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It has been an open problem whether a proper holomorphic self-mapping
of a smooth bounded pseudoconvex domain in C" is biholomorphic [B]. In
[A], Alexander showed that each proper holomorphic self-mapping of the
unit ball is an automorphism. This result has been generalized to several
cases; for example, in the case of strictly pseudoconvex domains, it is due to
Pincuk [Pi]. Bedford and Bell [BB] verified the result in the case of smooth
real-analytic pseudoconvex domains. Recently, we have been able to prove
that Alexander’s theorem remains true in the case of smooth pseudoconvex
Reinhardt domains whose Levi determinant vanishes to finite order and in
the case of Reinhardt domains with real-analytic boundary (not necessarily
pseudoconvex) [P1; P2]. We note that all previous results involve a kind
of finite type condition for weakly pseudoconvex boundary points. In this
note, we shall provide a class of domains in which many points of infinite
type may occur and Alexander’s theorem remains valid.

To state our result, we need some basic notation. Let € be a smooth
bounded domain in C? and let » be a smooth defining function of Q defined
in C? such that @ = {r <0} and dr #0 on bQ. Define a function A,: C2— R
by

0 r; ry
A=—det| r, ry; rzp |»
Tw Tzw Tww
which we call the Levi determinant. Note that if Q is pseudoconvex then
A, (2)=0 for z € b2 and that the set W(bQ) ={z € bQ; A(z) =0} is precisely
that of all weakly pseudoconvex boundary points of Q. We will study pseudo-
convex Hartogs domains in C? which admit a defining function of the form

r(z, w)=|wl+6(2),
where ¢(z) is a real-valued smooth function on C, so that
Q={(z,w) e C%; |w|*+¢(z) <0}.

Let £E={(z,0)}NQ. E is called the base domain of the Hartogs domain
Q. We see that E = {(z,0) € C?; ¢(z) <0}.

Received April 19, 1991. Revision received March 29, 1993.
Michigan Math. J. 40 (1993).



212 X1A0JUN HuaNG & YIFEI PAN

Since r = |w|*+ ¢(z), it follows that the Levi determinant of @ becomes
A= |¢z|2 — ¢z

and is defined on E. Therefore the structure of W(b) is the Cartesian prod-
uct of E, with a circle, where Ey={(z,0) € E; A,(z) =0}. In this paper we
prove the following theorem. '

THEOREM. Let Q= {|w|*+¢(z) <0} be a smooth bounded pseudoconvex
Hartogs domain in C? with ¢(z) a smooth function. Suppose that E, has
no interior limit points in E and that for each point (z4,wo) in W(bQ),
either the Levi determinant of Q vanishes to finite order or 3*¢(z,)/8z* =0
Jor all integers k > 0. Then each proper holomorphic self-mapping of Q is
biholomorphic.

REMARK. That 8%¢(z4)/9z% = 0 for all k implies that the Levi determinant
at (zg, wp) vanishes to infinite order and therefore the point (zg, wg) is of
infinite type. On the other hand, we note that the theorem contains a result
in [P1] as a special case.

ExampPLE. Let D be the convex domain

[(Z, w): [w|*+2 exp[—#} < 1}.
Then each proper holomorphic self-mapping of D is biholomorphic by the
preceding theorem.

This paper is based on a recent result, due to Boas and Straube [BS], which
concludes that each smooth complete Hartogs domain in C? satisfies the
condition R in the sense of Bell. As a consequence, proper holomorphic
self-mappings of such domains are smooth up to the boundary. In order to
prove that a self-map f of a smooth bounded domain is biholomorphic, it
suffices (by a result of Pincuk [Pi]) to show that f is unbranched, that is, that
det[ f']1# 0 in Q. We introduce the branch locus of a proper map f: Q2 —-Q
as Vy={ze€Q: det[ /'] =0}, a complex analytic variety of codimension 1. By
the proper mapping theorem, f(V}) is an analytic variety in {2 and f induces
a proper mapping f: V;— f(V;). We need the following fact from [P1].

LEMMA 1. The branch locus V; of a proper holomorphic mapping is a C*
manifold with boundary near most points of 17}0 bQ.

LEMMA 2. Thedomain Q = {|w|2 + ¢(z) < 0} is strictly pseudoconvex at the
boundary points where w=0.

Proof. Let r=|w|?>+¢(z). The smoothness gives that dr = (dr/dz, dr/dw) =
(¢,(z), w) #0 on Q. In particular, ¢,(z) # 0 when w=0 and z € b{2. On the
other hand, the Levi determinant is A =|¢,(z)|*+|w|*¢,;(z), which proves
Lemma 2. 0
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LeMMA 3. Let f: Q— Q be a proper mapping, where ( is as in the theorem.
If fis branched then there exist finitely many points z, ..., 2, € Ey such that,
for all iterations f* of f,

Ve Utz wiiNg

i=1

Proof. Let V be an irreducible component of V;. We first show that there
exists a point z, € E such that V'={(z,, w)}NQ. Assuming otherwise, it fol-
lows from Lemma 1 that ¥ NQ must be a smooth curve near a boundary
point so that the projection of the curve to the base domain £ of Q has 1-
dimensional positive measure. This is a contradiction, since the projection
of that curve must lie in E, which is assumed to not have any interior limit
points. Here we have used the fact that boundary points where a proper map
is branched must be weakly pseudoconvex; this follows from the identity

Ar.s(z)=|det[f'1A(f(2)),

where ro f is still a defining function for by an argument of Fornaess [F].
Thus V; is of the form QN (E; X C), where E| is a subset of E,. But since E
is assumed to be discrete in E and Lemma 2 shows that Ej is relatively com-
pact in E, E, itself must be finite. The same argument handles V;«, so the
proof of Lemma 3 is complete. O

Now we are in a position to prove the theorem.

Proof of Theorem. Let F=(f, g) be a proper holomorphic self-mapping of
€. If we assume the assertion of the theorem is false so the branch locus Vg
is not empty, then it follows from Lemma 3 that there exist finitely many
points zy, ..., Z, in E; such that

n
Ver C 2 {(zi, w)INQ
i=1

for all k. Iterating F, if necessary, we may assume that F maps V to it-
self, where V'={(zo, w)} N Q C ¥} for some z, € Ey. So we may conclude that
J(z9, W) =2z( and that g(z,, w) is a proper self-map of V. We may also as-
sume ¢(zp) = —1 so that V'={(zy, w), |w| <1}, the unit disk, and g(zg, w)
becomes a Blaschke product. In order to arrive at a contradiction, we shall
consider the vanishing order of ¢ at z,. If the Levi determinani A vanishes
to at most finite order at z,, then we have a contradiction from Lemma 2.2
in {P1]. Hence it remains to consider the case when ¢ vanishes to infinite
order with respect to the z derivative at z,. Under this condition, we claim
that g is independent of the variable z. Indeed, consider the complex tangent
vector

— w9 g9
L= a d>(z)

The properness of F gives
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gg+o(f, f)=0. (1)
Taking L of each side of (1), it follows that
w(g.8+¢'(f)f)—¢'(2)(gw&+ o' () f,)=0. (2

Letting z =z, and using f(zq, w) =2 and ¢’(z,) =0, it is easily seen from
(2) that g,(z¢, w) =0. Taking L of each side of (2), it follows that

w2 (gPg+ ¢ (/) f)*+ ' (F) fe2)
—w{o"(2)[gn &+ o' (/) Sl + o' () egng+ ' () vl —¢'(2) A, =0,

where A is the left side of (2). Letting z =z, and using ¢'(z¢) = ¢”(z¢) =0,
we have g{¥(zo, w) = 0. Now it is clear that after taking L successively, we
may conclude that g vanishes to infinite order at z,, and therefore g is inde-
pendent of the variable z by the uniqueness of holomorphic functions.
Note that det[ '] = f, g, —f,&;= /. & and that f,(z,, w) =0, since g is
independent of z and det[F’] vanishes on V. Since V consists of only vari-
eties parallel to the w-axis, we see that g,, # 0, from which it follows that
gw)=e® "2
1—aw
where |a| < 1. Now we assume z,=0 and ¢(0)=—1. Consider F?>=FoF=
(f2(z, w), g2(w)). It is easy to verify that
aku
azk
using the fact that f(0, w) = f,(0, w)=0.
Hence, without loss of generality, we may assume that

ak
Fzé(z, W)|z=0=0 for k=0,1,2,3.

(2, W)|;—0=0 for k=0,1,2,3,

From this and the fact that f(z, w) is smooth on @ and holomorphic on Q, it
easily follows that there is a constant 0 < § < 1 such that for |z]<é and w € A,

| f(z, w)| <|z)%
CLamM 1. There exists a point (zg, wg) in bQ such that |z4| <& and wye A.

Proof of Claim 1. Seeking a contradiction, we suppose not. Then we have
¢(z) =< —1 for |z| < §; otherwise, if ¢(zy) > —1 for some z, and ¢(0) = —1,
by the mean-value theorem there is an « in (0, 1) with ¢(azg) in (—1, 0) and
then (azg, V—¢(azp)) is in HQ. Let A(z) = —In(—¢(z)). Then A is subhar-
monic, since

PA@) __ @@ —lo _
8292 $%(2) -

by the pseudoconvexity of (. We notice A has a maximal value at 0; by the
maximum principle, A(z) = —1 for |z|<é. This means that »Q contains a
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piece of Levi flat hypersurface, which is impossible by our assumption. So
Claim 1 is proved. O

Now, let F" = (f,(z, w), g"(w)) be the nth iteration of F, and let (zq, wo) be
a point as in Claim 1. We then have

| f1(20, Wo)| < |z0|* < 8%;

| f2(z0s Wo)| = | S(f1(z0> Wo)s 81(Wo))| < | f1(z0, Wo)|* < IZo|22 <87,

and, in general, for all n,

| £1(20, Wo)| = F(Sr=1(20s Wo), 8n—1(Wo))| < |20[*" < 67"

On the other hand, by the properness of F”, it follows that

b (fu(20, Wo)) +|8™(Wo)|* =0.
Hence

|1+ & (fu(20s wo))| =1—|g"(wo)|>.
Noting that

|1+ (Sf(z0> Wol)| = C| fu(z0> Wo)| = C6*°
for some constant C, we obtain for some positive constant C
%"= C(1—|g"(wo)]").

But this contradicts the following claim.

CLamM 2. For some positive constant C and 0< b <1,
(1—|g"(wo)|>) = Cb".

Proof of Claim 2. Using the basic properties of iteration of linear fractional
transformations, we can argue as follows. If g is elliptic then all orbits of
interior points are bounded away from the unit circle, so there is nothing to
prove. If g is hyperbolic then g has both fixed points on the unit circle; pick-
ing a linear fractional transformation ¢ mapping these points to 0 and o we
have g"=¢ lod"-¢, where d is a dilation map z — Az with A a positive real
number. If g is parabolic then the unique fixed point again lies on the unit
circle and we have a similar formula g” = ¢ ~lot".¢, where ¢ is the transla-
tion z — z+1. In both of these cases the desired estimate follows from the
explicit formula. The loxodromic case does not occur for automorphisms
of the disk. This completes the proof of the claim. From all of the above,
the proof of the theorem is complete. O

We make the following observation concerning the argument presented in
this note. The key idea in proving that the branch locus of a proper self-
map is empty is to show that the map has an invariant piece of branch locus
if the branch locus is not empty. In the proof we made use of the compact-
ness property of an analytic variety in the sense that a variety of a domain
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intersects any compact subset of the domain in only finitely many compo-
nents of the variety. Now for n=1let us consider a proper holomorphic self-
map of a bounded domain Q in C”, f: Q — Q. Consider its iterations and the
union of the critical points of iterations, that is,

V=\J V.
k=1
In general, a union of varieties such as ¥ may not be a variety. Our question
is whether ¥ has the compactness property mentioned above. Certainly V
would have such a property if we could prove that V is actually a variety. To
this end let us look at a simple example in the unit disk D={z e C; |z| < 1}.

ExamPLE. Let f(z)=2z2% Then f¥= z%" and Vre=1{0}, V' ={0}. Therefore V
has the compactness property.
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