An Example Concerning the Bass Conjecture

P. A. LINNELL

In this paper an example is given of a 2-generator group G of cohomological dimension 2 which contains a subgroup $A \cong \mathbb{Q}$ such that $A \setminus 1$ is contained in a single conjugacy class of G. This answers a question of Schafer which arose when studying the Bass conjecture.

Let R be a commutative ring with a 1 and let G be a group. If P is a finitely generated projective RG-module then there is a map $r_P \colon G \to R$, called the rank of P, which is constant on the conjugacy classes of G (i.e., $r_P(xy) = r_P(yx)$) for all $x, y \in G$). This map can be considered as an extension of the usual trace map from square matrices over RG to RG. The precise definition of r_P , which is not required for this paper, is given in [1] (see also [6, p. 95]). If F is a finitely generated free RG-module then $r_F(x) = 0$ for all $x \in G \setminus 1$, and if Q is a finitely generated projective RG-module then $r_{P \oplus Q} = r_P + r_Q$. Let Z, Q, and C denote (resp.) the integer, rational, and complex numbers. One form of the strong Bass conjecture [1, (4.5)] is the following.

Conjecture 1. Let P be a finitely generated projective RG-module, and let $1 \neq x \in G$. If R is a subring of C such that $R \cap Q = \mathbb{Z}$, then $r_P(x) = 0$.

Let \mathbb{Q}^+ denote the additive group of \mathbb{Q} . We define an element $x \in G$ to be an exceptional element if $x \neq 1$ and there exist subgroups C and H of G such that $x \in C \subseteq H$, $C \cong \mathbb{Q}^+$, H is finitely generated, and the elements of C lie in finitely many H-conjugacy classes. The following related result is contained in a personal communication from J. A. Moody to the author; it extends [6, Lemma 4.1] and [7, Cor. 1].

THEOREM 2. Let P be a finitely generated projective RG-module, and let x be a nonexceptional element of $G\setminus 1$. If R is a subring of C such that $R\cap Q=Z$, then $r_P(x)=0$.

The following question was posed in [7, p. 108].

QUESTION 3. If G is a finitely generated group containing a subgroup $A \cong \mathbb{Q}^+$ such that A is contained in only finitely many conjugacy classes of G, must G be of infinite cohomological dimension?

If the answer to Question 3 were "yes", then it would be clear from Theorem 2 that the strong Bass conjecture would be true for all groups G of finite cohomological dimension. However, we shall show that the answer to Question 3 is "no".

Example 4. There is a 2-generator group G of cohomological dimension 2 containing a subgroup $A \cong \mathbb{Q}^+$ such that $A \setminus 1$ is contained in a single conjugacy class of G.

Proof. We shall use the notation $\langle s_1, s_2, s_3, ... \rangle$ for the subgroup generated by elements $s_1, s_2, s_3, ...$ of a group. Let $B = \langle b_1 \rangle = \mathbb{Z}$, and for $2 \le i \in \mathbb{Z}$ define $\sigma_i \colon \mathbb{Z} \to \mathbb{Z}$ to be multiplication by i and define $C_i = B *_{B, \sigma_i}$, an HNN extension with stable letter x_i (see [2, p. 30]). Thus $C_i = \langle b_1, x_i \rangle$ and $x_i b x_i^{-1} = b^i$ for all $b \in B$. Also define $\sigma_1 \colon \mathbb{Z} \to \mathbb{Z}$ to be multiplication by -1 and $C_1 = B *_{B, \sigma_1}$, an HNN extension with stable letter x_1 . Thus $C_1 = \langle b_1, x_1 \rangle$ and $x_1 b x_1^{-1} = b^{-1}$ for all $b \in B$. Let $H = C_1 *_B C_2 *_B C_3 * \cdots$, an infinite free product with amalgamation (this construction was pointed out to me by Peter Kropholler).

By Theorem 2 of [3], each C_i has cohomological dimension 2. Now H is the fundamental group of a graph of groups in which the vertex groups have cohomological dimension 2 and the edge groups have cohomological dimension 1. Therefore another application of Theorem 2 of [3] shows that H has cohomological dimension 2.

For $n \ge 2$, define $b_n = x_2^{-1}x_3^{-1} \cdots x_n^{-1}b_1x_n \cdots x_3x_2$. Then $b_n^n = b_{n-1}$ for all $n \ge 2$, so if $A = \langle b_1, b_2, b_3, \ldots \rangle$ then $A \cong \mathbb{Q}^+$ and the elements of $A \setminus 1$ lie in a single conjugacy class.

Let F be the nonabelian free group on two generators, and let K = H * F. We now employ the standard technique of embedding a countable group in a 2-generator group; one good reference for this is Theorem 36 in [4, p. 43], which shows that there is an HNN extension $G = K *_E$ where E is a free subgroup of K such that G is 2-generated. Now G has cohomological dimension 2 by Theorem 2 of [3], so we have the required example.

REMARK. Although one cannot verify the strong Bass conjecture for the group G of Example 4 by using the techniques of [6; 7], one can verify it by the techniques of cyclic homology. In fact, the following is an immediate consequence of [5].

THEOREM 5. Let G be the group of Example 4 and let P be a finitely generated projective CG-module. If $1 \neq x \in G$ then $r_P(x) = 0$.

All that needs to be done is to note that the last line of [5, Thm. 2.5] can be modified to " $H_i(G/\langle x \rangle; \mathbb{C}) = 0$ for $i \geq 2$ ", and then [5, Thm. 3.3] for the class of groups (d) applies if P is a finitely generated projective $\mathbb{C}G$ -module.

References

[1] H. Bass, *Traces and Euler characteristics*, Homological group theory (C.T.C. Wall, ed.), London Math. Soc. Lecture Note Ser., 36, pp. 1–26, Cambridge Univ. Press, Cambridge, 1979.

- [2] R. Bieri, *Homological dimension of discrete groups*, Queen Mary College Math. Notes, Queen Mary College, London, 1976.
- [3] I. M. Chiswell, *Exact sequences associated with a graph of groups*, J. Pure Appl. Algebra 8 (1976), 63–74.
- [4] D. E. Cohen, Combinatorial group theory: a topological approach, London Math. Soc. Stud. Texts, 14, Cambridge Univ. Press, Cambridge, 1989.
- [5] B. Eckmann, Cyclic homology of groups and the Bass conjecture, Comment. Math. Helv. 61 (1986), 193-202.
- [6] P. A. Linnell, Decomposition of augmentation ideals and relation modules, Proc. London Math. Soc. (3) 47 (1983), 83–127.
- [7] J. A. Schafer, *Traces and the Bass conjecture*, Michigan Math. J. 38 (1991), 103–109.

Department of Mathematics Virginia Polytechnic Institute and State University Blacksburg, VA 24061-0123