
‘VH(G) =ind, Hv,(G) are boundedly retractive (LB)-spaces. Thus Vy H(G)
is complete, hence a closed subspace of VH(G), and VH(G)/VyH(G) Haus-
dorff. By Hollstein [19, 1.2], it suffices to show that V, H(G)® , X is a topo-
logical subspace of VH(G)®, X for every Banach space X with the bounded
approximation property. To do this, we fix X (with unit ball B) and abbrevi-
ate E£,:= H(v,,)o(G), F,:= Hv,(G), n=1,2,...; the respective unit balls will
be denoted by U, and W,,.
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It is clearly enough to verify that there is M =1 such that for each se-
quence («a,), of positive numbers

A==F([ CJ( s aan)]®B)ﬂ(’VoH(G)®X)

Jj=1\n=1

o
CMI‘([ U( > a,,U,,)]@B)z:MC,
j=1\n=1
where the closure is taken in Vo H(G)®, X.

We first claim that [(S,z)| <1 holds for arbitrary z € 4 and an arbitrary
continuous linear mapping S e £(X, (Vo H(G));) of finite rank which be-
longs to the polar C° of C. In fact, any z € 4 can be written

k P
Z=IE 'Yl( > Olnzz,n)®x1
=] n=1

with k € N and v, € C such that Zf_,|y,|<1, x;e B, p;eN, as well as z; , €
w, U=1,....k; n=1, ..., p7). Put R:=spanfz; ,:1</<k, 1=n<p,} and
N:=8(X). For each ne N and arbitrary ¢ >0, since F, = E, isometrically
(see Theorem 1.5(d)), we may apply the principle of local reflexivity (cf. [24,
II, 5.1]) to get a (14 ¢)-isomorphism 7,,: RNF, — E,, such that

(1) T,lrng,=1d and
(i) (T,(x), ulgy=<x,u|g,) forallxe RNF, and ue N.
By (ii),
Py

X .
yzzlgl 'Yl( 21 anTn(zl,n)>®xl e(l+e)C

n=
now satisfies

k Py k Py
(S, » =IEI 'YI( El ., {T,(2,n)> S(X;))) =121 'Yl( 2! 2 p» S(X,))) ={(S, 2).
= n= = n=
Since S € C°, we conclude [(S, z)|<1+¢, whereby [(S,z)|<1 (as ¢e>0 was
arbitrary). This proves our claim.

Now we can still utilize the bounded approximation property of X: There
are M >0 and a net (¢,) C £(X, X) of finite rank operators with ||¢,|| =M
for all « and ¢, — idy pointwise on X. At this point, if Te £L(X, (Vo H(G))})
is an arbitrary element in C°, putting S, := T ¢, for each «, we see that each
M ™!'S, is a mapping of finite rank in £(X, (VyH(G));) which belongs to
C°, and certainly (7, z) =1im,{S,, z) holds for each z € A. Hence, by our
claim, we obtain (7, z)| < M, and the desired inclusion 4 C MC is proved.

O
It follows from [23, 1.1, 1.3] that

d®.7: FR,VH(G) - F®R. (VH(G)/VyH(G))
is a (surjective) topological homomorphism and
d®,i: F®,VoH(G) - F®,VH(G)

is a topological embedding for each l.c. space F (which can also be expressed
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by exact sequences as in (4) and (5), for arbitrary F, where however, the last
arrow “— 0” must be deleted).
In the first part of this section, we studied when

0 — Hvg(G) - Hv(G) — Hu(G)/Huv,o(G) — 0

is a ®-sequence, and showed that this is always true if v is a radial weight
on a balanced domain G such that Hvy(G) contains the polynomials. For
such weights we now discuss the interesting properties which are equivalent
to the fact that

0 — Hvo(G) = Cvo(G) - Cuy(G)/Hug(G) = 0

is a ®-sequence.

3.4. ProposSITION. For a positive continuous and radial function v on a
balanced open set G C C¥ such that Hvy(G) contains the polynomials, the
Jollowing conditions are equivalent:

(1) 0= Hyg(G) = Cuo(G) = Cvp(G)/Hvg(G) — 0 is a ®-sequence;
(2) (Cvo(G)/Hvp(G)) ®EE = Cvy(G, E)/Hvy(G, E) for each complete
l.c. space E;
(3) Hug(G)' = (Cvo(G)/Hvo(G)) is complemented in Cvy(G)’;
(4) 0—- Hv(G) —» Cv(G) —» Cv(G)/Hv(G) - 0 is a ®-sequence;
(5) Hu(G) is a complemented subspace of Cv(G);
(6) 0— Huv(G) - Il.(v,G)— (v, G)Y/Hv(G)— 0 is a ®-sequence;
(7Y Hv(G) is complemented in | (v, G);
(8) Huvy(G) is a £-space;
(9) Huv(G) is a £-space;
(10) (Hvo(G)', F) has property (BB) for every Fréchet space F;
(11) £,(Hvy(G)', F}) = Hv(G, F}) is a (DF)-space for every Fréchet
space F.

Proof. For the equivalence of the first nine conditions, it suffices to remem-
ber Theorem 1.5(d) and to quote results from Kaballo and Vogt [23]: (1) &
(2) is a consequence of [23, 1.1 and 1.3] (use [1, 13, 30]), (1) & (3) follows from
[23, 1.8, (3)« (4)]. Similarly, since Hv(G)= Hvy(G)” by Theorem 1.5(d)
(and since the dual of each Banach space is complemented in the triple dual),
Huv(G) must be complemented in its bidual; thus we get (4) & (5) and (6) &
(7) from [23, 1.8, relation between (1) and (3)]. Moreover, Cvy(G), Cv(G),
and /(v, G) are £-spaces, whence (1) & (8) and (4) & (9) & (6) by [23,
1.9(1)]. Finally, the equivalence (8) & (9) is clearly implied by the biduality
Huo(G) = Hv(G) (cf. [24, 11, 5.8(ii)]).

It now remains to deal with (10) and (11). If (8) is valid, Hvy(G)' is a £4-
space; thus (10) holds by Taskinen [36, 3.1.3]. On the other hand, (10) = (11)
because then

Lp(Hvo(GY', Ff) = (Hvo(G) @+ F)

for every Fréchet space F. But in view of [14, Cor. 1.3], it follows from (11)
that Hvy(G)’ must be a £;-space; that is, we get (9). Finally, the (canonical)
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topological identity £,(Hvy(G)’, Fp) = Hv(G, Fy) is a special case of Prop-
osition 3.7. 1

Proposition 3.4 should be seen in the light of the work of Shields and Will-
iams [30; 31] and Kaballo [22].

3.5. ExampLes. Take G to be the open unit disk D C C and v to be a func-
tion on D as in Proposition 3.4; that is, v radial with lim,_,; v(r)=0.
(1) v is said to be normal if there exist K > ¢ >0 and ry <1 such that, for

o= (r) (r)
v(r u(r
a—ry 0 2 o
Then Shields and Williams prove in [30, Thm. 1] that Hv(D) is comple-
mented in L, (v, D) and Hvy(D) is complemented in Cvy(D) whenever v is a
normal weight on D. Thus all the equivalent conditions of Proposition 3.4
are certainly satisfied in this case.

Also see [31] for similar results on the corresponding spaces Avo(D) and
hv(D) of harmonic functions on D (which even hold in greater generality)
and for a proof (using a method of Lindenstrauss and Pelczynski) that,
under certain conditions, hvy(D) and hv(D) are topologically isomorphic to
the sequence spaces ¢, and /,, respectively. (In “good cases,” Hvy(D) and
Huv(D) are complemented subspaces of hvy(D) and hv(D), respectively; cf.
[31, p. 263]. An illuminating discussion of related questions can be found in
[32].) On the other hand, the authors of [30] conjecture (in their final section)
that the main results of that paper do not hold for nonnormal weights v.

(2) In fact, Kaballo [22, 1.3(i)] proves that for (nonnormal) radial weights
v on D with

lim v(r)=0 but lim (v(r) log ——1—) = 00,
r—1_ r—1_ l—r

Huy(D) and Hv(D) are not (even) £,-spaces. Hence also conditions (1)-(7)

and (10) and (11) of Proposition 3.4 cannot hold for such weights v; in par-

ticular, there exist Fréchet spaces F such that Hv(D, Fp) = £,(Hvo(D)', Fp)

is not a (DF)-space.

Even in the case of radial weights v on D, it remains open to describe ex-
actly when the equivalent conditions of Proposition 3.4 are satisfied. And as
far as we know, the (important) case G = C has not yet been investigated.
Examples 3.5(1) and (2) give rise to interesting questions in Banach space
theory, as follows.

ProBLEM. If v is a weight on G C C¥ as in Proposition 3.4, find necessary
and sufficient conditions (on v) such that (1)-(11) of 3.4 hold.

In the last part of Section 3 we prove some remarkable isomorphisms be-
tween spaces of vector-valued holomorphic functions and spaces of contin-
uous linear operators, which can be regarded as vector-valued generaliza-
tions of the canonical (bi-) dualities

(HV(GNp)o=HV(G) and (VoH(G))p)i="VH(G).
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3.6. LEMMA. Let V be asystem of nonnegative continuous radial functions
on a balanced open set G C C" such that 1y, is stronger than 7o, HV(G) con-
tains the polynomials, and HV(G) is bornological. Then we have:

(a) The evaluation mapping A: z— 6,, 6,(f) = f(z), belongs to
HV(G, (HVy(G))y) (resp., to the unit ball of Hv(G, Hvy(G)’)
if Vis just a single positive continuous function v on G).

(b) Each ue HVy(G)' has a representation u(f) = jG vfdu for all
Je HVy(G), where v=uv(u) eV and p= p(u) is a bounded Radon
measure on G. Then the following equation holds in (HVy(G))}:

u= S vAdu= S v(z)6, du(z),
G G

and, in the duality {-,-) of HV(G) and HVy(G)’, according to
Theorem 1.5(d) we also get

(g,u)=s vgdy forall ge HV(G).
G

Proof. First note that HVy(G) must be quasibarrelled by Theorem 1.5(d);
thus the strong dual (HV,(G));, is quasicomplete.

(a) Clearly, {v(z)6,: z € G} is equicontinuous on HV,(G) for every veV
(and belongs to the unit ball Hvy(G); of Hvy(G)' if V = {v}). Moreover, since
((HV3())p)p, = HV(G) holds by Theorem 1.5(d), the mapping A is weakly
holomorphic from G into the quasicomplete space (HV,(G));, and hence
must be holomorphic.

(b) The first part is well known (and follows from an application of
the Hahn-Banach and Riesz representation theorems). By (a), the integral
jG vAdy is a well-defined element of (HVy(G));; thus the desired equation

u=§ vAdp
G

follows by evaluating both sides at an arbitrary fe HV,(G). Finally, by |5,
Thm. 6], the canonical biduality ((HV,(G))}); = HV(G) requires that each
u € HVy(G)' has a uniquely determined extension &1 € HV(G)* whose restric-
tion to each bounded subset of HV(G) is 7g-continuous. But é#(g):= f cvegdn
for g e HV(G) clearly defines such an extension # (cf. [8, proof of 1.1]). [

3.7. ProrosiTioN. If V and G are as in Lemma 3.6 and E is a quasicom-
plete l.c. space, we have the topological isomorphism

Lp((HVo(G))p, E) =HV(G, E),
which must even be isometric if V = {v} and E is a Banach space.
Proof. For Te £L(HVy(G))p, E), we consider T-A: z— T(6;). By Lemma

3.6(a), T~A is holomorphic from G into E and, in fact, belongs to HV(G, E)
since
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fu(z)(T=A)(z): 2 € G} ={T(v(2)d,): z € G}

is clearly bounded in E for every ze€ G. Now ¢: T— T-A defines a linear
mapping from £,((HVy(G))}, E) into HV(G, E) which for every continuous
seminorm p on E and every v €V satisfies

sup v(z)p([$(T)1(z)) = sup p(T(v(z)6,)) = sup p(T(u)),

zeC zeG ueUy
T e L((HVy(G))p, E), where U, = { fe HVy(G): sup, ¢ ¥(z)| f(z)|<1}. Thus
¢ is also continuous (and of norm <1 if V= {v} and E is a Banach space).

In the other direction, one has to work a bit harder; fix Fe HV(G, E)

and u € HVy(G)'. There always exists a (uniquely determined) element e =
e(F, u) e E with

e’(e)=(e’~F,u) forall e’eFE’, (*)

where (-, -) again denotes the canonical duality of AV(G) and HV,(G)’ as
in Theorem 1.5(d): Indeed, according to Lemma 3.6(b), # has a representa-
tion u(f) = SG vfdp, fe HVy(G), with some v € V and some bounded Radon
measure g on G; then the integral e= |, vFdpu € E is well defined and satis-
fies () by the last part of Lemma 3.6(b).

Ip:u — e=e(F, u) is linear, and to show that Ir is continuous from
(HVy(G)), into E, we fix an equicontinuous set L C E’. Then A:={e’oF:
e’e L} is bounded in HV(G). But Theorem 1.5(d) yields HV,(G) distinguish-
ed, hence (HV,(G)); barrelled, and it follows that A is equicontinuous on
HVy(G)'. The polar A° of A in (HV,(G))}, is a 0-neighborhood in this space
that satisfies Ir(A°) C L° (where the last polar is taken in E) since e’(Ip(u)) =
(e'oF,u) for all ue HVy(G)' and all e’e E’ (cf. (x)). Now y: F— I defines
a linear mapping of HV(G, E) into £,((HV,(G))}, E) which is continuous
(and even of norm < 1 if V= {v} and E is a Banach space): Since HVy(G) is
quasibarrelled by Theorem 1.5(d), it suffices to fix v € V and an equicontinu-
ous set L C E’. Taking some u € Uy with u(f) = |, ufdu for fe HVy(G) (cf.
Summers [33, Thm. 4.5]) and p(e):=sup,.|e’(e)|, e € E, we can estimate

= sup

e'(g vF dp.)
G e'el

=< sup sup v(z)|(e’°F)(z)|= sup v(z) p(F(2)).
e’el zeG zeG
(Note that by Proposition 1.2(b) and (e), e’-F € HV(G) can always be ap-
proximated uniformly on compact subsets of G by functions f, € HVy(G)
with

p([Y(F)l(u)) = sup

e'el

= sup e’ F, u)|

e‘el

SG v(e'-F)du

sup v(z)| f,(z)| < sup v(z)|(e’F)(z)| for all n,

zeCG zeG

and that the restriction of u to bounded subsets of HV(G) is 7y5-continuous.)
By definition, it is clear that ¢y =idyy (g, gy as for Fe HV(G, E), z € G,
and e’e E’,

e'([(¢=¥)(F))(2)) = e'([¥(F)-Al(z)) =(e’°F, §,) = e'(F(z))-
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But the second part of Lemma 3.6(b) helps to show that also

Yod =id ey Gy, E)-
For Te £L(HVy(G),E) and u= 50 vAdp e HVy(G)’, we get

[(¢o¢)(T)](u)=[¢<T0A)]<u)=gG v(T°A)du=T(S vAdu>=T(u)- O

G

For two quasibarrelled l.c. spaces E and F, restriction of transposed maps
yields a canonical topological isomorphism £,(E, F}) = £,(F, E}) (cf. Die-
rolf [15, 5.10]). Hence, remembering that (HVy(G)); is always barrelled in
the situation of Proposition 3.7, we also have the following.

3.8. CoroLLAarY. HV(G, Fy) = £,(F, HV(G)) holds topologically when-
ever V and G are as in Lemma 3.6 and F is a quasibarrelled l.c. space.

3.9. PROPOSITION. Let V=(v,), be a decreasing sequence of positive con-
tinuous radial functions on a balanced open set G C C such that H( v1)o(G)
contains the polynomials, and let E be a quasicomplete l.c. space which has
the countable neighborhood property or a fundamental sequence of bounded
sets. Then there is a continuous algebraic isomorphism of VH(G, E) onto
LU(VoH(G))p, E).

Proof. First note that by the duality of inductive and projective limits,
(Vo H(G))p = (ind,, H(v,)0(G))p = proj, H(v,)o(G)’

holds topologically. (Clearly, there is a continuous linear and bijective map
from the space (ind, H(v,)¢(G)); onto proj, H(v,)o(G)’, but the map must
even then be a topological isomorphism since the two spaces are Fréchet.)
Next, (H(v,)o(G)’), is a reduced projective sequence because, by Theorems
1.5 and 1.6, the transposed maps

H(v,)o(G)" = Hvp(G) = (Vo H(G))p)i = VH(G)

of (VoH(G)),=proj, H(v,)o(G) = H(v,)o(G)’ are injective, n=1,2,....
Thus, applying Dierolf [15, 5.2 and 2.6], one obtains the desired continuous
algebraic isomorphism of

ind,, £,(H(v,)o(G), E)=ind,, Hv,(G, E)="“VH(G, E)
(see the special case of Proposition 3.7 where V consists of only one weight)
onto
Lp(proj, H(v,)o(G)’', E) = £((Vo H(G))p, E). O
Actually, in the case of Proposition 3.9, the spaces
VH(G,E) and L5((VoH(G)), E)

have the same bounded sets, and VH(G, E) =ind, Hv,(G, E) is a regular
inductive limit (cf., again, [15, 5.2]). If for each n e N there is m > n such
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that v,,/v, vanishes at infinity on G and E has the countable neighborhood
property, then one can see from Corollary 2.5 that the two spaces are also
equal topologically:

Lp((VoH(G))p, E) = £ (Vo H(G))e, E) =V H(G)eE
= HV,(G)eE = HVy(G, E) =V, H(G, E) = VH(G, E).
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NOTE ADDED IN PROOF. Very recently, it was proved in [A. Peris, Topo-
logical tensor products of a Fréchet-Schwartz space and a Banach space,
Studia Math. (to appear)] that a (DFS)-space with local partition of unity
satisfies the compact approximation property (c.a.p.). Then, by construct-
ing a (DFS)-space without c.a.p., Peris solved Taskinen’s question (and the
corresponding problem of Hollstein) mentioned after Proposition 2.1. In
[K.D. Bierstedt, J. Bonet, and A. Peris, Vector-valued holomorphic germs
on Fréchet-Schwartz spaces, Proc. Roy. Irish Acad. (to appear)], Proposi-
tion 2.2(b) was improved as follows:

Let E=ind, E, be a (DFS)-space such that the linking maps are approxi-
mable. Then

EQRQ.X=ind (E,®.X) and EeX=ind,(E,eX)

holds algebraically and topologically for each complete locally convex space
X with the countable neighborhood property.

Finally, for G = D resp. G = C, more information on the problem after
Examples 3.5 can be found in the articles [W. Lusky, On the structure of
Huvy(D) and hvy(D), Math. Nachr. 159 (1992), 279-289], [W. Lusky, On
weighted spaces of harmonic and holomorphic functions (to appear)] resp.
[A. Galbis, Weighted Banach spaces of entire functions, Arch. Math. (Basel)
(to appear)].
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