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Introduction

Let M be an n-dimensional compact smooth manifold. Jacobowitz [3] proved
that if y: M — R"*¥ (k< n—1) is a smooth immersion with ¥(M) contained
in a closed ball of radius A\, then the sectional curvature of M with re-
spect to the induced metric satisfies sup K =\~2. Coghlan and Itokawa [1]
proved a pinching theorem for sectional curvature of a compact hypersur-
face y: M — R"*!. They proved that if ¥/(M) is contained in a closed ball of
radius N\ and the sectional curvature satisfies sup K = \2, then (M) is the
boundary of the closed ball.

The purpose of the present paper is to consider the pinching of the Ricci
curvature for the hypersurface y: M — R"*!. In the case of the standard
embedding ¥: S"(c) —» R"*! of the sphere S*(c), for each unit vector field
X on S"(c) we have ||y Ric(X, X) =n—1, where Ric is the Ricci tensor
of S”(c). Suppose that ¥ : M — R"*! is an arbitrary compact connected im-
mersed hypersurface such that ||y/||? Ric(X, X) = n—1 for all unit vector fields
X on M. We consider the question: Must Y (M) be a Euclidean sphere?

In the present paper we answer this question in the affirmative for n=3.
In fact, we prove the following theorem.

THEOREM. Let: M — R* be an orientable, compact and connected hyper-
surface. If 0 <|y|]*Ric(X, X) <2 for each unit vector field X on M, then
V(M) is a Euclidean sphere in R*.

Preliminaries

Let ¢, ) be the inner product on R* and let V be the Euclidean connection on
R*. We denote by J;, J,, and J; the complex structures on R* which define
the quaternion structure on R*. Then we have

(L) NSy=—0Ji=T;, Lhi=—0D=J,, J3Ji=—-JiJ3=Jy;
(1.2) V=0, <J,Jy=(,) i=1,2,3.
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Let y: M — R* be an orientable hypersurface of R*, and let N be a unit
normal vector field globally defined on M. Let g and V be the induced metric
and the Riemannian connection on M, respectively. Then we have

(1.3)  VyY=VyY+g(AX,Y)N, VyN=—AX, X,YeX(M),

where A is the shape operator of M and (M) is the Lie algebra of vector
fields on M.

Define the unit vector fields &, &,,&3 on M by J;¢;=N, i=1,2,3. Also
define three (1, 1) tensor fields ¢; on M by setting J;. X =¢; X +9;(X)N, i =
1,2,3, XeX(M), where the 1-forms »; are respective duals of ;. It can be
verified that ¢;, &;, n; satisfy

(1.4) ¢f=—I+n®%, ¢:£=0, n°¢;=0,

(1.5) g(¢:X,¢;Y)=¢8(X,Y)—n(X)n(Y), X, YeX(M), i=1,2,3.
Now, using (1.2) and (1.3), it is easy to obtain

(1.6) Vxéi=9;AX, XeX(M).

For a local unit vector field e on M satisfying g(e, &£;) =0 for a fixed i,
{e, p;e, &} is a local orthonormal frame on M; such a frame will be referred
to as an adapted frame. From the first equation in (1.6), using an adapted
frame, we get divé; =0, i=1,2, 3.

Using ¢ as the position vector field in R* of the hypersurface, we define
a smooth function p on M by p=<{¢, N), which is commonly known as
the support function of the hypersurface. Using the complex structures J;,
we define three smooth functions p; on M by p; ={J; ¥, N). Also define three
vector fields ¢; € X (M) by setting J; ¥ =¢; + p;N. Then, using (1.2), (1.3), and
V¢ =1in J;y =t;+ p; N, we obtain

1.7y Vxt;=¢;X+p;AX, dp(X)=—g(AX, t;))+7:(X), XeX(M).
We also have

(1.8) g(t;, §) =i, E=—, it ==, N)=—p.

Proof of the Theorem

Using the equations in (1.7), we compute the Hessian of the function p; as

H,(X,Y)=—g((VxA)(Y), ;) —g(AX, ¢;Y)

1.9
(1.9) ~8(AY, $;X) - p;g(AX, AY).

From the definition of mean curvature « and the Codazzi equation for the
hypersurface M in R*, we have

3
(1.10) 3X.a= 3 g((Ve,A)e), X), XeX(M),
i=1
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where {e;, e,, e;} is a local orthonormal frame on M. Thus, using the adapted
frame {e, ¢;e, £;} and equation (1.10) in (1.9) to compute the Laplacian of p;,
we get

(1.11) Ap;=—3t;.a0—p; tr. A%,

From (1.7) we find div ¢; = 3p; ¢ and consequently div a#; = ¢;.a + 3p,-a2. Thus
equation (1.11) takes the form

(112) Api=piS—3diVO£ti,

where S =9a2—tr. A2 is the scalar curvature of M.
Next we use the second equation in (1.7) to find div(p;«t;) and grad p; as

div(p;at;) = at;.p;+ p; div(at;)
= —ag(At;, ;) +ag(t;, &)+ p; div(at;);
(1.14) grad p; = —At;+ ;.
Using (1.12), (1.13), and (1.14) in Ap? =2p;Ap;+2||grad p;|*, we obtain
Ap?=2p}S—6ag(At;, 1;)+6ag(l;, £;)—6div(p;at;)
+2[| At - 4g(At;, £)+2,
which in light of (1.7) and (1.8) can be rearranged as
Ap?=2p2S—2Ric(t;, t;) —6ap+4(dp;(£;)—1)+2—6div(p;at;).

Since £; is divergence-free (cf. preliminaries), we have

div(p;&;) =&;.pi+ p; div ;= dp;(;).

(1.13)

Thus we have
Apiz = 2p12S—2 RiC(ti, ti) '—6(1 + pOé) +4+4d1V(p,E,) —6diV(p,‘Olti)-

Integrating this equation over M and using Minkowski’s formula (cf. [2]),
we get

(1.15) SM{p,-ZS—Ric(ti, £)+2)dv=0, i=1,2,3.

Define the unit vector fields 7; by #;=||¢]||Z;. Then, using ||[¢|>=|J;¢|*=
£l + o7 in (1.15), we have

|, [03(S+Ric(is, i)+ 2~ ||| Ric(h, £y dv=0.

From the hypothesis of the theorem it follows that the Ricci curvature is
nonnegative and so is the scalar curvature S, and thus from the above inte-
gral we get

pA(S+Ric(f,#))=0 and |¢|*Ric(#, ;) =2.

The second equation gives Ric(7;, ;) >0, and thus from the first equation
we have p; =0, i =1, 2, 3. Now, using p; =0 in the second equation in (1.7),
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we get At; = £;. Since the £; are globally defined unit vector fields on M and
A is a linear operator, it follows that the #; are nowhere zero on M and thus
the 7; are defined everywhere on M. From (1.1) and (1.2), it can be easily
deduced that {7;, 75, 5} is an orthonormal frame on M. Then equation (1.11)
together with p; =0 ensures that « is a constant.

Our next aim is to show that the support function p is nowhere zero on M.
For this, from ||¢|]*Ric(#;, #;) =2 we observe that Ric(¢;,#;)>0 and con-
sequently, as At; = £, 3ag(At,, t;) —||At;||* = —3ap —1> 0. This proves p is
nowhere zero on M.

We write ¢ =7+ pN for some f €e L(M). Then it is easy to get

Vxt=X+pAX, dp(X)=-g(AX,t), XeX(M).

Using these equations and the fact that « is a constant, we compute the
Laplacian of p as Ap = —3a—ptr. A2. Thus we have

(1.16) §M{3a+ptr.A2} dv=0.
As « is constant, from Minkowski’s formula we have
(1.17) | 3aav= —S 3pady.
M M
Equations (1.16) and (1.17) give
1.18 2 _tr.A>)dv=0.
(1.18) SM p(Ba*—tr.A*) dv

The Schwarz inequality states that 3o <tr. A%, with equality holding at
a point if any only if it is an umbilic point. Since M is connected and p # 0,
the integral (1.18) gives 3a? =tr. A%, proving that M is totally umbilic; our
theorem then follows from {4, Thm. 5.1, p. 30]. 0

We express our sincere thanks to the referee for many helpful suggestions.
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