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Introduction

The aim of this paper is to develop the earlier works of Smith [12; 13] (see
also [5; 7]) on symmetric harmonic maps between spheres and also his re-
duction theorem on equivariant harmonic maps. As applications, we con-
struct explicitly (1) new harmonic maps from 2-flat tori into spheres, com-
plex projective spaces, quaternion projective spaces or complex quadrics,
(2) new harmonic maps from complex projective spaces into spheres, and
(3) new nonholomorphic harmonic maps from complex projective spaces
into other complex projective spaces.

At the present time, the only known method to construct harmonic maps
from a higher-dimensional Riemannian manifold to another compact Rie-
mannian manifold of positive curvature involves investigation of minimal
submanifolds, holomorphic maps, or equivariant maps whose symmetry of
large isometry group action reduces the Euler-Lagrange equation to an ordi-
nary differential equation. We are concerned with the last one, and assume
that both domain and target Riemannian manifolds are of cohomogeneity 1I;
that is, both admit the isometry group actions having orbits of codimen-
sion 1. Then we derive the ordinary differential equations of the equivariant
harmonic maps between them (cf. §2), and solving these equations, we con-
struct the above harmonic maps (cf. §§3-6).
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In this section, we prepare the materials which will be needed in the follow-
ing arguments.
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1.1. Cohomogeneity 1 actions

Let (M, g) be a compact Riemannian manifold and K a compact Lie group.
It is said that the group K acts cohomogeneity I on (M, g) (cf. [2; 8; 17]) if
K acts isometrically and effectively on (M, g) which has orbits of codimen-
sion 1; that is, there exists a point x in M such that dim(Kx)=dim M —1.
The orbit space K\ M of K on M is the closed interval [0, /] or the circle. In
the former case we give the fine structure of such K and (M, g), and show
the examples following [2], [15], and [17].

Let c(t), 0=t <, be the geodesic of (M, g) representing the orbit space
K\M. Let J; be the isotropy subgroup of K at ¢(¢). Then, for 0 <t </, the
subgroups J; are the same group J. The Lie algebra k of K can be decom-
posed orthogonally with respect to the Ad(K)-invariant inner product ¢, )
onk as

k=i®m,
where j is the Lie algebra of J and m is an Ad(J)-invariant subspace of k.

The mapping K/JX[0,1]>(kJ, t)~ kc(t) e M is an onto mapping, and
the restriction to K/JX(0,/) is smooth and its image of K/Jx(0,/), de-
noted by M, is open and dense in M. The metric g on M can be expressed
on M as

(1.1) g=dt*+g,.
Here g, is the K-invariant metric on the orbit Kc(¢), 0 <¢ </, given by
(1.2) &(Xeiys Yery) = a,(X,Y), X,Yem,

where, for X e m, we define a vector field on M, denoted by the same letter
X, by

d
=— exptX-p for peM.

Podt o
We assume the inner product o, on m is given as
(1.3) o (Xi, X;) = fi(0)*6, 1=<i,j=m-1,
where m = dim M. Here {X;}7-;! is an orthonormal basis of (m, ¢, ).

We also give an orthonormal frame field {e;}7"-' on a neighborhood W of

c(t), 0<t<l, as follows:

1.4) W:={kc(s); ke UCexp(m), |s—¢|<e};
(1.5) {(ei)kcm==ﬂ(s)“fk*X,-c<s), l<i=m-1,
(em) ke(s) = Trx €(S),

where 74, k € K, is the action of K on M, ¢(s) is the tangent vector of c(s),
and U is a small neighborhood of e in exp(m).
1.2. Examples

ExaMPLE 1.1 (S” can). In this case, Hsiang-Lawson [8], Takagi-Takahashi
[14], and Asoh [1] classified cohomogeneity 1 actions on (S”, can). A typical
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example is K = SO(p +1) X SO(n ~ p) C SO(n +1) acting naturally on the
unit sphere S”, 0 < p < n. The representing geodesic c(¢) is

(1.6) c(t)y=cost& +sint§, ,€8",

where 0<¢t<n/2 whenl=p=<=n—-2and O0<¢<x when p=0or n—1,
and where {Ej}}’i} is the standard basis of R"*!, that is, £;=(0,...,0,1,0,
...,0). We only treat the case 1< p=<n—2. In this case, J,=J=SO(p) X
SO(n—p—1), Jy=SO(p)xXSO(n—p), and J,,,=SO(p+1) X SO(n—p—1).
We can take an orthonormal basis {X;}?={ of m as

E, O 0 0
Xi=("" , 1<i<p; X;:= , l<i<n-1,
! (0 0) =p A (o E,-_,,> prisi=n

where E; is the (p+1) X(p+1) matrix whose (i+1,1) entry is 1, (1,i+1)
entry is —1, and all other entries are zero, and where E;_, is the similar
(n— p) X (n— p) matrix. Then the functions f;(¢), 0<¢t<=w/2, are

(LT Alt)=-=flt)=cost,  fp(t)=-++=f, () =sint.

ExampLE 1.2 (CP” can). Classification of cohomogeneity 1 actions on
(CP”", can) was done by Uchida [15]. A typical example of cohomogeneity 1
action on (CP" can) is K= SU(p+1)xSU(n—p)C SU(n+1),0=<p=<n,
acting in the natural way on CP". The representing geodesic is given by

1.8) c(t)y=[cost§+sinté,, ,]eCP", 0=<i=m/2.
The isotropy subgroups J, of K at ¢(¢) are
((¢ o] )
0
0 x telU(l),xeU(p),yeU(n—p—1), m
J = |- - << —,
=1 £ 0| detx=dety=¢"" 2
0
L 0 y/ W,
('('E 0 ™ I
0
Jo = 0 x ;EeUULieUumyeSUm—pL>’ and
detx=£
0 y
- ), _J
-a ™\ ™
X 0
xeSU(p+1),£€U(1),yeU(n—p—1),
Jen= | — 55 | g

£ 0| dety=¢""
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In this paper, we always fix our Riemannian metric g on CP” as one-fourth
of the Fubini-Study metric. Then the inner product ¢, ) on m is given by

(X,Y)=—31Tr(XY), X,Yesu(n+1).
We can take as an orthonormal basis of (m, {, ))
E; 0O F; 0
Xi=("" , 1=sj=<p; X;=( '7° , l<j<2p;
J (O O> J=EP j ( 0 O) prl=y=ip

0 O

0 0
.Xj=( ), 2p+l1=<j=a; Xj=<0 F
j—b

, a+l=<j<2n-2,
0 Ej—2p )

where b:=n+p—1 and X,, _, is the diagonal (n+1) X (n+1) matrix
[ipns —ins -ees =iy, —i(R—p—1)13, in3, ..., iny],
and where n;:= (n—p)n, n,=(p+1)3, and

n’i=(n—p) (p+ 1) (n—p)p+(n—p—D(p+1)~.

E; (resp. Fj) are (p+1) X (p+1) or (n— p) X (n— p) matrices whose (j+1,1)
entryis 1 (resp. i), (1, j+1) entry is —1 (resp. ), and all other entries are zero.
The functions f;(¢),0<t < w/2, are

cost, 1=j=<2p,
Si)y=+ . ; :
sinf, 2p+l=<j<2n-2;

(1)=— sin 2¢, =2n—1.

o \/5(1?+1 n—p ) /

ExampLE 1.3 (HP”,can). The classification of cohomogeneity 1 actions
on (HP", can) was done by Iwata [9]. A typical cohomogeneity 1 action is
K=8,(n)xS,()CSy(n+1)={xeURn+2); xJ,41x=J,41}, where

0 I
J — n+1
n (—5+1 0 )

and 7, is the identity matrix of degree n+1. The representing geodesic
c(t)=z(t)-oeHP", 0=t =w/2, where o is the origin of HP"=§,(n+1)/
Sp(n) X S,(1) and

zZ(t)=exp I(L(?)l 15?1) €Sy(n+1),

where £ is the same (n+1) X (n+1) matrix as in Examples 1.1 and 1.2. The
isotropy subgroups J;, 0=<¢=<7/2, are J;,=§,(1) XS,(n—1), 0 <t < 7/2,
Jo=K, and J;,, = 5,(1) X S,(1) X S,,(n—1). We define the inner product <, )
on m by (X,Y)=—1Tr(XY), X,Yesu(2n+2), which corresponds to a
constant multiple of the standard S,(n+1)-invariant Riemannian meric on
HP". We take an orthonormal basis {Xj]j*’;]l of (m, ¢, ») in the way that the
functions f;(¢) are given as
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sin f, l=<j=<4n-—4,

(1.10) ff(t)z{sinZt, 4n—3=<j=<dn-1.

ExampiE 1.4 (Q,,can). The complex quadric Q, = SO(n+ 2)/SO(2) X
SO(n) has a cohomogeneity 1 action of K =S8O(n+1) C SO(n+2) (cf. [15]).
The representing geodesic c(¢), 0<t=<w/2, is c(t) =z(t)-0, where o is the
origin of Q,=S0(n+2)/SO(2) xSO(n) and z(¢) is the 1-parameter sub-
group of SO(n+2) given by

Kcost 0 -—sinft

0 1 0

sint 0 cost
z(f)=

1 \‘\n—l

1

_ »,
The isotropy subgroups J; of K at ¢(¢) are J;=SO(n—1) when 0<t < /2,
Jo=S80(n), and J,,, =SO(2) X SO(n—1). The inner product {,) on m is
given by

(X,Yy=—1Tr(XY), X,Yeso(n+2),

which corresponds to the SO(n+2)-invariant Riemannian metric on Q,,.
An orthonormal basis {X j}f’i‘ll of (m, {, ) can be chosen in such a manner

that the functions f;(¢) are given by

Si(t) =cost;
(1.11) fily=1l, 2<j=mn;
Ji(t)=sint, n+l=j=<2n-2.

2. Reduction of the Euler-Lagrange Equation

2.1. Setting

Our situation is that both compact Riemannian manifolds (M, g) and (N, /)
admit cohomogeneity 1 actions of compact Lie groups K and G, respec-
tively. We may write the orbit spaces K\M =[0,/] and G\N =0, /] and fix
the geodesics ¢(¢) (0<¢=</)and &(r) (0<r=<]) of (M, g) and (N, h), which
represent the orbit spaces K\ M and G\ M, respectively. We denote by J,
and H, the isotropy subgroups of K and G at c¢(¢) and ¢(r). Then, for 0 <
t<!land 0<r </, J, and H, are the same groups J and H, respectively.

Let A: K— G be a Lie group homomorphism. A mapping ¢: M — N is
A-equivariant (cf. [5, (4.17)]) if ¢(kx)=A(k)P(x), ke K, x e M. Then, for
any A-equivariant map ¢ : M — N, there exist a function r: [0, /] — [0, /] and
a map ¥:[0,/]— G such that ¢(c(£)) =V (¢)c(r(t)), t €[0,/]. The A-equi-
variance of ¢ implies that

(2.1) V() 'AWJ)Y () C Hyyy, 10,11,
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Conversely, given a function r: [0,/]— [0, /] and a map ¥: [0, /] —» G with
(2.1), we get an A-equivariant map ¢: M — N by

(2.2) d(ke(t))=A(K)¥(1)c(r(t)), keK, tel0,1],

and every A-equivariant map of M into N can be obtained in this way.

2.2. Continuity

ProrosiTION 2.1. Assume that the functions r:[0, I] = [0, I] and ¥:
[0, 11 — G satisfy (2.1) and extend continuously to (—e,l+¢€), e >0. Then the
A-equivariant map ¢: M — N given by (2.2) is continuous.

Proof. (1) Continuity on M. We take a coordinate around any point koc(t)
in M as k, exp(27; xJX Ye(t)- (xq,.--5 X, —1, ). Since ¢ satisfies

m-—1
¢<k0 exp( X )c(t)) A(ko)exp< D xJA(X)>‘If(t)c(r(t))

the continuity of ¢ at kqc(¢) follows immediately from those of ¥ and r.

(2) Continuity on Kc(0). Recall that the coordinate around any point in
Kc(0) is given as follows (cf. [2; 17]): Let j, be the Lie algebra of J, in k, and
let 1y, my be the subspaces of jg, k which are orthogonal to i, j, with respect
to (,), respectively; that is, k=jo@my, jo=]Dly. Defining ¢(c(—¢)):=
Y(—t)c(r(—t)), ¢(c(t)) is continuous in ¢ with |#| <e. Any point p around
koc(0) with kg € exp(ly) can be expressed as

p=koexpYexp Xc(t)=koexpYexp(X+nX)c(—1),

with Y emy, |¢|<e and normalized X e{, by exp2xX €J, and p— kyc(0)
if and only if Y— 0 and 7 — 0. Since

¢(p) =A(ko) exp A(Y ) exp A(X)p(c(?))
= A(ko) exp A(Y) exp(A(X) + wA(X))d(c(—1)),
if p — kyc(0) then
d(p) — A(kg) exp A(X)p(c(0)) = A(ky) exp(A(X) + wA(X)) p(c(0)).

But since ¢(c(0)) = ¥(0)&(r(0)), ¥(0)~1A4(Jy)¥(0) C H, o, (by condition
(2.1)), and X €1y C jy, we have

exp A(X)¢(c(0)) = exp(A(X) + mA(X))$(c(0)) = ¢(c(0)).

Therefore ¢(p) — A(ko)p(c(0)) = dp(koc(0)) if p— kyc(0).
(3) Continuity in Kc(/) follows in a similar way. ]

_2.3. The Euler-Lagrange Equation
We calculate the tension field

7(¢):= _El(ﬁejme,- —¢.V, e))
P |

for an A-equivariant map ¢: M — N which is smooth on M.
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Since ¢o1y = 744)° 9, K€K, and K and G act isometrically on (M, g) and
(N, h), the tension field satisfies

(2.3) T()(kX) = T44)s7($)(X), k€K, xeM.

Then we only have to calculate 7(¢) at ¢(¢), 0<¢ </. In order to do this,
let us recall that the metrics g and # on M and N are described as follows
(cf. §1.1): Let m and n be the subspaces of k and g which are invariant under
Ad(J) and Ad(H), and orthogonal to j and §) with respect to the inner prod-
uct ¢, ) on k and g, respectively. Then

g=dt*+g, h=dr’+h,,

and the inner products «, and 8, on m and n are induced from g, and A,.
Choose orthonormal bases {X;}7-}' and {Y,}"Z] of (m, (,)) and (n,{,)) in
such a way that

o (Xi, X)) =fi(0)%6;; and (Y, Yp) = hy(r)*8e.

As in formula (1.5), define orthonormal frame fields {e;} 7=, Yand {&,)"Z! on
neighborhoods W and W of c(¢) and &(r), respectively. Then we obtain the
following theorem.

THEOREM 2.2. (i) Assume that the function r(t): [0, [1— [0, I] satisfies
r(0)=0, r(l)=1, and 0< r(t) <l for 0<t <. Then the tension field of an
A-equivariant map ¢: (M, g) — (N, h), which is smooth on M, can be de-
scribed as

m—1
(2.4) T(qﬁ)(C(I))=(NV¢,c¢*é)(¢(C(t)))+< > L7 f)cb*c

m-—1n-1

-3 X fj(f)_zhf(l')_

Jj=1i=1

( i J)T‘I/ C(l‘)

m—1

+y L) 2rg Vi, U1+ VU, Up)
= —(AA(Y Y AWU(X; XD b

Jorr=r(t), ¥=¥(¢), 0<t</. Here we put A(X;) = Ad(¥Y)(U; + V), U; e,
V,eh, and X, is the n-component of X e g=hdn. Also U(X,Y)em and
V.(X',Y') en are defined by

200(U(X,Y), Z)=a(X,[Z,Y] )+ ([Z, X ], Y), X, Y,Zem;
28, (V(X",Y'), Z")=B(X", (2, Y'])+6,(2, X', Y'), X', Y, Z'en.
(ii) In particular, if the orbits (Kc(t), g,), (Gc(r), h,) satisfy
(2.5) U(X,X)=0 and V.(X,X')=0 for Xem, X'en,

and ¢(c(t))=c(r(t))—that is, ¥(t)=e, 0<t < I[—then
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m—1 df:
(2.6) 7(¢)(c(?))= {f+< % Jﬁ(t)_lgj—;)f
Jj=1

m-—1n—1

— . -2 . _3dh1
% 2 (O)7h(n) g

j=11i=1

(Yi’A(Xj))z}é_(r(t))

m-—1

+ E f(t)_z[ J’ J]c(r(l))

forr=r(t), 0<t <. In this case, 7(¢)(c(t)) =0 if and only if

m—1n—1

2.7 i+ ( > 07 Jg)"- > 2 O —Br(Y,,A(X ))>=0

Jj=1i=1
and

(2.8) C:= 2 fj(f)_z[ 4 U1=0 in g.

REMARK 2.3. The condition (2.5) is satisfied for all the Examples 1.1-1.5.

Proof. By the assumption O <r(t)<I for 0<t<I, we may take the ortho-
normal frame fields {&,}7Z} around &(r(¢)). We first calculate h(e,, d«e))
around c(¢), 0<t¢ </, in the equation

n

(2.9) \“7ej¢*ej =Y {ej(h(&,, pxe)) 8, + h(E,, ¢*ej)€ejéa}.

a=1

For k € U C exp(m), we write
A(k) =¥ (t)n(k)h(k) ¥ ()™
with n(k) € exp(n), h(k) € H. Then we use the following lemmas.
LEMMA 2.4. For ¥Y=Y({), r=r(t):
SOy oy, Ad(B(k)WUiery, 1<j=m—1,

(1) bsCikc(y =19 . " .
Jke(t) r(f)T\y*Tn(k)*C(r), j=m.
(ii) . = ha(r)_lT‘I’*Tn(k),nc"(r) , I=sa=sn-—1,
ag(kc(t)) T8, Tn(k), C-'_(r), a=n.

(iii)  h(&,, Pxe;)(kc(t))
ho(r) (O TIBAY,, Ad(R(E)U), 1=sj=m—1, I<sa=<n-—I,
=< 0, j=m,l<a<n—-lorl=sj=m-1,a=n,
r(t), j=m, a=n.

LEMMA 2.5. (i) Forl=j=m-—1,

{J;(t)—zha(r)—‘ﬁr(iz,ng-,U,-]), l<a<n-—1,
0,

a=mn.

ej(h(e_a’ Q')*ej))(C(t)) =
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(ii) For j =m,

ef(h(éa’%em))(c(t)):{o l<sasn-1,

F(t), a=n.
Therefore, at c(¢),

(2.10) X ej(h(E,, dx€)))E,
a=1

[ 2 A T8, [V U De,, 1= j=m—],
| F(0)e,, j=m.

On the other hand, %Iéa(c(t)) = Sh =1 1@, 0+€) (V5 8)g(c00))-
LEMMA 2.6. (i) Forl<a,b<n-—1, and at a point ¢(c(t)) =¥ (t)c(r(t)),
Ny > ~1 -1 dhy, = 1
Ve, 8= hao(r) " hyp(r) "7y, _hb(r)?;_—aabc(r)'l'i[yb,Y;]+V;‘(YbaYa) .
(ii) Fora=b=n,
_ -1l @ L . 1 .
R 1 L ) S T R AP
In (2.9), since

n ~ n
2 h(é_aa ¢*ej)vej§a= E h(é—a’d)*ej)h(é-a’ d)*ej)NVé'béa)
a=1 a,b=1

we may calculate ﬁejme}- making use of the above lemmas. On the other
hand, since
dj;

(Vx, X))oty = —J?—CF

V:é=0, and ¢4 X = 7y, (AA(Y ") A(X)) ey fOr X €m we may compute
qS*Vejej, and thus we obtain Theorem 2.2. O]

() +U(X}, X))

From this point on, we will consider an A-equivariant map ¢ satisfying the
condition

(*) ¢(c(t))=c(r(t)), thatis, ¥=1,

and classify all A-equivariant harmonic maps satisfying (*) between coho-
mogeneity 1 Riemannian manifolds in Section 1.

3. Equivariant Harmonic Maps from Tori

3.1

In this section, we classify all A-equivariant harmonic maps satisfying the
condition (*) from a flat torus into a Riemannian manifold (N, /) in the
examples in Section 1 which admit a cohomogeneity 1 action of a compact
Lie group G.
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Let (M, g) =(T?, g) be a flat torus where

K=S0(2)= {(C?SB _SM); R
sinf@ cosé

acts cohomogeneity 1. Then T?=R/27Z X R/TZ with some T > 0. The
constant 7> 0 will be determined as the period of the periodic solution of
some ODE. In this case, the isotropy subgroup J; of K consists only of the
identity

0

Let A be a homomorphism of K = S0O(2) with the compact Lie group G.
Then any A-equivariant map ¢ with (*) of (7%, g) into (N, 4) is of the form

(3.1) o(t, 0):= exp 0A(X,)c(r (1)),

) and fi(?)=1.

where &(r), 0=<r <1, is the representing geodesic of (V, 1), and A satisfies
always the condition (2.1). The conditions for ¢ to be harmonic are, due to
Theorem 2.2, as follows:

(1) If we put A(X )=U;+V;, U, en, and V; €}, then
(3.2) [V1, U]1=0;

(2) the function r(¢) satisfies
. ol dh;
(3.3) F= hi(")d—lﬁr(Yi, U,)*=0.
i=1 r

Then, since exp 0A(X;) = exp 8U, exp 8V due to (3.2) and exp 8V, c(r(t)) =
c(r(t)), we get

(3.4) o(t,0)=expOU,c(r(t)).

Note that (3.3) and (3.4) depend only on U; en.
Summing up, we obtain the following proposition.

ProrosiTION 3.1. Let A be a homomorphism K =S0(2)— G satisfying
AX)=U,+V, Uen, Vieh, and (U, V1]1=0. Then all the A-equivariant
harmonic maps ¢: (T2, g) — (N, h) with condition () which admit cohomo-
geneity 1 action of G are exhausted by all solutions r(t) of (3.3) such that
c(r(1)) is periodic in t with period T, and the corresponding harmonic maps
are given by (3.4).

In the rest of this section, we will give explicitly A-equivariant harmonic maps
of flat tori into several kinds of cohomogeneity 1 Riemannian manifolds.

3.2. Spheres [1]

We first consider the action of G=SO(p+1)xSO(n—p)CSO(p+1) on §”
as in Example 1.1. In this case, the map ¢ in (3.4) is of the form
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0 -'X
(3.5) ¢(0,t)=cosr(t)exp0<X 0 )51

t

. 0
+smr(t)exp0<Y 0 )Ep+2eS",

where {£;}7X1 is the standard basis of R"*!, and X e R” and YeR" 7! are
arbitrary vectors such that both matrices

0 —-'X 0 -y
expB(X 0 ) and exp@(Y 0 ),

are periodic in 6 with period 2«. The function r(#) is a solution of
(3.6) F+(|X|*P=|Y|*)sinrcosr=0

such that (cos r(¢), sinr(¢)) is periodic in ¢ with period 7. Then these exhaust
all the A-equivariant harmonic maps with the condition (*) of (T2, g) into
(8", can) with the (SO(p+1) X SO(n— p))-action. In particular, in the case
of n=2 or 3, all such harmonic maps are given as follows.

Case n=2: For each a € Z, all solutions of 7 —a sinr cosr =0 with peri-
odic (cos r(t), sinr(¢)) in ¢ with period 7 yield harmonic maps
(3.7) T?23(0, 1)~ (cosr(t),sinr(t)cosab,sinr(t)sinafd) e S2.

Case n=13: For all a, b € Z, the similar solutions r(¢) of
F4(a’>—b?) sinrcosr=0
yield harmonic maps
(3.8) T?s3(6,1) ,
— (cos r(¢) cos af, cos r(¢) sinaf, sin r(t) cos b8, sin r(¢) sin b9) € S3.

Here we remark that our ODE is # —k sinr cosr =0, where k € R. This is
just the pendulum equation ¢ — k sin ¢ = 0, by putting ¢ = 2r. For each solu-
tion ¢, the function E = $¢?+ k cos ¢ is constant in ¢. Therefore it is known

that there exist many solutions r(¢) such that the position of the pendulum
(cos r(t), sinr(t)) is periodic in time ¢.

3.3. Spheres [II]

The odd-dimensional sphere $2"~!, n>3, admits another cohomogeneity 1
action of G = SO(2) x SO(n) by M(n,2,R) 3 X - IXk™ e M(n, 2, R) for
(k,I) e G, where S?"~!'={X eM(n,2,R); || X|=1}. In this case, the repre-
senting geodesic ¢(r) is

N ty 0 sinr 0 ... 0
= < r<
er) (cosr 0 0 .. 0)’ O=r=m=/4,

and the orthogonal complement n of the isotropy Lie algebra of g at ¢(r),
0<r<mw/4, is given by
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_t
n={(X,(IZ[ OZ));X,Yeéo(2),ZeM(n—Z,Z,R)}.

We can choose an orthonormal basis {Y;}?272 of (u, ¢, )) such that the func-
tions h;(r) are hy(r) = (1/V2)(cosr —sinr), hy(r) = (1/V2)(cosr + sinr),
hi(r)y=cosr (3<i=<n),and h(r)=sinr (n+1<i<2n-2).

Then for allae Z, beR, and Z, W e R”~2 such that

0 —-b -'Z
B(0):=exp0| b 0 —'W
Z W 0
is periodic in € with period 27, the mappings
6 sinab
(3.9) 0,0y B@cr@)( o ) g gt
—sinaf cosaf
give harmonic maps of (7%, g) into (S%"~!, can) if r(¢) is a solution of
2 p2
(3.10) i+ "7 cos2r+(|Z|2~||W|?) sinrcosr =0

such that (cosr(¢),sinr(¢)) is periodic in ¢ with period 7. All A-equivari-
ant harmonic maps with () of (7', g) into (S?”~!, can) with the action of
SO(2) X SO(n) are obtained in this way.

3.4. Complex Projective Spaces

In the case of Example 1.2, with G=SU(p+1) X SU(n—p) C SU(n+1) act-
ing on N= CP", we take arbitrary a e R, Z € C?, and W e C" P~ ! satisfying
that both pn,a and (n— p—1)n,a are integers, and that both matrices

_t7
Z(0):=exp0<ap£1X()+(O Z>> and

Z 0
0 —-'w
w(o):= o —a(n—p—-1E&, X5+
(0) exp(a(n p—1E X (W 0 ))
are periodic in 6 with period 27, where
Xé:[i,—i,...,—i] and X"=[i,——’—-,...,——’——]
p p n—p—1 n—p—1
are diagonal matrices. Then, for any solution of
(3.11) F+(|W|?=|IZ|]*)sinr cos r —2a?sin2r cos 2r =0

such that (cos r(?), sinr(t¢)) is periodic in ¢ with period 7, the maps
(0,t) = [cosr(£)Z(0)&,+sinr(t)W(0)§,,+,] € CP"

exhaust all A-equivariant harmonic maps with () of (T2, g) into (CP", can)
with G=(SU(p+1) xSU(n—p))-action. Here 7,9, are the numbers in
Example 1.2 and {£,}71] is the standard basis of R"*'.
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3.5. Quaternion Projective Spaces

In the case of Example 1.3, for any X = 3# 7! a; X, (a; € R) such that exp .X
is periodic in 6 with period 27, and for any solution of

4n—4
(3.12) i"——( D a,-2> sinrcosr—2(a3,_3+az,_,+a3,_;)sin2rcos2r=0
i=1
such that (cos r(¢), sinr(t)) is periodic in ¢ with period 7, the maps
(0,t)~expOXc(r(t))eHP"
give all A-equivariant harmonic maps with () of (72, g) into (HP", can)

with the action of S,(n) X S,(1) C S,(n+1).

3.6. Complex Quadrics
In the case of Example 1.4, for aeR and X, Ye R”~! such that

0 —a -'X
Z(@):=expll a 0 -'Y
X Y 0
is periodic in # with period 2=, and for any solution r(¢) of
(3.13) F+(|Y|?—a?)sinrcosr=0

such that (cos r(?), sin r(t)) is periodic in ¢ with period 7, the maps

1 0
(6, f)'-*<0 Z(e)>2(r(f))'0€Qn

yield all A-equivariant harmonic maps with (*) of (7%, g) into (Q,, can)
with the action of G=SO(n+1).

4. Smith’s Examples Revisited

Let (M, g) =(S", can) and (N, h) = (S", can), the standard spheres. Let K =
SO(p+1)xXSO(m—p) C SO(m+1),G=S0O(qg+1)xXSO(n—q) C SO(n+1)
act on S and S” as in Example 1.1, respectively. The representing geodesics
c(t),0<t=z/2and ¢(r), 0<r=<w/2, are as in (1.6). Let J,, H, be the iso-
tropy subgroups of K, G at c¢(¢), c(r), respectively. Then the homomorph-
isms A: K — G satisfying A(J;) C H,(;, under the conditions 0 <r(¢)<x/2
0<t<n/2), r(t)=0, r(w/2)==/2, are described as

x 0 7' (X) 0
4.1 A = : .
-1 (0 y> ( 0 w"(y))

Here (7', V,/) and (n”,V,_~) are real (q+1)- and (n— q)-dimensional repre-
sentations of SO(p+1) and SO(m — p) which are spherical with respect to
SO(p) and SO(m—p—1), respectively. Namely, let {vj}?: 1 w3727 be the
orthonormal bases of V., V.~ such that v;, w, are fixed under the actions of
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7' (SO(p)), 7"(SO(m — p —1)), respectively. Represent «’ and «” by matrices
with respect to the bases {v;} and {w;} as

(X)) =Y wli(x)v; and T (y)w,= EWkI(J’)Wk,

with x e SO(p+1) and y € SO(m — p). Then the homomorphism A given by

A<x O)z(vr,fj(x) 0 )
0 0 mu(y)

satisfies the conditions A(J;) C H,(;), 0 < ¢ =< x/2, and all such homomorph-
isms are given by this way. The corresponding A-equivariant map with (%)
¢:S8"—>S"is given by

(4.2) ¢:8"scostx-§+sinty-£,,,

qg+1
= cosr(t) X wi(x)E; +sinr(f) E Ti1(¥)Eg414:€S”

i=1 i=1

xoeK
0 y ’

where the {£;]s are the standard bases of the Euclidean spaces. The equa-
tions for ¢ to be harmonic are

with

’ XII
4.3) F+{—ptant+(m—p—1)cott}i'+{ >\2 —— }sinrcosr=0
cos“¢t sin-t
and
(4.4) C=(cost)™2 2[,, U1+ (sin¢) ™2 E [V, Ui1=0,

J=p+1
where N=k(k+p—1) and N=Il(l+m—-p-2), k,1=0,1,2, ..., are the
eigenvalues of the Laplacian on (S%, can) and (S 771, can) correspond-
ing to the spherical representations (7, V,-} and («”, V..~), respectively, and
A(X;)=U;+V;; Ujen, V;el. Then it can be proved by the similar way as
Proposition 6.4 that (4.4) holds automatically. Furthermore, for the solu-
tion r(¢) of (4.3) with the conditions

“4.5) O0=r(t)=wn/2 (0<t<w/2), r(0)=0, and r(w/2)==u/2,

the A-equivariant map ¢ (4.2) is a continuous weakly harmonic map of
(8™, can) into (S”, can) of Sobolev class L?. By the regularity theorem (cf.
[7, p. 397; 3; 11]), this ¢ is a smooth harmonic map. On the other hand,
Ding [4] gave the necessary and sufficient conditions for the existence of so-
lutions r(¢) of (4.3) with (4.4), which are as follows. Under the assumption
N(p—1)=N(m—p-—2), either

(i) (p—1)*>< 4N, or
(i) (p—1)2=4N and V(m—p—=2)2+4N +V(p—1)2—4N <m —3.

Now let us consider the following particular case:
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p=m-—2, m=3,

(4.6) ' SO(m—-1)3x~-xeS0O(m-1),
7": SO(2) sy~ y'e SO(2),

for / € Z. Then our A-equivariant map ¢; is of the form

(4.7) ¢;:S">scostx-£ +sint(cosbf,, +sinbé,, )
— cosr(t)x-&;+sinr(t)(cos abf,, +sinabf,, . ) € S"
for x e SO(m—1), where {£;} is the standard basis of R™*!, Ding’s condi-

tions are reduced to the following by applying N=m—2,N'=/>adp=m—2
(m=3):

G e3=sm=7,;

(i) ©® m=8 and 2|/|+V(m—3)2—4(m—2)<m—3 e m=8 and /=0, *1.

Making use of the formula deg(¢) = SM‘P*Uh /SM v, for a smooth map ¢:
(M"™, g)—>(S™ h), we get deg(¢p,;) = I. We therefore obtain the following.

ProposiTiON 4.1 (Smith [12]). For 3<m<7, the map ¢, is a harmonic
map of (S™, can) into itself of degree | for all | € Z.

5. Harmonic Maps of CP™ into §”

In this section, we give new harmonic maps of CP" into S”. We assume that
(M, g)=(CP™ g) and (N, h)=(S" can), where g=+xthe Fubini-Study
metric. Consider the group actions K= SU(p+1) X SU(m—p) C SU(m+1)
on CP™ as in Example 1.2, and G =S0(g+1) X SO(n—q) C SO(n+1) on
S™ as in Example 1.1.

For a function r(¢) with 0<r(¢)<=/2 for 0<t<w/2, r(0)=0, and
r(w/2)=m/2, each homomorphism A4 of K into G satisfying A(J;) C H,(,
for 0 <t =< =/2is also described as

x 0 7' (x) 0
(5.1 A(O y) ( 0 7r”(y)>’ xeSU(p+1), yeSU(m—p),
where (7', V,/) and (7", V,~) are respectively the real (g+1)- and (n—gq)-
dimensional representations of SU(p+1) and SU(m — p) which are spheri-
cal with respect to SU(p) and SU(m — p—1)—that is, the orthogonal repre-
sentations of SU(p+1) and SU(m — p) whose representation spaces are the
spaces of real-valued eigenfunctions of the Laplacian of CP? and CP™ 71
with the eigenvalues N=4k(k+p—1) and N'=4/(I+m—p-—2), k,1=0,1,
2, ..., respectively. Note that

_ 2
q+1:p(p+2k)(£‘li+_l_{_l)i> ;
plk!
I o (m—p+1-2)1\?
n—qgq=(m—p—1)Y(m—p 1+21)( (m—p—l)!l!>'

Our A-equivariant map ¢: CP""— S§" is
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(5.2) ¢:CP"3(costx-&+sinty-£,,,]

g+1 n—q
= cosr(t) X wih(x)§;+sinr(r) E T (V)Egr14i €S,

i=1 i=1

x 0
K,
(0 y>e

where the {&;}s are the standard bases of the Euclidean spaces. Then the
equations for ¢ to be harmonic are

with

(5.3) F4+2{—ptant+(m—p—1)cott+cot2t}r

xl Xfl .
+ T T TS sinrcosr=0
cos~{ sm-t¢

and
2p 2n—-2

(5.4) C=(cost)™> ¥ [V;, Ul +(sint) > 3 [V, U]1=0,
Jj=1 J=2p+1

where A(X;)=U;+V;, Uien, V;eh, 1< j<2m—2. But (5.3) is just Smith’s
equation

(5.39) F+H{—Q2p+Dtant+2m—2p—1)cott}r

kf k/l .
+ T T T3 sinrcosr=20,
cos<f SsIn“t¢

since (cos2t#)/(sin2¢)=1(cott—tant¢). It can be also proved in the same
manner as in Proposition 6.4 that (5.4) holds.

Ding gave necessary and sufficient conditions of existence for solutions of
(5.3) with O=r(t)=n/2 for 0<t<=w/2, r(0)=0, and r(w/2)==/2. For
such solution r(¢), the corresponding A-equivariant map (5.2) is a contin-
uous weakly harmonic map of (CP™, g) into (S”, can) of Sobolev class L3.
By the regularity theorem, it is smooth and harmonic. Therefore we obtain
the next theorem.

THEOREM 5.2. (1) (cf. Ding [4]) Assume that N'p=N(m—p—1). Then
equation (5.3) has a solution r(t) with the condition 0<r(t)<x/2 for 0 <
t<w/2,r(0)=0, and r(w/2)==/2 if and only if either

(i) p?<N or

(i) p?=N and N(m—p+ 12+ N +~p2—N<m—1.

(2) In particular, let p=m—p+1. If either

() I=k=((V2—-1)/2)p or

(i) k=1=1,
then for N=4k(k+p—1) and N'=41(I+ m—p—2) the A-equivariant map
(5.2) of (CP™, g) into (S”", can) is harmonic.

REMARK 5.2. (i) Forp=m—p—1=sand k=1[=1, (5.2) gives an A-equi-
variant harmonic map of (CP**!, g) into (S>*¢+?~! can). If s=1, then it
is a harmonic map of (CP?3, g) into (S°, can). However, it is not horizontal
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with respect to the Hopf fibering S° — CP2, whose composition of (5.2) is
not a harmonic map of CP? into CP2.

(i) Forp=m—p=sand k=1[=1, (5.2) gives an A-equivariant harmonic
map of CP% with §256+D =2,

6. Harmonic Maps from CP™ into CP”"

In this section, we give new nonholomorphic harmonic maps from CP" into
CP". We assume (M, g) = (CP™, g) and (N, h) = (CP", h), where g, h are ;
times the Fubini-Study metrics. Consider the group actions K=SU(p+1) X
SU(m—p)C SU(m+1) on CP" and G=SU(g+1)xSU(n—q) C SU(n+1)
on CP”, as in Example 1.2.

6.1

For a function r(¢) satisfying the conditions 0<r(¢)<w/2 for 0<t<m/2,
r(0)=0, and r(«/2) = /2, each homomorphism A of K into G satisfying
A(J)) CHyyy for 0=t <w/2 is given by

x 0 7'(Xx) 0

(6.1) A( )=( ” ), xeSU(p+1), yeSU(m—p),
0 » 0  ="(»)

where (7', V,/) and (7", V~) are the (q¢+1)- and (n—qg)-dimensional unitary

representations of SU(p+1) and SU(m — p), satisfying the restrictions that

TIIS(U(I)XU(‘D)) and WHIS(U(I)XU(m—p—I)) have 1-dimensional invariant sub-

spaces [v;]c and [w;]c of V.. and V_., respectively, and satisfy

6.2) (w' (X)) vy, U1) =7 "(Xg )wy, W)

Here X € ¢(u(l) X u(p)) and X € 8(u(l) X u(m — p—1)) are the diagonal ma-
trices whose diagonal entries are

i i , i i
Iy = eeey, —— and e, |,
[ P p] [ m—p—1 m—p—l]

respectively. Such representations («’,V,-) and («”, V,») are determined in
terms of their highest weights in the follwing manner.

Let us recall the unitary representation theory of the special unitary group
SU(n+1). For a Cartan subalgebra t = {[ix|, ..., ix,11]; 2/ x; =0, x;e R}
of a Lie algebra su(n+1) ={X eM,,,(C); ' X+ X =0}, let us define an ele-
ment \; in the dual space t* of t by [iXyyeees iXpyy] ~Xj, 1= j=n+1, and in-
troduce a lexicographic order > on t* in the way A\{ >N\, > - >7,>0>
)\n+1- Put

n

D(SU(n+1)) = {A= S mihymel,mp=--- Zmnzo}.
i=1

Then there exists a bijection between a complete set of non-equivalent ir-

reducible unitary representations of SU(n+1) and D(SU(n+1)), assign-

ing A e D(SU(n+1)) to an irreducible unitary representation (m,,V,) of

SU(n+1) with the highest weight A. Then we get the next proposition.
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ProrosiTiON 6.1. Each homomorphism A of K into G satisfying A(J,)C
H,, for 0=t =<x/2 is of the form (6.1). The unitary representations
(z, V) and (z", V) of SU(p+1) and SU(m— p) must have the following
highest weights, respectively:

N=(+2K )N +E Ny + kN,
A=+ 2k N+ k" Mg+ - 4K N p_1s

for L, k', k"eZ with nonnegative | +2k’, | +2k", k', k”. Then (6.2) can be
written as

(6.2%) (T (Xg) vy, 1) =LT"(X§)wy, wp) =l
where vy, wy are fixed under w'(SU(p)) and w”"(SU(m— p—1)), respectively.

The proof follows by a direct computation, making use the following
branching theorem.

LEMMA 6.2 (cf. [16, Thm. 4.1]). Let V=V, be an irreducible unitary repre-
sentation of SU(n+1) with highest weight A=X7_,m;\;. Then V, decom-
poses as S(U(1) x U(n))-modules into irreducible representations as

Va=2Vin -tk 0,0

where the summation runs over all the integers ki, ..., k, for which there
exists a nonnegative integer k such that

mz=k,+k=myzks+k=my=---2m,_=zk,+k=m,=zk

and Yi_im; =Xl k;+(n+1)k.

6.2
Our A-equivariant map ¢ of CP" into CP" is of the form

(6.3) ¢:CP">s[costx-§+sinty-£,,,]

qg+1 n—q
- [cosr(t) El m(x) & +sinr(t) X w{i(y)£q+1+s] e CP",
, <

i= i=
x 0
K,
<0 y>e

where the {¢;]s are the standard bases of the Euclidean spaces.

with

ProrosiTiON 6.3. The equations for ¢ to be harmonic are

(6.4) FH{—QCp+Dtant+2m—2p—1)cott}r
! " sin2r cos2r
+< uz — .'uz )sinrcosr—Zi2 — =0
cos*t sin-f sin® 2¢

and B
(6.5) C= 3 11, G1=0.
j=
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Herep :=2I1Q2k’+ p) + 4k’ (k'+ p), p":=212k"+a) + 4k"(k"+a), and a:=
m—p-—1.

The proof follows from Theorem 2.2 and the following considerations.
Taking the basis (X }2’" ' of m in Example 1.2, A(Xj) are of the form

-~

A(X)) = E a;Y; +V;, 1=j=2p,
i=1
2n—2
©0  Yax)="3 a¥+V, 2p+1=j=<2m-2,
i=2g+1 ’
L AXom-1) = 2m_1Y2n-1+tVom-1,

where V; ey and the coeflicients a;;, @5, satisfy

(" 2p 2q

S Y af=(N+28,N)— 12

j=1i=1 +1

2m=2 2n-2 5 2a

(6.7) < D D a,l-(A”+26” ANY—[F——
j=2p+1i=2q+1 a+l’
—qg-—1 a

anr= (Y (0
L qg+1 n—q p+1 a+1

The numbers (A’+ 26, A’) and (A”+ 26", ") are

(N+28, A _12 +1 +212k’+ p)+4k'(k'+ p),
(6.8) p ;
(A"+287, A"y = 120—_:_’1 +202k"+a) +4k"(k"+ a).

6.3
Here we show that the vertical equation (6.5) holds automatically.

ProrosITION 6.4. Under the above conditions (6.5), C=0.

Proof. Let us recall Example 1.2 and Section 2. Our situations are as fol-
lows. For the homomorphism A of k=j@®m into g=H®n, we put A(X;)=
U;+V; with Ujen and V; el for 1 = j=<2m—1. Then decompose C as C=
CI+CZ+C3, where

2p 2m—2
Ci:=(cost) 2 [V, Ul, Cyp:=(sint)™? Y [V, Ul
j=1 j=2p+1
p a Y7\,
and C3:=2 P+1 + 2+1 (sin2¢) " [Vap—1, Uz 11

Putting the subspaces 1, ={Y}, ..., Yo,)r, 12={Y2441,-.., ¥Y2,-2]r, and not-
ing that [Y5,_1,H] =0, we get

(69) Clenl, Czenz, and C3=O.
On the other hand, by definition the homomorphism A satisfies
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(6.10) AAd(j)X)=Ad(A(J)A(X), xem, jeJ;

(6.11) Ad(A()C=C, jel.

Indeed (6.11) can be proved together with (6.10) and the fact that C; and C,
do not depend on the choice of orthonormal bases of m; = {X], ooy Xop IR

and my ={X5, 41, -..» X2m—2}R, respectively.
Then, by (6.11),

o
A<JO 1)(Cvl)=Cvl for j'e SU(p+1),

1 0
A(O j,,)wwl):Cwl for j”e SU(m—p),

and
expbXgy O ; 1 0 ;
A( 0 1>(Cvl)zemcv“ A(o expoXé’)(Cwl)=eMCW1

for all 6 € R. Therefore Cv; and Cw; belong to ¥V}, C ¥y and V), C V- as
S(U) xU(p)) and S(U(1) x U(m — p—1)) submodules, respectively. Using
the branching theorem (cf. Lemma 6.2), Cv; = \v,; and Cw; = pw, for some
A, p € C. Therefore C € RY,,_;®¥, which implies by (6.9) that C=0. [

6.4. The ODE

The next theorem concerns the existence of solutions of ODE (6.4) with
boundary conditions.

THEOREM 6.5. Suppose that ap’< pp”, a=m—p—1. The ordinary differ-
ential equation (6.4) has a solution with the conditions
6.12) O=sr()sw/2(0<t<n/2), r(0)=0, and r(w/2)=7n/2,
provided that either
() p*u'—1*and 0 < pu”"—1?, or
(i) p2=p—1% 0<p"—1%, 0<p/'—12%, and Na? + "+ 2 +\Np2—p'+ 12 <
m—1.

The proof is accomplished in a way similar to that of Ding in [4].
Our ODE (6.4) is the Euler-Lagrange equation of the energy

) 2 )
/2 sin“ r cos“r sin“ 2r
J(r :=S PR +12= t)dt,
(r) 0 { #sinzt " " cost sin2 2¢ J)

where f(¢):=1cos?’tsin®?¢ sin 2¢ = cos?” !¢ sin®”~27~1¢. The energy J is
a functional on the Hilbert space X defined by

w/2
X= {r e Hio (0, 7/2); ||r|?*= XO (F2+r3)ft)de < oo} :

Inthecase p>1lora=m—p—1>1, J is well-defined on X, but in the case
p=1and a=1, we still have J as a functional on X by allowing it to assume
+oo0,
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Note that J(0) =ap’A and J(w/2) = pu"A, where A= (a—1)!(p—1/
2(m—1)!. Then
(6.13) JO)=sJ(w/2) ® au’< pp”.
We also define the closed convex subset
Xo={reX;0=<r(t)<w/2when0<t<m/2}.

Then, as in [4], we obtain the following lemma.

LEMMA 6.6. There exists an ro which minimizes J over Xy; that is, J(rg) =
co=1Inf{J(r); r € Xy}. This ry is a solution of (6.4) with 0=<ry(t)<=w/2 for
O<t<w/2.

In [4], Ding claimed that if ry # 0, w/2 then ry satisfies r4(0) =0 and also
ro(w/2)==/2. But, in our case, we need the additional assumptions (see
Lemma 6.10).

CoROLLARY 6.7. If ¢y <min{J(0), J(w/2)}, there exists a solution ro(t) of
(6.4) with the conditions 0<ro(t)<7/2 (0<t<w/2) and ro(t) #0, w/2.

In the following, we assume (6.13). We will get the condition for ¢y < J(0) as
in [4]. We calculate the second variation of J at the critical point 0. Defining

d2
21(0):=~ds—2 J(sv) for velX,
s=0

we get

/2 .o 5
(6.14) 1(v)=§0 (02 4+ 0() 2} (t) dt,
where

Q(t)= #/1_*_12 #/_12

sin2t cos2t’

LeMMA 6.8 (cf. [4, Lemma 2.3]). If there exists ve X such that v=0 and
I(v) <0, then cy < J(0).

Using Lemma 6.8, we get the following lemmas in a manner similar to that
of Lemmas 2.4 and 2.5 in [4].

LEMMA 6.9.

() If p? <p/—12, then cy < J(0);
(i) if p?=p'—1? and Na?+ p"+ N2 +~p2—p'+ 12 <m—1, then cy < J(0).

LEMMA 6.10. Under the assumptions [*> <y’ and 1* < p”", all solutions r(t)
of (6.4), with0=<r(t)<x/2 for 0<t<mw/2 and r(t) #0, w/2, must satisfy
r(0)=0and r(w/2)=w/2.

Proof. This can be proved as in Lemma 5.5 of [12]. We first change the
variable e®=tanf, —oo <5 < co; then (6.4) is transformed into
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a2 d
(6.15) = +(e*+e) " (2ae~ —2pe) -
ds ds 5

+(eS+e ) YueS—pu"e 5}sinr cosr— 0} sin2r cos 2r =0.

We may prove that r(—o) =0 and r(o0) = w/2 for a solution r(s) of (6.15)
with 0<r(s)<w/2 (Vs € (—o, o)) and r(s) # 0,w/2. We may write (6.15) as

d*r

(6.16) ) =h(s)%—(g(s)—12cos 2r)sinr cosr,

where
h(s)=—(e5+e %) H{2ae °—2pe®}, g(s)=(eS+e S) HpeS—p"e 5.

Step 1: If |s| is large, dr/ds >0, and then r(%) and r(—oo) exist. Indezd,
for large s, A(s) ~2p and g(s) ~ p”. Thenif 0 < p'—12, g(s)—1?cos2r(s)>0
for large s. Then dr/ds > 0. In fact, if we assume dr/ds <0 then the right-
hand side of (6.16) is negative, and d?r/ds?* < 0. Therefore r(s) is decreasing
and becomes negative for large s, which is a contradiction. If s — —oo, then
h(s) ~ —2a and g(s) ~ —p”. The right-hand side of (6.16) behaves like

dy

—ZaE +(u"+1%cos2r)sinr cosr.

If 0 <p”—/2, then this second term is positive if s — —oo. Then dr/ds >0,
because if dr/ds <0 then d*r/ds?> 0 for s » —oo. Then r(s) increases and
becomes greater than 7/2 if s > —oo, which is a contradiction.

Step 2: Assuming r(o) < n/4, we derive a contradiction. The equation
(6.16) is written as

d*r dar  f(s)
17 —=h(s)———,
(©.17) ds? () ds 2
where f(s) = (g(s)— 1% cos 2r(s)) sin 2r(s). Differentiation yields
d
a _(ds +212% Fsin2r )sin2r+(g(s) —1? cos 2r)2# cos 2r.
ds ds

Since dg/ds =2(p'+p")(eS+e~%)72, the first term of df/ds is positive for
large s, because dr/ds > 0. By u'— 12> 0, g(s)—1?cos 2r > 0 for large s. Since
r(s) increases monotonically for large s and r(o0) < w/4, cos2r(s) >0 for
large s, and then the second term of df/ds is positive. Therefore df/ds >0
for all s =5, for some sy > 0. Then d?r/ds? < 2p(dr/ds) — 3 f(s,) for all
s=58g, and f(so) > 0. Therefore dr/ds = (1/4p)f(sy) for s=sy, which is a
contradiction.

Step 3: Assuming w/4 <r(e)<w/2, we derive a contradiction. There
exists € >0 such that 7/44+e<r(s)<w/2—e for all s=s; for some s7>0.
Then there exists a positive constant Cy such that sinr cosr = Cy, and then
—g(s)sinrcosr<—u'Cy<0 for s=s,. Also there exists a constant C;>0
such that /2cos2rsinrcosr < —Cy; < 0 for s = Sp, since w + de < 4r(s) <
2w —4e. Thus there exists a C >0 such that —f(s5)/2<—-C<0 for s=ys,.
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Then d?r/ds* < 2p(dr/ds) — C for s = so. Therefore dr/ds = C/2p for s = 5,
which is also a contradiction. We get also r(—o) =0 by arguments similar
to Steps 2 and 3. C

Summing up, we have proved Theorem 6.5 and the following theorem.

THEOREM 6.11. Let (w',V_.) and («",V_~) be the irreducible unitary repre-
sentations of SU(p+1) and SU(m — p) with the highest weights

N=(+2k W\ +Kk' N+ +k'\, and
AI,:([+2k”))\l+k”)\2+"'+k”>\m—p—ls

respectively, where l, k', k"eZ and |+ 2k’, | +2k", k', and k" are nonnega-.
tive. Assume that ap’< pp” wherea=m—p—1,

p'=21Q2k’+ p)+4k’'(k'+p), and p"=212k"+a)+4k"(k"+a).
If either
() p’<p—1?and 0<p”—12, or

Gi) p?=p/—1%,0<p" =1, 0<p’—1? and Na? + "+ 2 +Np2—p/+ 12 <
m—1, )

then the A-equivariant map (6.3) ¢: CP""— CP" is harmonic.

Now we ask which representations satisfy the conditions. Assume that p =
a=m—p—1.
() If k”"=k'=((N2—-1)/2)(p+1), then the conditions au’< pu” and (i)
of Theorem 6.11 are satisfied.
(II) If p=a=1or p—1=a=1, then k'=k"”"=1=1 satisfy the conditions
ap’ < pp” and (i) and (ii) of Theorem 6.11.
For the case k'=k"=1[=1, the dimensions of V.=V, and V_..=V,~ can be
given by Weyl’s dimension formula:

g+1=dimV,.=2"1p(p+1)(p+3);
n—qg=dimV,.=2"la(a+1)(a+3).

We then obtain this corollary.

COROLLARY 6.12. For the case k'=k"=1=1, the A-equivariant maps (6.3)

give harmonic maps from CP**! jpto CPPPTIP+H-1 fpg Jrom CP
into CP(p/z)(2p2+5p+1)_1'

REMARK 6.13. The A-equivariant harmonic maps ¢: CP™ — CP" in Theo-
rem 6.11 are neither holomorphic nor antiholomorphic except for the iden-
tity map of CP" into itself. Indeed, let J be the complex structures of CP™
or CP". Then J¢é(¢) = Xy, where

—tant X, 0
X= .
( 0 cottX6’>Ek

Then
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b (JE(1)) = AX)E(r(2)) = (—tan £ cos r(t)'n”(Xé)vl>

costsinr(t)w”(Xg)w,
and

JouE(t) =F(t)JC(r(1)) = (
By (6.2), we get

—ir(t)sin r(t)vl>

ir(t)cosr(t)w;

r(t)tanr(t)=+/tant and r(f)cotr(t)==+l/cotf,

if we assume ¢ is (anti)holomorphic. Then r(¢#)=¢ and / = 1. Since r(¢) is a
solution to (6.4), we conclude that k’=k”=0. Therefore CP"=CP™ and
¢ is the identity map.

REMARK 6.14. In the case /=0, the A-equivariant map ¢: CP” - CP" is
the composition of the harmonic map of CP"”"— §” in Section 5 and the
map S”"—RP"< CP".
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