Excision of Equivariant Cyclic
Cohomology of Topological Algebras

DONGGENG GONG*

1. Introduction

One of the fundamental theorems in cyclic (co-)homology is the excision
theorem, which was developed by Wodzicki [19; 21] and generalized to the
bivariant case by Kassel [11]. In [11; 18; 20] the excision theorem was used to
construct the Chern character from KK-theory to bivariant cyclic theory, and
to obtain the vanishing of cyclic (co-)homology of stable C*-algebras. In this
paper we define equivariant cyclic (co-)homology of topological algebras with
compact group actions and study its excision property. Section 2 is devoted
to the basic definitions of equivariant Hochschild and cyclic (co-)homolo-
gies, which are motivated by twisted cyclic (co-)homology [8]. This section
can be considered as an improvement of Brylinski’s equivariant Hochschild
homology [3] and a supplement of Klimek-Kondracki-Lesniewski’s equi-
variant entire cyclic cohomology for finite group actions [12]. Our defini-
tions are slightly different from those in [12]. In Sections 3 and 4 we prove
our main results, the excision theorems of equivariant Hochschild and cyclic
(co-)homologies, by introducing equivariant H-unitality, which is inspired
by Wodzicki’s theorem [21]. The main point is to deal with the twisting of
group actions. As a corollary of the excision theorem, we obtain the six-
term exact sequence of equivariant periodic cyclic cohomology. In Section 5
we show the existence of Mayer-Vietoris sequences of equivariant cyclic
(co-)homology which were used in the ordinary case to prove that the peri-
odic cyclic homology PHC, (C*(G,M)) of the algebra C*(G,M) for a
compact smooth manifold M is isomorphic to K-theory K&(M)®, C [2; 3].
Finally, we discuss the equivariant H-unitality in Section 6, which is much
more difficult than that in [21]. We do not know in general for what algebras
we will have the excision property of equivariant cyclic cohomology, al-
though the equivariant H-unitality is quite understandable. The Chern char-
acter in equivariant cyclic (co-)homology will be constructed in [9]. The mo-
tivation of the present paper is the possible applications to the equivariant
Novikov conjecture [5; 6; 10; 15] by means of equivariant cyclic cohomology,
which we hope to study subsequently.
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2. Equivariant Cyclic (Co-)homology

Let @ be a complete locally multiplicatively-convex algebra over C with an
increasing sequence of seminorms {p,}; —; defining the topology. Let G be
a compact group acting on @ by continuous automorphisms a: G — Aut(Q)
such that if @ is unital, then each «, is unital for g € G. Throughout, such
an algebra will be called a G-algebra and locally convex complete spaces
(l.c.c.s) with G-actions will be said to be G-spaces. In this section we will
define various equivariant (co-)homologies of the G-algebra @. To this aim,
let C(G) be the space of all continuous functions on G and let & denote
an admissible topological tensor product [2; 18]. Define morphisms di:
GE@("“’@C(G) - @®("’®C(G) and ¢,: @®‘"+”®C(G) ——»&®(”“)®C(G)
by
(aOag(al)sazy-"san)f(g), =0,
dy(ag, ayy....a,, fY(&)=1 (agy ..., C;A; 11,..-,a,) f(g), 1<i=n-—1,
(apap, ays...,a,_1) f(2), i=n,
and

tn(aOs al, seny an‘ f)(g) = (an’ aé—l(aO), als ooy an-—])f(g),
where (4, 4y, ..., a,, f) stands for (¢,®@a;® -+ ®a,® f) in RE"+VQ C(G).
Let G act on ¥ +D & C(G) by
ph(HOa al’ resy ans f)(g) = (airl(aO), reey ah—l(an)s h'f)(g)y g € G

Here (h-f)(g) = f(hgh™"). Note that d! and ¢, differ from those in [12]. All
maps defined so far on @®"*+D & C(G) are continuous. It is straightforward
to check that

1) dy-1di=diZ{d;, i<J;
. th—1d:7l, 1<i=<n
i _ n—1%n > ’
(2) dntn"'{d:, i=0.

Moreover, t,p, = pyt, and d: p, = p,d.. for he G. For instance,

tnpp(dos @y, .ees @y, F)8) =1, (i (ag), ...y 0 (@), B £)(8)
= (o Y(a,), a7 oy N (ag)), -ovs 0 (@, - 1)) f(Rgh™Y)
= o, (@, otjgh=1(ag), Ay, ..., @y_q) S(AGHTY)
= pp(@p, a3 (@g), 1y .., @y, S())(E)
= ppla(ag, ays ... @y, )(8)- .

Furthermore, if @ is unital, then we define
5i: @B G C(G) - RO IR C(G)
by
550> A1y ooy Ay SI(E) =(A0s +s @15 1, @iy g5 oee5 ) £(8).
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si commutes also with p, and satisfies the following identities:
3 Sue157 =s4tlsn, i<
siZidy, i<,
4) diisi=11, i=j,i=j+1,
si_ydi7l, i>j+1;

and
- t,.si7l 1<i=n
(5) Sht,=14 ntion o ’
Lys1Sns i=0.

Let b, b’, and T be the morphisms defined on @®"+D & C(G) by

n I3 0
bag,ay,...,a,, )= D (—1Yd/(ay, ay, ..., a,, ),
i=0

n_l . -
bl(aO) al’ veey an: f) = E (—l)ldrlz(a()’ al: seey an»f)’
i=0
and
T(“Os Alseens Ay, f) = (_l)ntn(aO’ Als ooy Ay, f)-
Similarly, we can consider the space of all continuous multilinear maps from
@®"+D) to C(G), Hom(@®"*Y, C(G)), and the dual of maps d., t,, b, and
b’; for example,
(tnf)(a{)’ als cesy an)(g) =f(an: ag—l(a())a al, ey an—l)(g)°
But G acts on Hom(@®"+), C(G)) by

(Bn f)(ag, ay, ..., a,)(8) = flay ao), iy ay), ..., o (@) (B~ gh).
d} and t, also commute with 5. i 3
Since 77+1 3 Id, we pass now to the quotient space of Q¥ +D & C(G). To
this end, let us define a map p on R®¥"+D& C(G) by
p(a()s al’ ey ans f)(g) = C(g—-l(a()s a13 ceny an)f(g)°
Let (@® *N& C(G))®g, , C denote the usual equivariant space
(@8 QC(G) &R C

added with another relation p, namely the quotient space of @R+ Q) C(G)
by the closure of the images of all maps Id — p and Id — p,,, # € G. We define
equivariant cyclic modules {CE(®R), b, t} and {C&(R), b, t} by

Ce(@) = (@®"*VQC(G) &g, , C;
C&(Q)=Homg(@®"*+Y, C(G))
= {f€ Hom(@®"*V, C(G)): py(f) = f, he G}.

The following is a basic lemma [4; 13].
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LEMMA 1. Let N=3X"_,T' and J: CS(Q) > CZ_ ,(R) be induced by
J(GO, Apseees Ay, f)= (_l)n(anaO’ Aisyeeesp_y, f)'
Then:

(@) t"*!'=1d and T"*'=1d on CE(QR);
(b) b=3r_oTIT~ UV gnd b’=3r-3 T JT -G+,
() b(1—T)=({1—-T)b’' and b’N = Nb;
(d) b2=(b")*=0.
The dual version of these results holds for C&(R).

Proogf. (a) follows from
it (@, ays .oy ayy F)(8)=p(ag, @y, ..., @y, F)(g)
in @¥"+Y & C(G). (b) is from
TITH D ag, ay, ..., 4y, £)(g) = (—1)p**(di(ay, ay, ..., a,, F)(R)).
(c) and (d) are obvious by (a) and (b) and formulas (1) and (2). C

As in the ordinary case [4; 13], the double complexes C%(®) and CE*(@®)
from CZ(Q) and C&(Q) are defined by

CS (@)=CS(@) and CI™Q)=CAQR), m,n=0,

with vertical and horizontal differentials §; and 8, (resp. 6! and 62) given by

61(x,q"™) ={

b(x,)q™, meven,
-b'(x,)q™, modd;

N(x,)g™ !, m even,
1-T)(x,)qg™"!, modd;

and &’ are dual to §;. Here an element in CS ,(R) is written as x, ¢ with x, €
CS(®) and g an indeterminate of degree 1. For convenience we set q"=0
for m<0. By Lemma 1, (§;)>=0=(6°)?> and 6,8, + 6,8, = 0= 56!6+525.. Let
T«(CZ(R)) and T*(CE(R)) be the total complexes of CS(®) and CZQR),
respectively. Define a morphism S in C&(®) and C4*(®) by

52(xn qm) =

S(x,q™)=x,q"% and S(x"g™)=x"g"™*2, m,n=0.
Clearly, S commutes with the differentials §; and é°. Let
Ker(S, T.(CE(Q))) =Ker{T.(CE(®)) £ T (CE(@))[2])
and
Coker(S, T*(CE(R))) = Coker{T*(C&(Q))[2] £ THCE(R))].

Here the shifted complex M,[n] of a differential complex {M,, d} is given
by M;[n] = M,_, with differential (—1)"d.

We now come to the main definitions of this paper. Let BS(@) = CZ_(®)
and BE(Q) = C&~(®) with differential »’, * =1.
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DEFINITION 1. Let @ be a G-algebra.
(a) The equivariant Bar (co-)homology of @ is

BHE(Q)=H.(BZ(Q),b’);
BHE(R)=H*(B&(®), b)), *=1.
(b) The equivariant JC-(co-)homology of Q& is
JCHE(R) = H.(CE(R), b);
JCHE(QR)=H*(C4(R),b), *=0.

(c) The equivariant Hochschild (co-)homology of @ is
HHE(Q) = H.(Ker(S, T,(CZ(R))), 6+ 6);
HHY(®) = H*(Coker(S, T*(C&(®))), ' +62), *=0.

(d) The equivariant cyclic (co-)homology of @ is

HCZ(Q)=H,(T(CZ(R)), 6;+5,);
HCE(R) = H*(T*(CE(®R)), 8! +62%), *=0.

REMARK 1. (a) This definition is the generalization of ordinary (co-)ho-
mologies; that is, if G is trivial then all various homologies above are the
ordinary ones.

(b) The following trivial but useful long exact sequences hold:

6 - —3ICHI(Q@)— HH(GQ)— BHI(Q)— ICH,L (G)— -+,

(7)  --— BHA(QR)— HHE(®) — JCHE(®R) — BHE (R)— - -+,
which follow from the short exact sequences

8) 0— CJ(@) — Ker(S, T.(C£(@))) =5 BE(@) — 0,

) 0— B%(®) =5 Coker(S, T*(C&(Q))) — C&(®) — 0,

where P and 7 are the projection and inclusion on the corresponding spaces,
respectively.

(c) The equivariant Connes long exact sequences take the following forms:
(10) -+ — HHJ(@)— HC(Q)>> HCZ 5(@)— HH,T (@) — -+
(1) -+ —HCE *(@) > HC&(®) — HHE(®)— HCE (@) — -+,
which are from the short exact sequences
(12)  0—Ker(S, TL(CE(Q))) — TL(CE(R)) > T(CE(R))[2] — O,
(13) 00— T*(C&(Q))[2] 2> T*(CL(R)) — Coker(S, T*C&(R))) — 0.

Using the morphism S, we can define equivariant periodic cyclic (co-)ho-
mology.
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DEFINITION 2. Let @ be a G-algebra. We call for * =evandi=0or * =
odd and i=1;

PHCZ(R)=lim HCS,,(®@) and PHCA(Q)=Ilim HC5 *"(Q)
«S -5

are the equivariant periodic cyclic (co-)homology.

The following lemma will provide an important example of equivariant H-
unital algebras in Section 6.

LEMMA 2. Let G be a unital G-algebra. Define s': a®r-D& C(G) »
@®(”+2)®C(G) by
S,(aO: ayy ...,y f)(g) = (19 ag—l(GO)’ Als--es an)f(g)
Then s’p, = pys’ and b’s'+s'b’=1d. Hence BH(Q) =0, * =1.
Similar results hold for equivariant Bar-cohomology.

Proof. We have

S'pp(aos @y ooy Ay SIE) =5"(j (a0)s .., i (an), he ()
= (1, oz ey Y(ag))s o (@), ..., o (@) (h- £)(g)
= o, (1, ajgn=1(ag), ay, ..., a,) f(hgh™")
= pp(1, o} (@), A1y evs @y S())(E)
=ppS'(@gs Ay .. Ay, S)(E)-

The rest of the proof also follows from an easy computation. L]
We close this section by the following example.

EXAMPLE 1. Let @ be C. Then G acts trivially on @. Denote by R(G) the
subspace of C(G) consisting of all central functions on G; that is, f € R(G)
if feC(G) and f(h~'gh)=f(g) for any he G. CS(®) is isomorphic to
C(I®--@DRR(G).

—

n+l

0, nodd;
b(l,l,...,l,f)(g)—{(1,1,,_,,1)f(g), neven.
Y | —

n

n+1

Hence JCHE(®R)=R(G) for n even and 0 for n odd. Since BHS(®) =0,
* >1, by Lemma 2, HHE(Q) = 3 HE(R) in view of (6). It follows from (10)
that HC,,G(&) = R(G) for n even and 0 for n odd. The results hold also for
HHY(®) and HCE(Q®). '

3. Excision in Equivariant Cyclic Homology

In this section we will prove an excision theorem for equivariant cyclic ho-
mology. Under a mild condition it associates a long exact sequence of equi-
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variant cyclic homology with the following equivariant C-split short exact
sequence of G-algebras:

(14) 0-QLEE,R—0.

Here & and ® are G-algebras, i and = are equivariant continuous homo-
morphisms, and j is an equivariant continuous linear map such that rj = Id.
In general, j may not be a homomorphism. We can consider §=Q®® as a
topological space. To get the excision property, let us first consider the Bar
homology as in [21]. Let

BKZ =Ker{BZ(8)Z»> BS(R)}.
Define a filtration of the complex {BKS, b’} by

F,BKS

2 s=Span{le;, e,,...,e,.,, f1€ BS, ,(E): at least g e/s € R}.

Here Span means the closure of Span and {ey, ..., e,, f] denotes the element
in BY(8) with the representative (e, ..., e,, f). Then

0CBS(R@)=Fy,BKFC---CF,_BKS =BK?C.

The spectral sequence corresponding to this filtration converges to the ho-
mology of {BKE, b’} [14]. Its Ey-terms are

BEZ:) =Span([e,, ..., €, 4, f1€ BZ, ,(8): exactly g e/s € @},

with differential dp , induced by b’. Write the homogeneous elements of
BEZ:) in the following two forms: Case I,

[@ikyys Tingys ++vs Qeeys Timp s S 15 n,kieZ*,2<j=<lI, 1si=<l, n €N,
and Case II,
[7nyys Qiyys oo iieps Timpy s S s M ki€ 2T, 1<, j<I, n, €N,
where
Ay = (A, 115 Ay 425 s Uiy _y4kp S ) 1=l a;€Q;
r(,,j)=(rnj_l+1,r,,j_1+2,...,rnj_l+,,j,f), l=j=<[+1, rje@.

The differential dy , acts on these two kinds of elements as follows: Case I,

0 _ ’
Ap, gLy Tingys -5 Qs Tingy > S 1= L0 @ay)s Tingys o5 Qiepys Timgy s S

] ,
J=Yo o ~
+ .22(_1)21=1(k1+n1+1) [a(kl)’ r(,,z), veey b’(a(kj)), r(,,j+l), ceey r(,,lH),f]
J:

and Case II,

0
dp, qFnys Gy > Akpys Ty S

I o1
_ I = i k) ns B
- _El(—l)z‘—l(”ﬁ' ;)+n1[r(n1)9 Ay -"’r(nj)’ b’(a(kj))s s Aigepys Ty q)o Sl
J=
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Here b’(a~0, Ay, ..., @y) = 28— (ag, ..., @iGiy1s---, ), and [b'(ag,), .. ]
and [... b'(a(k »)s ... ] denote the parts of element b°[...] involving b’ action
on @y, and (ks respectlvely
To further analyze {BEZ;0, d0,}, we introduce the following two com-
plexes, modifications of those in [21], to deal with the group twisting.
Case I: For /e Z* let O; = (ny, n3, ..., ny4q) with |0y|=3¢EL n;and 1(0;) =
!/ for n;>0,2=<i=</, and n; ;= 0. Let BT.F(0,) be the total complex of the
(/+ 1)-tuple of the complexes

(Bu(R)RBR)[m]® -+ ®B.(R) [ ] QROIOU[— 0|+ 1,11 C(G) R, ,C,

where B,.(®@) and B,(A) are equal to @®™ with differentials b’ and b,
respectively, and where (R®|Ol|[—|(91|+n,+1] concentrates in dimension
—|Oy|+ ny ., with trivial differential.

Case II: Let Oy = (ny, ny,...,m4q) for n; >0, 1<i</, and n; =0. Let
BT, (0,) be the total complex of

(Bu(@)[m]®BR)n]® - @ B@) ]
QRO — |0y |+ 1,1 1R C(G) R, , C

Note that b’ in B,(Q) involves the group twisting. The complexes are de-
fined so that the following map is a morphism of the complexes for p =1:

(15) (BESS, %05 @ BTéO)® @ BTSO,),
0;:|01|=p 03:|07|=p
(0 =1 1(0p)=1

where

FLrngys Qryys o> Ay Tmpy o S 1= 1801 Qiyys o5 iieys Timys Ting)s o5 Ty S ]

and

F[a(kl)’ s A(kyys Tnyyq)s fi= [a(kl)’ Ahy)s +==s Akyys T(ng)s <o T(npyq)o S

In fact, the differentials of BT,°(09;) have the same formulas as d?, [14].
Thus, F commutes with the differentials of the complexes. Obviously, F is
one-to-one and onto. Hence F is an isomorphism of the complexes. There-
fore, we obtain the next lemma.

LEMMA 3. The E,-terms BES:! of the spectral sequence associated with
the filtration F.BKE are zsomorphzc to

@ H*(BT* (01), dp,*)@ @ H*(BT*(oz)s dg,*), le.
all 01:|04|=p all 9;3:105|=p

Proof. This is a consequence of the definition of E;-terms of the spectral
sequence together with (15). ]

The following is an excision theorem for equivariant Bar homology which
also gives a condition that guarantees BElff:.,I =0 for p=1. The G-algebras
satisfying this condition will be called equivariant H-unital in Section 6,
where we will focus on this question.
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THEOREM 1. Let @ be a G-algebra. For each G-space X, let BE(®, X) =
(@®(”)®X®C(G))®G ,C and BY(@, X)=(@®"&X)&®g,,C for n=1.
If H(BZ(Q,X),b")=0and H(BS(®,X),b')=0, * =1, for each G-space
X, then the inclusion BS(Q) ‘> BKE induces an isomorphism in homology,
and there is a long exact sequence of equivariant Bar homology associated
with (14):

(16)  ---— BHZ(Q)> BHT(8) ™ BH(®R) 2> BHE (@) — ---.

Proof. Note that if BES,! =0 for p=1, then the spectral sequence degen-
erates at the E,-terms and
BHS(Q) = BEES,' & BEG,™ =~ H,(BKS,b’) for *=1.

The long exact sequence (16) is an immediate consequence of this result and
the short exact sequence 0 - BK.¢ - B¢(8) - BS(R) — 0. Hence it suffices
to prove BEZ. =0 for p=1. By Lemma 3 and induction on the number /,
it is enough to show that:

(@) H(T.((B« (@)&® B, (@)[n]®X®C(G))®G ,C))=0; and
(b) H(T((B(Q@)[MI®B.(R)[n]®X)Rg,,C))=0 for * =1and
m,n>0.

To this end, consider the s~pe£:tral sequence flssociategl with the filtration of the
double complex (B.(®R)XB.(®)[n]R®XXC(G))Xg, ,C by columns. This
spectral sequence converges to

H(T,((B.(Q)®B,(®)[n1®X R C(G))®g,,C))
and has the E;-terms
Ef"?=H,((B,(®)®B,(®)[n]® XX C(G)) g, , C)),

which are all zero by our assumption. The spectral sequence thus degen-
erates at the E,-terms and has all vanishing E,-terms. This implies (a). The
same reasoning proves (b). ]

THEOREM 2. Under the assumptions of Theorem 1, there is a long exact
sequence of equivariant JC-homology associated with (14):

e — JCHO(R) L> 3CHO(8) ™ 3CHE(R) 2> 3CHE [(R) — -
Proof. This amounts to verifying that the inclusion
C2(@) > JLHE =Ker{CE(8) > CE(R)]

induces an isomorphism in homology. The proof is similar to that of Theo-
rem 1. We only indicate it briefly.
Filter 3CKE by the following:

F,3¢KFS, ,=Span{leg, ey, ..., €, 4, f1€ CS, ,(8): at least g+1e/s € @};
0CCS(R)=Fy,3KSC---CF,3¢KC =3CKPC.

The spectral sequence associated with this filtration converges to the homol-
ogy of J3CKE. Its Ey-terms are
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JCES:Y = Span{[ey, ..., €p1 ¢, S1€ CS; ,(E): exactly g+1¢/s € Q).

Each element of JCEZ;? can be written as either Case I or Case II as before.
The differential d 7> has the same formula as that of BES;°. Using the nota-
tion of Lemma 3, we can form the following complexes: in Case 1, ICT.E(0O))
is the total complex of the (/+1)-tuple

(B*(&)®E*(a)[n2]®---®B,..~((i)[n,]
®(R®|01|[—|®1[‘1+’71+1]®C(G))®G,p C;
in Case II, JC7,(0,) is the total complex of the (/+1)-tuple
(3*(@)[111]@3*(@)[112]@---®E'*_((i)[n1]
RRPI[—10,| =1+ 1,1 1®C(G)) g, , C.
Hence,
(IRESS,d30 ™ @ 3T80)® @ 5T50,).

P, *
01:{0(|=p 03:103|=p
(O =1 1(05) =1

The isomorphism F; has the same formula as F for BES;?. The rest of the
proof is identical to that of Theorem 1. O

THEOREM 3. Under the assumptions of Theorem 1, there are long exact
sequences of equivariant Hochschild and cyclic homologies associated with
(14):

17) ---— HHJ(Q)L> HHF(8) ™ HHI(®) 2> HHZ ((G) — -

and

(18) .-+ — HCE(Q) > HCS(8) ™ HCE(R) 2> HCC (@) —> ---.

Proof. By Theorems 1 and 2 and the Five Lemma, the middle vertical in-
clusion in the following commutative diagram induces an isomorphism in
homology:

0— JCKE — Ker(S,TW(3KEF)) — BKE —0
e 1. i
0— CJ(@) — Ker(S, T (CI(Q))) — BI(@) — 0.
(17) then follows from the short exact sequence
0 — Ker(S, T4 (3K F)) — Ker(S, T.(CE(8))) — Ker(S, TL(CE(R))) — 0.
To show (18), we need only to check that
T(CE(Q)) > CKE =Ker{T,(CE(8)) X T(CE(R))]

induces an isomorphism in homology, since (18) is then an immediate result
of the short exact sequence

0— CK — Tu(CP(8)) — T (CI(R)) — 0.
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But the isomorphism of i, in homology can be easily obtained by the Five
Lemma and the following commutative diagram:

0— Ker(S, T, (3¢kS) L cCckS 3 CKE[2] —0
1‘:‘, Ti. Ti,,
0— Ker(S, T.(CE(Q))) 1> T.(CE(R)) 2> TL(CE(R))[2] — 0,

because of the isomorphism of the first vertical inclusion in homology by
the result of the previous paragraph. g

4. Excision in Equivariant Cyclic Cohomology

In this section we will show that there are long exact sequences of equivari-
ant Hochschild and cyclic cohomologies associated with (14). These long
exact sequences can be checked to be compatible with equivariant Connes
long exact sequence. We then obtain the six-term exact sequence of equivari-
ant periodic cyclic cohomology.

Consider the equivariant C-split short exact sequence (14) of G-algebras.
Without loss of generality we can assume & = @@ & as a topological space.
Let 880+ = K (8 R)@RY"+D | where K,(&, R) is the direct sum of the
(n+1)-tuple tensor products of @ and ® containing at least one @ as a tensor
factor, for example, K;(8, R) = (AR R)D(RIR)D (AR R) for n=1. The
multiplication in X, (&, ®) is well defined and continuous since @ is an ideal
in 8. Let 3CK&=Homg(K, (8, R), C(G)). Then CL(E)=HKEDCE(R).
We have the short exact sequence

(19) 0— CL(R) > CL(8) — JCKE— 0.

To analyze the complex {JCKE, b}, we filter K,,(&§, ®) and JCKE as follows:
0C@D=F K (8 R)CF,K,(8 R)C --- CF,K,(8 ®)=K, (&, ®R),
0CF'}KECF'3CKEC --- CF"JCK!= JCKE,

where
F,K, (&, ®)=Span{(ey, e, ..., ,) € K,(8,R): at least n— p+1efs € @)
and
FPIKE={peIK;: ¢=00nK, (8 RN\F,K,(E, R)}.

The spectral sequence associated with this filtration of {JCKE, b} converges
to H*(3CKE, b). Its E%terms are given by

HCEE={peICKETI: p(ep, €1 ..., €y, 4) #0if exactly g +1e/s e @).

Writing down the elements of X, (&, ®) as Case I and Case II in Section 3,
we have

K, (8, ®)=K,/(§, R)DK; (8, R)
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and
JCEG 0= SCEg @JCEg g,r’
where K/(&, R) (resp. K (E, ®R)) consists of all elements in K,,(&, ®) whose
first factor is in @ (resp. (R), and
JCEEE ") =(peJCELE: o #0onlyin KX(E, ®) (resp. K (8, R))).

The coboundary operator dG’, § of 3CEL & “" induced by b is dual to that in
Section 3. We can also use O; in Section 3 to define JCTZ(0O;) as the total
complex of the (/+1)-tuple

Homg(B.«(@)®B.(@)[1]Q - ®B.(G)[n]
QREIO[~|0;|—1+n,44], C(G))
for (ny, n3,...,n 1) € Oy; for (ny, n,, ..., n11) € O,, define ICTE(O,) as the
total complex of the (/+1)-tuple

Homg (B (@) [m1®B(@) 118 - ®B.(@)n]
QAP |0;|~141,4,1], C(G)).

Then, as in the proof of Theorem 2, for p =1 we have

(EEHE @ 2T30)® @ 3T20,).
0::101j=p 0,:(0;|=p
1Oy =1 1(0y) =1

Here the isomorphism Fj* is induced by the map F; in Section 3; that is,

ETSI s Qeyys -0 Qs Ty 4 )
=S @kyys Agys o5 Qs Tmy)s Timgys +o0 Ty )+
It follows from this identification of JCEZ § that the E'-terms of the spectral
sequence are given for p=1 by

@0 eEZIE @ HAEXTZON® @ H(ITIO.)).

01:101|=p 02:]0;2|=p
1O)=1 1(95) =1

To summarize, we have the excision theorem of equivariant JC-cohomology.

THEOREM 4. Let @ be a G-algebra. Suppose for each G-space X that

H*(Homg(B.(@)®X, C(G)), b')=0
and o
H*(Homg(B.(R)® X, C(G)),b")=0
Jor ¥ =1. Then the inclusion C&(@)QJCK("} induces an isomorphism in

cohomology, and there is a long exact sequence of equivariant 3C-cohomal-
ogy associated with (14):

@2l) ---— ICHE(R) > ICHE(E) L ICHA(R) 2> ICHEM (R) — -

Proof. The inclusion i*: C&(Q) — JCKE means that fe C&(Q) extends triv-
ially to Cg(8). The proof of Theorem 1 shows that H*(3CT#(O;)) =0 for
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* =1 by our assumption. It follows from (20) that JCE£) =0 for p=1.
Thus, the spectral sequence degenerates at the E?-term and

JCHE(Q) =3CEGS = HE Y, = H*(3CKE).
The long exact sequence (21) then follows from the short exact sequence
(19). g

Similarly, we can prove the excision theorem of Bar cohomology under the
assumption of Theorem 4 by verifying the inclusion i*: B(Q) —» BKg =
Homg(K,,_;(&, ®), C(G)) to be an isomorphism in cohomology. We leave
the details to the reader.

THEOREM 5. With the assumptions of Theorem 4, there are long exact
sequences of equivariant Hochschild and cyclic cohomologies associated
with (14):

(22) -+ — HHE(®R) > HHE(8) ©> HHE(G) 2> HHEY (®R) — -
(23) ...— HCL(®R)™ HCAL(E) S HCH(R) S HCEH (R) — ---.

Proof. By the excision properties of equivariant Bar and JC-cohomologies,
the Five Lemma, and the following commutative diagrams,

(24)

0 0
7 T )

o CH®) R C4(8) R JeK o
i) T T

0 Coker(S,T*(C&(®R))) Coker(S,T*(CA(8))) N Coker(S,T*(3CKE)) 0
T 1 )

B4(®) B(8) 5K

00— — — —0
) 1 T
0 0 0

and

0— BKZ — Coker(S,T*(3CKZ%)) — 3Kz —0
(25) T 1 )

0— BE(Q) — Coker(S, T*(CE(Q))) — C&(R) — 0,

we get that the middle vertical inclusion in (25) induces an isomorphism in

cohomology. (22) is then a consequence of the middle exact row in (24).
The proof of (23) is similar to that of (18) in Theorem 3. We omit the

details. U

COROLLARY 1. With the assumptions of Theorem 4, the long exact se-
quence (23) in Theorem 5 commutes with the map S, and there is a six-term
exact sequence of equivariant periodic cyclic cohomology
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PHCE(®R) & PHCE(8) 5 PHCE(R)
(26) Te la
PHCZY(R) <~ PHCZW(8) <~ PHCZY(®).
Progf. Since the map S in the cochain level commutes with #*, i*, b, b’, T,

and N, it is clear that S commutes with all maps in (23). (26) then follows
from (23) and the fact that the direct limit preserves the exactness. O

5. Mayer-Vietoris Sequences

An immediate application of Theorems 3 and 5 is the existence of Mayer-
Vietoris sequences of equivariant Hochschild and cyclic (co-)homologies
associated with equivarant Cartesian squares of G-algebras

e @,
27) o2 v
@, % ®;

that is, @ = {(a;, a,): a; € @;, ¥((ay) = ¥,(a3)}. ¢; and y; are equivariant con-
tinuous homomorphisms such that either y; or y, is surjective. We fix ¥, to
be surjective. Suppose that y, is also equivariant C-split; that is, suppose

0— Ker(¢,) — G, 22 ® — 0

is an equivariant C-split short exact sequence. Then we have the commuta-
tive diagram with equivariant C-split short exact rows

0— Ker(¢y) — @&@1—»0
(28) =] ¢2 192 i
0— Ker(,) — @, % ® — 0.

THEOREM 6. Let Y, be surjective and equivariant C-split in (27).
(a) If Ker(y,) satisfies the conditions in Theorem 1, then the following se-
quences are exact.

.. — HHE(@) 2202, gp6(a,)@ HHE(@,)
Wi)e—(¥2)s HHE(G{) ‘LHHE—I(@) — cee;

oo — HCH(@) 2202 HCH(@) @ HCH (@)
(Y1)s—(¥2)e HCnG((R) “Q*HC,?_I(G) —_— eee,

(b) If Ker(y,) satisfies the conditions in Theorem 4, then there are the
Jollowing exact sequences associated with (27):

o — HHY(®R) YL QW prpn(,) @ HHA(R,)
(91)"—(¥2)" HH(';(@)LHHE-H(&)_—* cee
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v — HCH(®R) YLOW, Hon(@,) @ HCA(®,)

(d1)*—(92)* Hcg(a) LHC(M}"'I((R) —> e
and

PHCE;V((R) (¢'1)‘®(¢2)‘ PHC(%V(&I)@PHC(%V(@'Z) (¢1)'—(¢2)* PHC&V(@)
1o 1
PHC(@) {2292 prrcodd(q )@ PHCY(QR,) L2V prrcgdd(®).

Proof. Thelong exact sequence of Hochschild homology in (a) follows from
the diagram chase and the following long exact sequences of Hochschild
homology associated with (28):

o B0y HEG(@) 2> HHE. (Ker($,)) 1> HHS (@) L2 HHS (G))— -
lwo. = }(42). Lo, L.

- Y2y HHO(R) 2> HHE. (Ker(y,)) 1> HHE. (@,) Y25 HHE (®) — -

Similar arguments work for the other long exact sequences in (a) and (b).
The six-term exact sequence in (b) is also obtained by the proof of Corollary
1. The details are left to the reader. U

6. Equivariant H-unitality

We have noted that the assumption in Theorem 1 is crucial in deriving the
excision theorems of equivariant Hochschild and cyclic homologies. In this
section we will verify that some algebras satisfy this assumption and hence
are equivariant H-unital according to the following definition.

DEFINITION 3. Let @ be a G-algebra. Q is said to be equivariant H-unital
if for any G-space X,

H.(BS(®,X),b')=0 and H,(BZ(Q,X),b)=0

for * > 1. Here the notation is as in Theorem 1. By Lemma 2, if @ is unital
then @ is equivariant H-unital. The equivariant H-unitality is the generaliza-
tion of H-unitality to the equivariant case [21]. As we will see in Theorem 7,
the important examples of equivariant H-unital algebras are the G-algebras
with uniformly bounded left (right) approximate identity (UBL(R)AI). Re-
call that a G-algebra @ has UBL(R)AI [17] if there is a left (right) approxi-
mate identity {e,: e 9} C @ such that

(29) sup {py(e,): 1€ )=y <co.

lsn=<cw
Every C*-algebra has UBL(R)AI. The useful fact of UBL(R)AI is that @
has left (right) sequence factorization property (L(R)SFP) [17], since @ is
already Fréchet by our convention of G-algebras. This means that for any
null sequence {x,} C @ there exist a € @ and null sequence {y,} C Q& such that
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ay,=x, (y,a=x,) and y, =lim,,_, , a,,x, uniformly for n=1, 2, ..., where
a, € @ [7]. In fact, we can say a little more about a and «,, for G-algebras.
Let @ be the algebra obtained by adjoining an identity e to @. G acts on
@ by g(x+Xe)=g(x)+\e, and & has seminorms {3,} where g,(x+\e) =
pn(x) + ')\l

LEMMA 4. Let @ be a G-algebra with UBL(R)AL. Suppose p,(c,(a)) <
pn(a) for ge G, ae@®, and n=1. Then, with the above notation, a,, € @,
and a and a,, are equivariant.

Proof. Let {e,: 1€ 9} be the UBL(R)AI of @. Then e, x — x uniformly on
each compact subset of @ [17]. Let »y be as in (29) and {x,} C Q@ be a null
sequence. The following is proved in [17]): Choose 0 <\ < (1+»)~L. Then
there is a sequence {u,,};m - C @ such that

@) u,—(1—\)"ee@and u,'e@,

(b) 5m(um - um—-l) = (1 - }\)m—l, and

©) 0, ((u;'—u,L,)x,) <2~ for all n.
Let @, = g ag(u,,) dg. Then all 4, are equivariant and assertions (a)-(c)
above hold also for {#,,}. It follows then that {#,} and (i, 1x,} are Cauchy
sequences in @ for all n=0. Let

a= lim #,e®@ and y,= lim #,'x,€Q.

m — oo 1 — oo

The rest of the proof is clear. 1

Let us from now on fix ® to be the projective tensor product. Lemma 4
plays an important role in the proof of the following theorem.

THEOREM 7. (a) Let @ be a G-algebra with L(R)SFP. Then, for any
unital G-algebra & and G-space X,

(30) H,(GR®)®M&XRC(G),b)=0
and

31) H,(RR®B®)®W&X,b5')=0
Jforn=1.

(b) Suppose that Q is a G-algebra with UBL(R)AI such that p,(a,(x)) =<
p.(x) for all ge G and n=1. Then, for any unital G-algebra ® and G-
space X, .
H,(RR®B)PMRXRC(G)®g,,C,b")=0
and

H,(AR®R)PMR®X)®¢,,C,b)=0

Jor n=1. In particular, Q is equivariant H-unital.
Proof. (a) Let ze (AQ®)®M R X. Write z as [16]

2= 3 M@ @DO @)@ B ©b) &)
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for aj e @, bje ®, x'e X, and T2 |N;|<1, where {a/}, {b}}, and {x;} are
null sequences for j=1,2,...,n. By the assumptions there are ae ® and a
null sequence {y{} C @ such that ay{ =af and y{=1im,,_, -, 4,,a}, with @, €@
uniformly for 1 </ <oo. Let

2= $ NOI@IDO@EME - D@ @b @),

which is in (RQ®)®™M&X. Using the continuity and @-linearity of &,
we have b’ (a®1)®2)+ (@R X bH'(Z) =z. Thus, if '(z) =0, then from
b'(z)=lim,,_, (@, ®1)5(z) =0 we obtain b'((a®1)®%) =z. Hence (31) is
verified.

To prove (30), let us define S(Z) for z and 7 as in the last paragraph with
extra factor f* by

$(z)(g)
_i N((@®NRa; ()R (@ Qb)) @ -+ & (a,&b,)®x7) f(g).

Then b’S(Z) + S(b'(Z)) =z. Clearly, b'(Z) =0 if b’(z) =0. Thus b’S(Z) =z
is a coboundary. This implies (30).
Similarly, we can show (30) and (31) for G-algebra @ with RSFP by con-
sidering z; and S,(z) instead of 7 and S(z), where
2= 3 M@ @B (@R X B (1B b)) x')
i=1
for a’ =y}a, and

$i(z) = (="~ _;}'51 N (@ @b B (@ QD) -+ @ (@, ®b) B (@D Qx).

The rest of the proof is the same as above. This proves (a).
The proof of (b) is identical to that of (a) except for the verification of
b'[Z]=0if b’[z]=0. But this follows from Lemma 4. ]

We now turn to the assumptions of Theorem 4. First, when G = {e}, stan-
dard functional analysis can be used to obtain the following.

PROPOSITION 1. Let @ be a Fréchet algebra with L(R)SFP. Then, for
any unital Fréchet algebra @& and l.c.c. topological space X,

H"(Hom((AQR)PWRX),b')=0 for n=1.
In particular, @ is H-unital.
Proof. Note that
Hom((@®®)2™ & X) &L Hom((RQ®)®" D & X)
O, Hom((RR®P" IR X)

is the dual of the sequence
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(@QB®PI@x Duxt, @@ @D DG x Ly (GHB)EW G X.
The latter sequence is exact by Theorem 7. It follows then that
Ker((6")"*') = (Im((6"),,+1))° and Im((5')") = (Ker((5),))°.
where (Y)? stands for the annihilator of set Y. Hence,

Ker((6')"+') = (Im((6')41))° = (Ker((5),)))° = Im((5")"). O

However, for a general compact group G, Homg(((i@@)@‘”)@)( ,C(G)) is
no longer the dual of (AQ®B)®" QXX C(G))&®g, , C. The situation in this
case is quite different. We provide only a special result here.

PROPOSITION 2. Let @ be a closed G-subalgebra of unital G-algebra &,
such that Q is an ideal in @ and T'_,a'b’ =1, with a’ € @ and b’ € @ being
equivariant. Then, for any unital G-algebra ® and G-space X,
H"(Homg((AR®R)PWR X, C(G)),b)=0
and )
H"(Homg((ARQ®)®"R X, C(G)), b")=0

Jorn=1.
Proof. Let fe Homg((RR®)®™ & X, C(G)). Define
SZ(f)(al®bl’ a2®b2s ceey an—-l®bn—-1, x)

m .~ . ~ ~
=3 f(@®L, bia,®by, ..., a1 @b, X)
i=1
and
SN by, a, by, ..., a,_1&b,_1, X)(g)

= .gl f(@'®L, 07 (b'a;®by), ..., a,_,&b,_1, x)(g).

It is easy to check that 'S5+ S5b’ =1d and b’S, + S, b’ =Id. The result then
follows from these identities. O

One application of Proposition 2 is the case when G acts trivially on Q. Let
us point out finally that the equivariant cyclic cohomology defined in this
paper can only be used for the equivariant index problem with character-
valued index in R(G). For distributive character-valued index [1] it is more
convenient to define equivariant cyclic cohomology as the dual of equivari-
ant cyclic homology, and then the excision problem of equivariant cyclic
cohomology will be well understood.
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