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1. Introduction

This paper is concerned with the study of the structure of JBW*-triples,
which have interested many authors in recent years ([2], [4], [5], [7], [10],
[12], [13], [14], [16], [21]). In particular, the investigation of the inner ideal
structure of JBW *-triples begun in [8] and [9] is continued here.

A JBW*-triple A is said to be special if it is isomorphic to a subtriple of
a W*-algebra, and it is said to be exceptional if every homomorphism from
A onto a subtriple of a W*-algebra is zero. In [2] it is shown that every
JBW*-triple has a unique decomposition as an M-sum of a special JBW *-
triple and an exceptional JBW *-triple. In this paper the weak* closed inner
ideals in an exceptional JBW *-triple are characterized. Exceptional JBW*-
triples provide examples of JBW*-triples of Type I, and indeed the methods
of proof used here also apply to those JBW *-triples C(Q, B) of Type I which
consist of all continuous functions from a hyperstonian space  into a finite-
dimensional Cartan factor B. Since this class does not exhaust the class of
all Type I JBW *-triples, the attention of this paper is restricted to the excep-
tional case.

Let O be the complex octonian algebra and let M3 be the 27-dimensional
vector space of 3 X 3 hermitian matrices with entries in O. Let Bf,z be the 16-
dimensional vector space of 1 X2 matrices with entries in ©. When endowed
with the triple product

fabc}=(ab*)oc+(cob™)oa—(aoc)ob™

(where b — b" is the conjugate linear involution in O applied pointwise to b,
b' is the transpose of b, and a°b = (ab+ ba)/2) and the spectral norm as
defined by Loos [18], M is an exceptional JBW*-triple. Similarly, when
endowed with the triple product

fabc}=(a(b™c)+c(b™a))/2
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and the spectral norm, Bﬁ » 1s also an exceptional JBW *-triple. Indeed these
two examples exhaust the class of exceptional JBW *-triples which cannot be
decomposed nontrivially as an M-sum, the exceptional JBW *-factors [19].
For hyperstonian spaces Q; and Q, the spaces C(Q,, M$) and C(QZ,B{‘,Z)
of continuous functions from 2, and Q, into M5 and Bﬁz, respectively, en-
dowed with the pointwise triple product and the supremum norm, are ex-
ceptional JBW*-triples. It follows from the results of Barton, Dang and
Horn [2] that every exceptional JBW *-triple is isomorphic to an M-sum of
two such JBW *-triples.

The paper is organized as follows. In Section 2 definitions are given, nota-
tion is established and certain important preliminary results are proved. In
particular it is shown that in order to obtain the weak* closed inner ideals in
an M-sum of JBW *-triples it is sufficient to obtain those in its summands. In
Section 3 the inner ideal structure of M$ and BEZ is investigated. McCrim-
mon [20] showed that the nontrivial inner ideals in M38 are either Peirce 2-
spaces or point spaces. Here it is shown that the same applies to Bi 5, aresult
which has been proved recently by Neher [22] using different methods. In
Section 4, the results of Section 3 are used to investigate the weak* closed
inner ideals in C(2;, M${) and C(Q,, BEZ). It is shown that these are essen-
tially the same in each case. A weak* closed inner ideal J provides a unique
M-decomposition of the JBW*-triple into weak* closed ideals 7, 7,, I3 and
I, and a corresponding M-decomposition of J such that JN 1, is zero, I, is
contained in J, JMN I; is an M-sum of Peirce 2-spaces and J N I, is an M-sum
of weak* closed ideals JN 1,;, which is a sum of Peirce 2-spaces of j col-
linear tripotents in J. A combination of the two parts provides a description
of a weak* closed inner ideal in any exceptional JBW *-triple.

The first two authors are grateful for the support that their research has
received from the United Kingdom Science and Engineering Research Coun-
cil and Schweizerischer Nationalfonds/Fonds national suisse and the third
author is similarly grateful to the Soros Foundation.

2. Preliminaries

A unital Jordan*-algebra A which is also a complex Banach space such that

for elements @ and b in 4, ||a*||=]al|, |a-b| =] a||b| and ||{aaa}]|=]a]’
where
¢} fabcl=a°(b*c)+(a-b*)ec—b*(a-c)

is the Jordan triple product on A, is said to be a Jordan C*-algebra [26] or
JB*-algebra [27]. A Jordan C*-algebra which is the dual of a Banach space
is said to be a Jordan W*-algebra [6] or a JBW *-algebra [27]. Examples of
Jordan C*-algebras and Jordan W *-algebras are C*-algebras equipped with
the Jordan product

(2) ab=(ab+ba)/2.
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A complex vector space A equipped with a triple product (a, b,c) — {abc}
from A X A X Ato A which is symmetric and linear in the first and third vari-
ables, conjugate linear in the second variable and satisfies the identity

[D(a, b), D(c,d)]=D(tabc},d)—D(c, {dab})
=D(a,{bcd})—D({cda},D),

where [ , ] denotes the commutator and D is the mapping from A X 4 to the
space of linear operators on A defined by D(a, b)c={abc}, is said to be a
Jordan*-triple. When A is also a Banach space such that D is continuous
from A X A to the Banach space B(A) of bounded linear operators on 4 and,
for each element @ in A, D(a,a) is hermitian with nonnegative spectrum
and satisfies | D(a, @)||=||a||, then A is said to be a JB*-triple. A JB*-triple
A which is the Banach space dual of a Banach space is said to be a JBW *-
triple. A linear subspace J of a JBW*-triple A is said to be an inner ideal if
{JA J} is contained in J, and is said to be an ideal if {AAJ}+{AJA]}is
contained in J.

An element u in a JB*-triple A is said to be a tripotent if {uuu}is equal to
u. The set of tripotents in A is denoted by U(A). For each tripotent u, the
operators Q(u), PjA(u), Jj=0,1,2, are defined by

Q(wya={uau}, Pi(u)=0(u)?
P (u) =2(D(u, u) — Q(u)?), Pg'(u)=1-2D(u, u)+Q(u)>

The linear operators PjA( u), j=0,1,2, are projections onto the eigenspaces
Aj(u) of D(u, u) corresponding to the eigenvalues j/2, and

3) A=Ag(u)D A (1) D Az(u)

is the Peirce decomposition of A relative to u. For i, j,k=0,1,2, A;(u)isa
sub-JB*-triple such that {A4;(u) A;(u) A (u)} S A;_j 4 (u) wheni—j+k=0,
1 or 2 and {0} otherwise, and, as in [10],

4 tAax(u) Ag(u) A} = {Ag(u) Ax(u) A} = (0}.

Let A be a JBW*-triple. Then the operators D(a, b), Q(u),PjA(u), Jj=
0,1, 2, are weak* continuous and A4;(u), j =0, 1, 2, are sub-JBW *-triples of
A. Moreover, Ayg(u) and A,(u) are weak* closed inner ideals in A and A,(u)
is a JBW#*-algebra with product (a, b) — {au b}, unit u, and involution a —
fuau}. The cone of positive elements in A,(u) is denoted by A,(u)*.

A pair u, v of elements in U(A) is said to be orthogonal if one of the fol-
lowing (equivalent) conditions holds:

D(u,v)=0; fuuv)=0; ueAg(u);
D(v, u)=0; foou}=0; ve Ay(u).

For two elements # and v in U(A) we write u < v if one of the following
(equivalent) conditions is satisfied:
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fuuvi=u;  D(u,v)=D(u,u); Pi(u)=uv;
fuvu)=u; D(v,u)=D(u, u).

This defines a partial ordering on U(A4) with respect to which U(A) with a
greatest element adjoined forms a complete lattice. An element # in WU(A) is
maximal if and only if Ay(u) is zero or, equivalently, if and only if « is an
extreme point of the unit ball 4; in A. Notice that when # is maximal then
A;(u) is a weak* closed inner ideal in 4. An element u in WU(A) is said to
be unitary provided that A,(u) coincides with A. A pair u, v of elements
in W(A) is said to be collinear if u lies in A;(v) and v lies in A;(#). For de-
tails of the results described above the reader is referred to [1], [7], [10],
[15], [16], and [21].
Let I be a weak* closed ideal in the JBW *-triple 4 and let

I*=N{Ag(u): ueU)}.
Then I+ is a weak* closed ideal in A such that
A=I@MIL.

Moreover, for all elements @ in 7 and b in I+, D(a, b) is zero ([13], [21]). In-
deed the M-summands in a JBW *-triple are precisely its weak* closed ideals

(111, 2], [3], [13]).

LEmMA 2.1.  Let I be a weak* closed ideal in the JBW *-triple A and let J be
a weak * closed inner ideal in A. Then JN I and JN I+ are weak * closed inner
ideals in I and I+, respectively, and

J=(JND)@y (JNTH).

Proof. Let P be the M-projection onto / and let u be a tripotent. Simple
calculations show that Pu is a tripotent in I and (1—P)u is a tripotent in I+
Now let u lie in J. Then, since J is an inner ideal, 4,(u) is contained in J.
But Pu < u, and it follows from [7, Lemma 2.4] that Pu lies in A,(u) and,
hence, in J. Since the linear span of U(J) is weak* dense in J and the M-
projection P is weak* continuous, it follows that for all ¢ in J, Pa lies in J.
Similarly, (1—P)a lies in J. Clearly JN I and JN I+ are weak* closed inner
ideals in I and I+, respectively, and this completes the proof. O

Recall that a JBW*-triple A is said to be a factor if there does not exist a
nontrivial weak* closed ideal in A.

For each element ¢ in the JBW*-triple A there exists a smallest element
r(a) in U(A), called the support of a, such that a is a positive element in
the JBW*-algebra A,(r(a)). It follows that r(a) is the unit element in the
smallest sub-JBW*-triple of A containing ¢ which is in fact a sub-JBW *-
algebra of A,(r(a)) ([7], [10]). The full force of the following result is not
needed in this paper, but it is included since it is of independent interest.

LEmMA 2.2. Let A be a JBW*-triple and let a be an element of A with
support r(a). Then A,(r(a)) is the weak™ closure of {a Aaj}.
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Proof. Let J be the weak* closure of the linear subspace {a¢.Aa}. Since
A,(r(a)) is a weak* closed inner ideal and a belongs to 4,(r(a)), it follows
that {@ A a} and therefore J are subsets of A,(r(a)).

The element a is positive in the JBW *-algebra 4,(r(a)), and r(a) coin-
cides with the support projection of a in this JBW *-algebra. Therefore there
exists a sequence {q,) of real odd polynomials with zero linear summand
such that r(a) is the weak* limit of the sequence (g,(a)). Notice that the
(2n+1)th power of @, n= 0, computed in the Jordan algebra A,(r(a)) coin-
cides with the (2n+1)th power of ¢ computed in the Jordan triple A. Since
the elements a"*!, n=>1, belong to {a A a} it follows that r(a) is an element
in J. Now, J is a weak* closed inner ideal and therefore r(a) Ar(a) is a sub-
set of J. |

Let A be a JBW*-triple. By [13, Thm. 3.13] or [7, Thm. 4.6], the supremum
of any set of pairwise orthogonal tripotents exists in the partially ordered
set (‘U(A), <). A set F of pairwise orthogonal nonzero minimal tripotents is
said to be a frame if the supremum of F'is a maximal tripotent. If A is finite-
dimensional then A4 possesses a frame and all the frames have the same finite
cardinality, the rank of A [18]. In such a JBW*-triple A4 a tripotent u is said
to be of rank n provided that 4,(u) is of rank n.

Let Dy be the real quaternion algebra with basis 1, iy, i,, i3, where for
Jyk,r=1,2,3,
lj ='—1, l:jik::ejkrir'

Then g has a natural real involution a - a~ defined by

Let Og be the (non-associative) real octonian algebra consisting of ele-
ments a+ b/ with a and b in Dg and / an element such that, for all @ in D,

1?2=—1, al=la".

The real involution may be extended to Og by defining /~ = —/, in which
case
(a+bly"=a=+1"b " =a" —bl.

Let O be the complex octonian algebra Og+iOg andleta —»a " anda—a”,
respectively, be the linear and conjugate linear involutions on O defined, for
elements @ and b in Og, by

(@a+ib)y " =a +ib~
and
(a+ib)*=a~ —ib".

Let M3 be the space of 3 X3 matrices (aj) with entries in O such that
(ajr) = (ax;)~. When endowed with the spectral norm [18, Thm. 3.17] and
the triple product

{abcy=(a-b™)ec+(ceb™)oa)—(a-c)eb™,
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where (ajx)" = (a;") and (ajk)’ = (ax;), M3 is a JBW*-triple factor. The
space B}, of all 1x2 matrices with entries in © endowed with the triple
product
b"
{laiaay][b) br]lay a1} =[a; a2]<[b2"] [a az])

and the spectral norm is a second JBW *-triple factor. Notice that for each
minimal element u of W(M5), A,(u) coincides with Cu and is of dimen-
sion 1, Ay(u) is isomorphic to M3 and is of dimension 10 and A;(u) is of
dimension 16. Since all tripotents orthogonal to u lie in Ay(u), it is clear that

M38 is of rank 3. Similarly, as can be seen from the following lemma (see [17,
Thm. 17.9] for the proof), the rank of Bﬁz is 2.

LEMMA 2.3. Let the elements c; and c, of O be defined by
cy=1(1+il), cy=12(1-il),
and let u;=1[c;,01, j=1,2, be elements of B} ,. Then
(1) u, and u, are minimal elements of ‘U(Bﬁz) such that
Ao(u)=1[Cc¢,0],  Ay(uy) =[c1(Oc3) +¢3(0c¢y) ¢, 05
(i) (uy, uy) is a frame for BIS,Z.

Recall that a JBW *-triple A is said to be exceptional if every homomorphism
from A onto a subtriple of a W*-algebra is zero. The proof of the next
lemma can be found in [2], [12], and [19].

LEMMA 2.4. (i) An exceptional JBW *-triple factor is isomorphic to either
M3 or B ,.

(ii) Let A be an exceptional JBW *-triple. Then there exist hyperstonian
spaces 0, and Q, such that A is isomorphic to the JBW *-triple

C(Qy, M$) Dy C(Qy, B ).

For further details about the algebraic theory of Jordan algebras and Jordan
triples the reader is referred to [15], [17], and [18]; for the theory of Jordan
C*-algebras and JB*-triples, see [11], [21], and [24].

3. Inner Ideals in Exceptional JBW*-Triple Factors

Recall that a subspace J of the JBW *-triple A is said to be a point space if,
for each element a in J,
faAa}=Ca.

Notice that every point space is an inner ideal and a subspace of a point
space is a point space.
The following result is essentially due to McCrimmon [20].

THEOREM 3.1. Let J be an inner ideal in the JBW *-factor M. Then one of
the following possibilities occurs:
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(i) J=1{0};
(ii) J=M$;
(iil) J= (M), (u) for some tripotent u in M$ of rank 1 or 2;
(iv) J is a point space of dimension not less than 2.
Proof. This is immediate from [20] and Lemma 2.2. ]

In order to identify the inner ideals in BE » some preliminary results are
needed.

LEMMA 3.2. Let A be a Jordan*-triple, let u be a tripotent in A, and let K
be a subspace of A;(u). Then the subspace A,(u)+ K is an inner ideal in A
if and only if the subspaces {K A,(u) A,(u)} and {K A;(u) K} are contained
in K and the subspace {K A,(u) K} is zero.

Proof. Let J be the subspace A,(u)+ K and suppose that J is an inner ideal.
Then, using the Peirce relations and the defining property of an inner ideal,
it is clear that

{KAx(u)Ar(u)) € N A () =K,
(KA (u)K}cJNA(1)=K,
{KA,(u)K} S JNAy(u) ={0}.
Conversely, if the three conditions hold, then, using the Peirce relations,
(JAJ})={A(u)+ K A Ay(u)+K}
={Ay(u) A Ay(u)} +{K A Ay(u)} +{K A K}
= Ay (u) +{K Ag(u) Ar(u)} + {K Ay (1) Az(u)}
+{K Ay(u) Ay(u)} + (K Ao(u) K}
+{K Aj(u) K} +{K Ay(u) K}
C Ay(u)+{0}+A(u)+ K+ Ar(u)+ K+ {0} =,
and J is an inner ideal. Ll
LemMA 3.3. Let A be the triple factor Bﬁz and let u be a tripotent in A

of rank 2. Then, when O is endowed with its natural triple product, the
Jordan*-triples A,(u) and O are isomorphic.

Proof. Since both A and u are of rank 2, u is maximal and Ay(u) is zero.
By [17, Thm. 17.1], without loss of generality # can be chosen as in Lemma
2.3. Then A,(u) and A,(u) can be identified with [O 0] and [0 O], respec-
tively. For elements @ and b in O,

0
{(02][0D][0a]}= [Oa]qb,\][Oa])

=[0a(b"a)].
Therefore the mapping @ — [0 @] is an isomorphism from O onto 4;(u). [

LEmMA 3.4. Let A be the triple factor B,S, 2, and let J be an inner ideal in A
containing a tripotent u of rank 2. Then J is equal to either A,(u) or A.



146 C. M. EpwArDs, G. T. RUTTIMANN, & S. VASILOVSKY

Proof. Since u is of rank 2 in A it follows that « is maximal in U(A4) and
also in J. Therefore the Peirce decomposition of J relative to u is given by

J=J(u) D Ji(u).
But, since J is an inner ideal,
Jo(u) ={ufuJulu} S tufu Aulu} < {uJu}=J,(u),
Ji(u) € Ay(u),

and it follows that J is of the form A,(u)+ K with K a subspace of A;(u).
Again using [17, Thm. 17.1], without loss of generality # can be chosen as in
Lemma 2.3. Then A,(u) and A4,(u) can be identified with [© 0] and [00],
respectively. Let K’ be the subspace of O consisting of elements @ in O such
that [0«] lies in K. By Lemma 3.2, K’ is a subspace of O such that, for all
elements @ in K’, b and c in O, the element {[0a][b 0][c 0]} lies in K. But

2{[0a](b0][c0)} =[0c(D"a)],

and it follows that K’ is a left ideal in O. Since O possesses no nontrivial left
ideals, K" is either zero in which case J coincides with A,(u), or K’ is equal
to O in which case J coincides with A. U

LemMA 3.5. Let A be the triple factor 818’2, and let J be an inner ideal in
A which contains no tripotent of rank 2. Then J is a point space.

Proof. Let a be an element of J and let r(a) be its support in A. By Lemma
2.2, the inner ideal {a A a} coincides with A,(r(a)) and r(a) lies in J. It fol-
lows that either r(a) is zero in which case a is zero, or r(a) is of rank 1 and
therefore minimal. In this case

{aAa}=A5(r(a))=Cr(a).

But, since a lies in A,(r(a)), a is also a multiple of r(a) and {a A a} coincides
with Ca as required. ]

A combination of Lemma 3.4 and Lemma 3.5 gives the following result,
which has recently been proved by other methods by Neher [22, §3.2(f)].

THEOREM 3.6. Let J be an inner ideal in the JBW *-factor BJS,Z. Then one
of the following possibilities occurs: '
(i) J={0};
(ii) J=Bf{,;
(iii) J= (Bﬁz)z(u) Jfor some tripotent u in Bﬁz of rank 1 or 2;
(iv) J is a point space of dimension not less than 2.

4. Inner Ideals in Exceptional JBW *-Triples

By Lemma 2.1 and Lemma 2.4, it is enough to classify the weak* closed

inner ideals in C(Q, M3) and C(Q, Bﬁz), where {2 is a hyperstonian space.
It is clear that the next two results hold in greater generality than that in

which they are stated. However, in the interests of brevity they are stated for



Inner Ideals in Exceptional JBW *-Triples 147

the special case under consideration. The authors are grateful to E. Neher,
who supplied the shorter proof of Lemma 4.2 which replaces the authors’
original proof.

LemmA 4.1, Let B be either M3 or B} ,, let Q be a hyperstonian space, let A
be the exceptional JBW *-triple C(Q, B), let J be a weak* closed inner ideal
in A, and let u be a maximal element of U(J). For w in  define

J(w):={a(w):ael}.
Then J(w) is an inner ideal in B and u(w) is a maximal element of U(J(w)).

Proof. Since, for each element c in B, the constant function w — ¢ is an ele-
ment of A, it follows that, for each element a in J,

{acal(w) ={a(w)ca(w)}

and hence that J(w) is an inner ideal in B. Since « is maximal in ‘U(J), for
each element a in J,
a=2{uua}l—{ufuaulul.

Hence, for each element w in Q and ¢ in J(w),
¢ =2{u(w)u(w)c}—{u(w){u(w)cu(w)u(w).
Therefore, #(w) is maximal in U(J(w)). L]

LEMMA 4.2. Let B be either M3 or B} ,, let Q be a hyperstonian space, let A
be the exceptional JBW *-triple C(Q, B), let u be an element of U(A), and
let ); be the set of points w in Q for which u(w) is of rank j. Then Q; is a
clopen subset of (1.

Proof. Let L(B) denote the finite-dimensional complex vector space of lin-
ear mappings from B to itself, let by, b5, ..., b, be a basis for B, and let ¢,
k,1=1,2,...,r be the corresponding basis of matrix units for L(B). Let ¢
be a continuous function from Q to L(B) and suppose that, for each w in Q,

,
d(w)= 2 dp(w)ey.
k=1
The set {w: rank ¢(w) < j} coincides with the intersection of the zero sets of
the continuous functions

w > det(dg(w))k=E, 1eF>

where E and F are subsets of {1, 2, ..., r} of cardinality j+1. It is therefore
closed.

When v and w are tripotents in B having the same rank, by [18] there
exists an automorphism ¢ of B such that, for j=0,1,2, ¥B;(v)=B;j(w).
Therefore, for 0 <s <r, there exist nonnegative integers f(s) and g(s) such
that v is of rank s if and only if P,(v) is of rank f(s) and if and only if Py(v)
is of rank g(s). Clearly the mapping f is increasing and the mapping g is
decreasing.
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Applying the first part of the proof to the function ¢ defined for w in 2 by
¢(w) = Po(u(w)) = (Po(u))(w)

shows that, for each nonnegative integer s, the set {w:rank u(w) = s} is
closed. Applying the same result to the function ¢ defined for w in @ by

¢(w) = Pr(u(w)) = (Pr(u))(w)

shows that, for each positive integer s, the set {w: rank u(w) <s—1} is closed,
which implies that the set {w:rank u(w)=s} is open. It follows that, for
each nonnegative integer s, the set

Y,={w:rank u(w)=s)
is clopen. Therefore ;=X ,\ X, is also clopen, and the proof is complete.
O
The main result of the paper describes the weak* closed inner ideals in

C(Q, B) where B is either M3 or B} ,. Whilst the statement of the result is
the same in both cases, the proofs deviate at several points.

THEOREM 4.3. Let B be either M3 or Bﬁ », let  be a hyperstonian space, and
let A be the exceptional JBW *-triple C(2, B). Let J be a weak * closed inner
ideal in A. Then there exist weak* closed ideals I, 15, 131, 135, 43, 143, ...y 1y
in A, maximal tripotents us; and us, in JN I3 and JN I3, respectively, and
tripotents 21,2, ---» X i J such that
VI EY ATV PICIVE ENCIVE EVICIYE FACTYE FEICT YRR TV PP
(ll) Jﬂ]l = [0}, 12 o J, JﬂI3l =A2(M31), JﬂI32 =A2(u32) and l:f; for
Jj=2,3,...,m, Ry; denotes the M-projection from A onto 1,; then
Ry4;zy, RajZa, Ryjz3, ..., Rajz; are pairwise collinear tripotents in
JN 14; such that
JN1y;=A(Ry;z1) + Ax(Ryjz2) + -+ + Ax(Ry;2);

(iii) J=L@py (JNI3) D@ (JNVI33) Dps (JN L) Dag (J N Ly3) Dpg -

@p (VN 1yp);
(iv) there exist pairwise disjoint clopen sets Qq, Q,, Q31, Q35, Qyn, Q435 .00,
Qy,,, in Q with union Q such that I, I, Iy, I35, 143, 143, ..., 14y, are

respectively isomorphic to C(Q,, B), C(Q,, B), C(Q3, B), C(Q3,, B),
C(Q4,,B), C(Q43,B), ..., C(Q4, B); and

(V) for win Qsy, k=1,2, (JN Iy ) (w) is of rank k and for w in $y;, j=
2,3,...,m, (JNIy;)(w) is a point space in B of dimension j with basis
{Zl(w), Zz(w), z3(w), AR z_](w)}

Proof. By Theorems 3.1 and 3.6 and Lemma 4.1, four possibilities occur.

Let Q,, Q,, @3, and Q4, respectively, be the sets of points in Q such that J(w) =

{0}, J(w)=B, J(w)=A,(v) for some tripotent v in B of rank 1 or 2, and

J(w) is a point space of dimension not less than 2. Let # be a maximal ele-

ment of U(J). Then, by Lemma 4.1, u(w) is a maximal element of U(J(w)).
Since u is maximal in U(J), J has the Peirce decomposition

J=J(u)® Jy(u)
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relative to u. Since J;(u) is a JBW*-triple and, in fact, an inner ideal in J, it
possesses a maximal tripotent w; hence, for each w in @, w(w) is a maximal
tripotent in Jy(u)(w).

First observe that w lies in Q, if and only if #(w) is zero. Since u is a con-
tinuous function it follows that Q; is closed. But since || #(w)]| is either zero
or one, it is clear that , is also open.

Notice that if B= M3 then w lies in Q, if and only if u(w) is of rank 3.
Then 2, is clopen, by Lemma 4.2. If B= Bﬁz then (2, is the set of points in
Q for which #(w) and w(w) are both of rank 2. It follows from Lemma 4.2
that Q,, being the intersection of two clopen sets, is itself clopen.

Next observe that Q5 consists of the set of points in the clopen set 2;U{Q,
for which w(w) is zero, and that consequently Q5 is clopen. It follows that
Q, is also clopen. Let Q3 and Q3, be the sets of points in 25 for which u(w) is
of rank 1 and 2, respectively. These are clopen, by Lemma 4.2.

Notice that, for each element w in Qy,

J(w) = By (u(w)) D (J1(u))(w)
=Cu(0) ®Cw(w) D (Ji(u)(w)); (W(w)),

and that u(w) and w(w) are linearly independent. Let z,, 25, ..., Z,, be tri-
potents in J chosen as follows:

{1=1Uu, Z2=W;

having chosen z;, 25, ..., Z,, if possible choose a maximal nonzero tripotent
Z,+1 in the sub-triple (...((/1(z1))1(z2))1---)1(z,). Then z4, 25, ..., 2,4 are lin-
early independent and, for each w in Q4, z,,(w) is a maximal tripotent in
(...((J1(zi{I1(z2(@))); .. ) 1(2,(w)). This process terminates when z;, 25, ...,
Z,, have been selected. Moreover, for each w in , there exists j such that
2 < j=m with {z/(®), 25(w), ..., Zj(w)} a basis for J(w) and

Zit (@) =Zj2(w) =+ =2,(w)=0.

It follows from Lemma 4.2 that the set ,; of points w for which J(w) is a
point space of dimension J is clopen, being the intersection of the two clopen
sets N
fw:rankz,(w)=1,r=1,2,..., j}
and
fwirank z,(w)=0, r=j+1,j+2,...,m}.

Define the projections R R,, Ry, R33, R4s, R4z, ..., Ry, o0 A, for each ele-
ment @ in 4 and w in €, by

(Ria)(w) =xgq,(w)a(w),

where xgq, denotes the characteristic function of the set Q, and let their
ranges be I, I, I3, I35, 145, 143, ..., 14, r€Spectively. These are weak* closed
ideals in A4 with 7 isomorphic to C({2;, B). The proof of parts (i) and (iv)
are now complete.
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To prove (ii) first notice that, for each element ¢ in JN/; and w in Q,

a(w) =xq,(w)a(w) € xq (w) J(w) = {0}

and a=0. Hence JN1I,={0}.

To show that 7, is contained in J, first let B = M3. Then R,u is a maximal
tripotent in JN 7, and since JMN I, is an inner ideal in 1,, (JNI5),(R,u)
coincides with (/,),(R,u). But for all w in @,, (JN1,),(R,u)(w) coincides
with M$ and hence (15)2(R,(u))(w) coincides with M38. It follows that R, u
is maximal in U(/,). For each element a in 7,

a=P2(Ryu)a+P{2(R,u)a
=P(Ryu) € (1), (Ryu) = (JN ) (Ryu) e JN I,

Hence I; € J. Now let B= BE ». Again R,u is a maximal tripotent in JN 1/,
and again (JN1,),(R,u) and (1), (R, u) coincide. Of course (JN1,){(R,u)
is contained in (/,);(R,u). But for all w in Q,, (JNI1,),(Ryu)(w) and
(JN1,);(Ryu)(w) are both of dimension 8, and it follows that (J,); (R u)(w)
is of dimension 8. It follows that R,u is maximal in U(/,). Let v be a max-
imal tripotent in (JNI1,);(R,u). Then, from above, for each w in 2,,
(I3(w)) (Ryu(w)) coincides with ((J N 1,)(w));(R,u(w)) which, by Lemma
3.3, coincides with ((J N I5)(w)),(v(w)). Since this is equal to (1,(w)), (v(w)),
for each element b in (/,);(R,u) and w in ©,, b(w) lies in (J5(w)),(v(w)).
Hence b is an element of (/,),(v) which is contained in JN1,. Therefore,
using the Peirce decomposition of 7, relative to R, u, for each element a in
I, we have
a=P2(R,u)a+ Pl2(Ryu)aeJNI,.

It follows that I, € J as required. Notice that (iii}) now follows from Lemma
2.1.

For j=1, 2, writing u3; for R;;u, it is clear that u;; is a maximal tripotent
in JN I;. For each element @ in JNI;; and w in Q,

(P{ M i(u3)@) () = Xay 0 P11 (35 ()) a(w) = {03,

It follows that a lies in (J N 13;),(u3;), which coincides with (/3;),(u3;) and
Aj,(u;;) by properties of inner ideals. Since /N 73 is an inner ideal contain-
ing u;; it follows that A,(us;) is contained in J N I3;. Therefore A,(u3;) and
J N I5; coincide.

Finally, for j =2, 3, ..., m, writing uy; for R4;u and forr =1, 2, ..., m writ-
ing x, for Ry;z,, it is clear that

JN I4j= (Jﬂ I4j)z(u4j)@(.]ﬂ I4j)l(u4j)
= Ay (x1) + (N 1y;)1(x1))2(x2) + (T N L4 5)1(x1))1(Xx2)
= Ay (x1) +Az(x2) + (TN 1y5)1(x1))1(x2),

recalling that, since x; is maximal, (J M 1,;);(x;) is an inner ideal in J N I;.
Proceeding inductively, it follows that

JN I4j =A2(x1) +A2(x2) + - +A2(xj)+K,
where
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K=(...((( N L45)1(x1))1(x2))1.-)1(x;).
For w in Q4j,

Ax(xj)(w) = Ax(R4;2j) (@) = Xq, (0) {2j(w){zj(w) Azj(w)} z;(w)} # {0},
by the choice of {14;. But

K(o)=(...(((FNL45) 1 (x1))1(x2))1--)1(x)) ()

= Xa, (@) linf{z; (@), Zj12(w), -..5 Zp(w)} = {0}
and hence
JN L= Ax(x1)+ Ar(x3) + - + As(x;)

as required. Observe that, for each w in Q4;, x3(w), x3(w), ..., Xj(w) lie in
(SN 1) (@) (x1(w)). Since (JN1,;)(w) is a point space in which all tripo-
tents are minimal, by [4, Prop. 2.1] the tripotents x,(w), X3(w), ..., Xj(w) are
collinear with x;(w). Similarly the tripotents x3(w), X4(w), ..., Xj(w) are col-
linear with x,(w). Proceeding inductively, it follows that x;(w), x;(w), ...,
Xj(w) are pairwise collinear. Hence, for all w in Q4; and for 1<r,s < j with
r#s,

PI(JﬂI4j)(w)(xS(w))xr(w) =x,-((-!)), Pl(JnI4j)(w)(xr(w)) xs(w) ZXS((,O).

Therefore,
Pl(JnI4j)(xs)xr=xrs Pl(Jn]4j)(xr)xs=x59

and x,, x; are collinear in JN I,; and hence in A. This completes the proof
of (ii), and (v) follows immediately. (]

Notice that recent results of S. Vasilovsky [25] have shown that in the case of
Bﬁz the largest possible value for m in this theorem is 5, whilst in the case
of M} it was shown by McCrimmon [20] and Racine [23] that the largest
possible value for m is 6.

Finally, it is clear that the ideals 7, I,, I5;, I3, and I, in the theorem are
uniquely defined by the weak* closed inner ideal J. However, the decom-
position of 7, depends upon the choice of the maximal tripotent w in J.
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