A Characterization for 3-Spheres

SHARIEF DESHMUKH

Introduction

Let M be an n-dimensional compact smooth manifold. Jacobowitz [3] proved that if $\psi: M \to R^{n+k}$ ($k \le n-1$) is a smooth immersion with $\psi(M)$ contained in a closed ball of radius λ , then the sectional curvature of M with respect to the induced metric satisfies $\sup K \ge \lambda^{-2}$. Coghlan and Itokawa [1] proved a pinching theorem for sectional curvature of a compact hypersurface $\psi: M \to R^{n+1}$. They proved that if $\psi(M)$ is contained in a closed ball of radius λ and the sectional curvature satisfies $\sup K = \lambda^{-2}$, then $\psi(M)$ is the boundary of the closed ball.

The purpose of the present paper is to consider the pinching of the Ricci curvature for the hypersurface $\psi: M \to R^{n+1}$. In the case of the standard embedding $\psi: S^n(c) \to R^{n+1}$ of the sphere $S^n(c)$, for each unit vector field X on $S^n(c)$ we have $\|\psi\|^2 \operatorname{Ric}(X,X) = n-1$, where Ric is the Ricci tensor of $S^n(c)$. Suppose that $\psi: M \to R^{n+1}$ is an arbitrary compact connected immersed hypersurface such that $\|\psi\|^2 \operatorname{Ric}(X,X) = n-1$ for all unit vector fields X on M. We consider the question: Must $\psi(M)$ be a Euclidean sphere?

In the present paper we answer this question in the affirmative for n=3. In fact, we prove the following theorem.

THEOREM. Let $\psi: M \to R^4$ be an orientable, compact and connected hypersurface. If $0 < \|\psi\|^2 \operatorname{Ric}(X, X) \le 2$ for each unit vector field X on M, then $\psi(M)$ is a Euclidean sphere in R^4 .

Preliminaries

Let \langle , \rangle be the inner product on R^4 and let $\overline{\nabla}$ be the Euclidean connection on R^4 . We denote by J_1 , J_2 , and J_3 the complex structures on R^4 which define the quaternion structure on R^4 . Then we have

(1.1)
$$J_1J_2 = -J_2J_1 = J_3$$
, $J_2J_3 = -J_3J_2 = J_1$, $J_3J_1 = -J_1J_3 = J_2$;

(1.2)
$$\overline{\nabla} J_i = 0, \quad \langle J_i, J_i \rangle = \langle , \rangle, \quad i = 1, 2, 3.$$

Let $\psi: M \to R^4$ be an orientable hypersurface of R^4 , and let N be a unit normal vector field globally defined on M. Let g and ∇ be the induced metric and the Riemannian connection on M, respectively. Then we have

$$(1.3) \quad \bar{\nabla}_X Y = \nabla_X Y + g(AX, Y)N, \quad \bar{\nabla}_X N = -AX, \quad X, Y \in \mathfrak{X}(M),$$

where A is the shape operator of M and $\mathfrak{X}(M)$ is the Lie algebra of vector fields on M.

Define the unit vector fields ξ_1, ξ_2, ξ_3 on M by $J_i \xi_i = N$, i = 1, 2, 3. Also define three (1, 1) tensor fields ϕ_i on M by setting $J_i X = \phi_i X + \eta_i(X)N$, $i = 1, 2, 3, X \in \mathfrak{X}(M)$, where the 1-forms η_i are respective duals of ξ_i . It can be verified that ϕ_i, ξ_i, η_i satisfy

$$\phi_i^2 = -I + \eta_i \otimes \xi_i, \quad \phi_i \xi_i = 0, \quad \eta_i \circ \phi_i = 0,$$

(1.5)
$$g(\phi_i X, \phi_i Y) = g(X, Y) - \eta_i(X) \eta_i(Y), X, Y \in \mathfrak{X}(M), i = 1, 2, 3.$$

Now, using (1.2) and (1.3), it is easy to obtain

$$\nabla_{X}\xi_{i} = \phi_{i}AX, \quad X \in \mathfrak{X}(M).$$

For a local unit vector field e on M satisfying $g(e, \xi_i) = 0$ for a fixed i, $\{e, \phi_i e, \xi_i\}$ is a local orthonormal frame on M; such a frame will be referred to as an *adapted* frame. From the first equation in (1.6), using an adapted frame, we get div $\xi_i = 0$, i = 1, 2, 3.

Using ψ as the position vector field in R^4 of the hypersurface, we define a smooth function ρ on M by $\rho = \langle \psi, N \rangle$, which is commonly known as the support function of the hypersurface. Using the complex structures J_i , we define three smooth functions ρ_i on M by $\rho_i = \langle J_i \psi, N \rangle$. Also define three vector fields $t_i \in \mathfrak{X}(M)$ by setting $J_i \psi = t_i + \rho_i N$. Then, using (1.2), (1.3), and $\overline{\nabla} \psi = I$ in $J_i \psi = t_i + \rho_i N$, we obtain

$$(1.7) \quad \nabla_X t_i = \phi_i X + \rho_i A X, \quad d\rho_i(X) = -g(AX, t_i) + \eta_i(X), \quad X \in \mathfrak{X}(M).$$

We also have

(1.8)
$$g(t_i, \xi_i) = \langle J_i \psi, \xi_i \rangle = -\langle \psi, J_i \xi_i \rangle = -\langle \psi, N \rangle = -\rho.$$

Proof of the Theorem

Using the equations in (1.7), we compute the Hessian of the function ρ_i as

(1.9)
$$H_{\rho_i}(X,Y) = -g((\nabla_X A)(Y), t_i) - g(AX, \phi_i Y) - g(AY, \phi_i X) - \rho_i g(AX, AY).$$

From the definition of mean curvature α and the Codazzi equation for the hypersurface M in \mathbb{R}^4 , we have

(1.10)
$$3X.\alpha = \sum_{i=1}^{3} g((\nabla_{e_i} A)(e_i), X), \quad X \in \mathfrak{X}(M),$$

where $\{e_1, e_2, e_3\}$ is a local orthonormal frame on M. Thus, using the adapted frame $\{e, \phi_i e, \xi_i\}$ and equation (1.10) in (1.9) to compute the Laplacian of ρ_i , we get

(1.11)
$$\Delta \rho_i = -3t_i \cdot \alpha - \rho_i \operatorname{tr} A^2.$$

From (1.7) we find div $t_i = 3\rho_i \alpha$ and consequently div $\alpha t_i = t_i \cdot \alpha + 3\rho_i \alpha^2$. Thus equation (1.11) takes the form

$$(1.12) \Delta \rho_i = \rho_i S - 3 \operatorname{div} \alpha t_i,$$

where $S = 9\alpha^2 - \text{tr. } A^2$ is the scalar curvature of M.

Next we use the second equation in (1.7) to find $\operatorname{div}(\rho_i \alpha t_i)$ and $\operatorname{grad} \rho_i$ as

(1.13)
$$\operatorname{div}(\rho_i \alpha t_i) = \alpha t_i \cdot \rho_i + \rho_i \operatorname{div}(\alpha t_i) \\ = -\alpha g(At_i, t_i) + \alpha g(t_i, \xi_i) + \rho_i \operatorname{div}(\alpha t_i);$$

$$(1.14) grad \rho_i = -At_i + \xi_i.$$

Using (1.12), (1.13), and (1.14) in $\Delta \rho_i^2 = 2\rho_i \Delta \rho_i + 2\|\operatorname{grad} \rho_i\|^2$, we obtain

$$\Delta \rho_i^2 = 2\rho_i^2 S - 6\alpha g(At_i, t_i) + 6\alpha g(t_i, \xi_i) - 6\operatorname{div}(\rho_i \alpha t_i) + 2\|At_i\|^2 - 4g(At_i, \xi_i) + 2,$$

which in light of (1.7) and (1.8) can be rearranged as

$$\Delta \rho_i^2 = 2\rho_i^2 S - 2\operatorname{Ric}(t_i, t_i) - 6\alpha\rho + 4(d\rho_i(\xi_i) - 1) + 2 - 6\operatorname{div}(\rho_i \alpha t_i).$$

Since ξ_i is divergence-free (cf. preliminaries), we have

$$\operatorname{div}(\rho_i \xi_i) = \xi_i \cdot \rho_i + \rho_i \operatorname{div} \xi_i = d\rho_i(\xi_i).$$

Thus we have

$$\Delta \rho_i^2 = 2\rho_i^2 S - 2 \operatorname{Ric}(t_i, t_i) - 6(1 + \rho \alpha) + 4 + 4 \operatorname{div}(\rho_i \xi_i) - 6 \operatorname{div}(\rho_i \alpha t_i).$$

Integrating this equation over M and using Minkowski's formula (cf. [2]), we get

(1.15)
$$\int_{M} \{\rho_i^2 S - \text{Ric}(t_i, t_i) + 2\} dv = 0, \quad i = 1, 2, 3.$$

Define the unit vector fields \hat{t}_i by $t_i = ||t_i||\hat{t}_i$. Then, using $||\psi||^2 = ||J_i\psi||^2 = ||t_i||^2 + \rho_i^2$ in (1.15), we have

$$\int_{M} \{\rho_{i}^{2}(S + \operatorname{Ric}(\hat{t}_{i}, \hat{t}_{i})) + (2 - \|\psi\|^{2} \operatorname{Ric}(\hat{t}_{i}, \hat{t}_{i}))\} dv = 0.$$

From the hypothesis of the theorem it follows that the Ricci curvature is nonnegative and so is the scalar curvature S, and thus from the above integral we get

$$\rho_i^2(S + \text{Ric}(\hat{t}_i, \hat{t}_i)) = 0$$
 and $\|\psi\|^2 \text{Ric}(\hat{t}_i, \hat{t}_i) = 2$.

The second equation gives $Ric(\hat{t}_i, \hat{t}_i) > 0$, and thus from the first equation we have $\rho_i = 0$, i = 1, 2, 3. Now, using $\rho_i = 0$ in the second equation in (1.7),

we get $At_i = \xi_i$. Since the ξ_i are globally defined unit vector fields on M and A is a linear operator, it follows that the t_i are nowhere zero on M and thus the \hat{t}_i are defined everywhere on M. From (1.1) and (1.2), it can be easily deduced that $\{\hat{t}_1, \hat{t}_2, \hat{t}_3\}$ is an orthonormal frame on M. Then equation (1.11) together with $\rho_i = 0$ ensures that α is a constant.

Our next aim is to show that the support function ρ is nowhere zero on M. For this, from $\|\psi\|^2 \operatorname{Ric}(\hat{t}_1, \hat{t}_1) = 2$ we observe that $\operatorname{Ric}(t_1, t_1) > 0$ and consequently, as $At_1 = \xi_1$, $3\alpha g(At_1, t_1) - \|At_1\|^2 = -3\alpha \rho - 1 > 0$. This proves ρ is nowhere zero on M.

We write $\psi = t + \rho N$ for some $t \in \mathfrak{X}(M)$. Then it is easy to get

$$\nabla_X t = X + \rho AX$$
, $d\rho(X) = -g(AX, t)$, $X \in \mathfrak{X}(M)$.

Using these equations and the fact that α is a constant, we compute the Laplacian of ρ as $\Delta \rho = -3\alpha - \rho$ tr. A^2 . Thus we have

(1.16)
$$\int_{M} \{3\alpha + \rho \operatorname{tr}. A^{2}\} dv = 0.$$

As α is constant, from Minkowski's formula we have

$$(1.17) \qquad \qquad \int_{M} 3\alpha \, dv = -\int_{M} 3\rho \alpha^{2} \, dv.$$

Equations (1.16) and (1.17) give

(1.18)
$$\int_{M} \rho(3\alpha^{2} - \text{tr.} A^{2}) dv = 0.$$

The Schwarz inequality states that $3\alpha^2 \le \text{tr.} A^2$, with equality holding at a point if any only if it is an umbilic point. Since M is connected and $\rho \ne 0$, the integral (1.18) gives $3\alpha^2 = \text{tr.} A^2$, proving that M is totally umbilic; our theorem then follows from [4, Thm. 5.1, p. 30].

We express our sincere thanks to the referee for many helpful suggestions.

References

- [1] L. Coghlan and Y. Itokawa, On the sectional curvature of compact hypersurfaces, Proc. Amer. Math. Soc. 109 (1990), 215-221.
- [2] C.-C. Hsiung, Some integral formulas for closed hypersurfaces, Math. Scand. 2 (1954), 286-294.
- [3] H. Jacobowitz, Isometric embedding of a compact Riemannian manifold into Euclidean space, Proc. Amer. Math. Soc. 40 (1973), 245-246.
- [4] S. Kobayashi and K. Nomizu, Foundations of differential geometry, vol. II, Interscience, New York, 1969.

Department of Mathematics College of Science King Saud University P.O. Box 2455, Riyadh 11451 Saudi Arabia