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1. Introduction

The main purpose of this note is to provide an improvement of Vinogradov’s
mean value theorem which may be of use in multiplicative number theory.
Let J; x(P) denote the number of solutions of the simultaneous diophantine
equations
S - -
(1) 2(x/-y)=0 (1=j=<k)
i=1

with 1 < Xx;, y; <P for 1 =i <s. On writing

) fa;0)= 3 elayx+azx?+--+ax"),
x=Q
in which e(«) denotes e2™**, we observe that
3) JoPy=\ _|f(a; P)*da,
T

where T* denotes the k-dimensional unit cube and = (o, .oy 0). Esti-
mates for the mean value (3) were first investigated by Vinogradov, and are
now known collectively as Vinogradov’s mean value theorem. These esti-
mates have found varied uses in both additive and multiplicative number
theory.

Modern bounds for J; ,(P) take the form

) T, k(P) < D(k, r) P2 =3kt DEntn ) (p e N),
where D(k, r) is independent of P, and
(5) n(r, k) =Lk2(1-1/k)".

The most general bound currently in the literature appears to be due to
Stechkin [5], who showed that when £ =2 the bound (4) holds with (5) for
each PeR" and r e N, with

(6) D(k, ry=exp(C min{r, k}k?log k)

and C an absolute constant. The explicit nature of the constant (6) is of im-
portance when it comes to obtaining zero-free regions for the Riemann zeta
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function (see, for example, Walfisz [8]). It has since been shown that the
permissible choice for 5(r, k) may be reduced provided that we are willing
to accept a larger value for D(k, r) (Turina [6] has obtained improvements
effective for small r, and Wooley [9] for a large range of r).

In this note we will reduce the permissible size of D(k, r) for a range of P
of use in estimating the zero-free region for the Riemann zeta function.

THEOREM. Let k and r be integers with k=2 and 1<r<k?. Then there
exist absolute constants C, and C, such that for each

(7) P=exp(Ck(1—-1/k)""logk),
we have the bound (4) with (5), where
(8) D(k,ry=exp(Cyrklogk).

In some limited sense, the expression for D(k, r) is close to the best which
one might hope to achieve. For by considering diagonal solutions of (1)
and permutations thereof, we have for each P = (rk)? that ok, kK (P) >
(rk)'[P1™* >> D*(k,r)P", with D*(k,r) = exp(rklogk). So D(k,r) is a
fixed power of D*(k, r). Unfortunately, of course, our theorem contains a
condition on the size of P.

We note that in applications to the zero-free region of the Riemann zeta
function, estimates of the above form are of importance with r < C; k (with
C; some absolute constant). In such circumstances, for some absolute con-
stants A and B, we may replace (7) by P = k“¥ and (8) by D(k, r) = k5%,

The new ingredient in our proof is very simple, and has also been used
by the author in previous work on Vinogradov’s mean value theorem (see
Wooley [9]). Put in the simplest terms, we note only that if d>n=0 and
d | n then n=0. This enables us to show that a diophantine equation having
some singularity in sufficiently many p-adic fields must also have a singu-
larity in the real field. It is this transition from local to global singularities
which appears to provide such an effective handle on such problems. The
skeleton of the proof is otherwise based on Section 5.1 of Vaughan [7].

The author thanks Professors A. Ghosh, D. A. Goldston, and R. C.
Vaughan for useful comments. This work was supported in part by a Sci-
ence and Engineering Research Council Research Studentship, and com-
pleted while the author was in receipt of NSF grant number DMS-8610730.

2. Proof of the Theorem

We shall require two preliminary lemmata. The first is a well-known lemma
on congruences (see Linnik [4, Lemma 1]), a very short proof of which may
be found in Vaughan [7, Lemma 5.1].

LEMMA 1. Suppose that p is a prime number with p> k. Let S denote the
number of solutions of the simultaneous congruences
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k . .
2 x/=h; (mod p’) (1=<j=<k)

r=1

with x, < p* and the x, distinct (mod p). Then S< k!p**-b/2,

The second lemma we require is a result on the density of prime numbers in
short intervals.

LeEMMA 2. There exist positive real numbers R and ¢ = c(R) such that if
0>1—1/R>0 and x= x(0), then
cy

9) T(X)—7w(x—y)> Tog x

for x®< y < x/2. (Here w(x) denotes the number of primes less than or
equal to x.)

A result of this form was first proved by Hoheisel [2], who showed that R =
33000 is permissible. A key ingredient of the proof is Littlewood’s zero-
free region for the Riemann zeta function. Stronger results are now known
(an interesting survey on results of this type is given in Heath-Brown [1]).
We note that by assuming no more than the prime number theorem (taking
60 =1), it is a simple matter to modify the proof we give so as to obtain the
theorem with D(k, r)=exp(C,rk?logk), unconditionally with respect to
P. This in itself is a simplification of the arguments of Karatsuba [3] and
Stechkin [5], in particular making the treatment of singular solutions almost
trivial.

We prove the theorem by induction on r. First note that by using Newton’s
formulae on the roots of polynomials, we have Ji ,(X)<k!X k for each
X eR. Thus the theorem follows in the case r =1. Next we take R=2 and
¢ to be real numbers for which (9) holds. Then we may take D=1 to be
an absolute constant so large that whenever x> D we have cx>4Rlog2x
and w(x+x!"VYRy —x(x) > cx!7®/log 2x. We assume that k>1, r>1, and
write s =rk.

Suppose that the theorem holds for each r’'<r, and that X = X, with
Xo=exp(4Rk(1—1/k)" log Dk). Write M = X V¥, and let ® denote the set
consisting of the k3 smallest primes exceeding M. Then by our choice of D
we have

D 4
c(Dk) > k3,
4R log(2Dk)

a(M+M'""VRy _ (M) >

and so each prime p € @ satisfies
(10) M<p<M+M'"VR

Let R,(h) denote the number of solutions of the simultaneous equations

(11) S xi=h (1=j=<k)
r=1
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with 0 < x, = X and with xi, ..., x; distinct, and let R,(h) denote the corre-
sponding number of solutions with x, ..., x; not distinct. Then

I, k(X)) = %(Rl(h) +R,(h))? < 2(51+5,),

where S; =3, R;(h)? (i=1, 2).
We divide into two cases.

(a) Suppose that S, =S;: Then we have J; (X)=<4S,. Now R,(h) is at
most ( § ) times the number of solutions of the simultaneous equations (11)
with x; = x,. By considering the underlying diophantine equations, we there-
fore have

Sp=kt| | flas X0 4203 X)? da

Then by Hoélder’s inequality,

1-2/s /s
S2= k4(STk|f(g;X)|25dg) (ST,J fQa; X dg> < k*(J, (X)),

and the result now follows in the first case.

(b) Suppose that S; = S,: Then we have J; ;(X)=<4S5,. For a solution x
counted by Ry(h), let 9=TIT; < - j<x(X;—X;). Then we have 0 <|9| < X *k=/2,
On noting (10) we find that the number, N*, of prime divisors p e ® of Jis at
most Lk?(k—1). Then card(®) > N*, and hence there is a pe® with p /9,
so that xi, ..., x; are distinct (mod p). Then Ry(h) <Y ,.s R3(h, p), where
R;(h, p) denotes the number of solutions of the equations (11) with 0 < x, <
X and with x, ..., x; distinct (mod p). (The riglit-hand side of this last in-
equality counts too many solutions, but does not explicitly depend on a fixed
prime p.)

Let I;,(p) ==y, Rs(h, p)% Then I;(p) is the number of solutions of the si-
multaneous equations (1) with 0 < x,, y, < X, with x,, ..., x; distinct (mod p),
and likewise y, ..., ¥x. Further, in this case we have

(12) Js. 1(X) = 4(card ®)* max I (p).
pe®
For a fixed prime p, let
fla, )= ¥ elygx+--+opx®),
O0<x=<X
x=y (mod p)

and let @ denote the set of k-tuples a=(ay,...,a;) with 0<a, < p and the
a, distinct. Then by considering the underlying diophantine equations, we

have
2s—-2k

2
E f(Q"al) ”'f(gsak) dg~

ae®

> fla,x)

O0<x<p

np=|_,

By Holder’s inequality, we deduce that
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2s5—2k
=p MY S,

O0<x<p

2 Sfla,x)

O=x<p

and hence I;(p) < p*~**maxg< <, I,(x, p), where I,(x, p) denotes the

number of solutions of the simultaneous equations

s—k

) (py,+x) —(pz,+x))) (1=j<k)

k . .
> (m/—nf)=
i=1 1

with 0<m;, n; < X, —x/p<y,,z, <(X—x)/p, the m; distinct (mod p) and
likewise the n;. An application of the binomial theorem shows that I,(x, p)
is the number of solutions of the simultaneous equations

k . . S—k . . . .
(13) 2 ((mi—xy —(n;=x))= % p/(y/-z/) (=j=<k)
i=1 =

r=1

under the same conditions.
We have p¥> X and p >k, so by applying Lemma 1 to the congruences
implicit in (13) we have

L(x, p) < X*Kk\ p** =D max J._ . (X/p, —x/p, h),
h

where J; (X, Y, h) denotes the number of solutions to the simultaneous
equations

s - .
2(x}=y)y=h (=sj<k)
i=1

with Y < Xx;, y; <Y+ X (1 <i <s). But by appealing to the integral represen-
tation of the form (3) and using the binomial theorem, we deduce that
Js—w, 1k(X/p, —x/p, h) = Js_ (1+ X/p), and hence that

(14) L(x, p)< X*ktp*k=Dg _ . (14 X/p).
Then by (10), (12), and (14) we have
Js (X)) < 4Kk M + M VR 2s+3kk=S xk g (1+X/M).
On recalling our choice of X|, we have
(14 M ~VRY2Zs+3k(k=5)(] 4 M/ X)25 < (1+(Dk) 38 < exp(8D ).
Then, on the inductive hypothesis, we have
J5, k(X)) = D'D(k, r—1) exp(6log k+ k log k) X 2¥— sktk+D+n(n k)

where D’ is a sufficiently large (but fixed) absolute constant. The inductive
hypothesis then follows with r replacing r—1, on using the definition of
D(k,r).

This completes the proof of the theorem. C
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