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1. Introduction

In the 1970’s Onneweer and Waterman obtained analogues, in the context of
bounded Vilenkin groups, for the Salem test [1] and the Lebesgue test [2] for
the convergence of Fourier series. Recently, by localizing the Salem test,
Waterman found a new criterion for the pointwise convergence of Fourier
series [3]. Here we adapt Waterman’s localization of the Salem test to obtain
an extension of the Onneweer-Waterman Lebesgue test for convergence of
Fourier series of functions defined on a bounded Vilenkin group.

2. Notation and Terminology

By a Vilenkin group G we mean a compact, 0-dimensional, metrizable abe-
lian group. G contains a fundamental system {G;} of neighborhoods of 0
such that

(1) G=G()DG13 te DGkDGk+lD Te 3{0},

(i1) the quotient G, _; /Gy is of prime order py;

(iii) {0} =Ng¥-o Gi.

If the sequence of primes {p;} is a bounded sequence, we say that G is a
bounded Vilenkin group; otherwise we say that G is unbounded. If p, =2
for every k, then we will call G the Walsh group and denote G by 2¢.

Set mg=1and m; =II_, p,. Bach ne Z* has a unique representation
n=2i_oa;m; with 0 <q; < p;,, for 0 <i <s. Denoting the dual of G by X,
we may enumerate the elements x,, of X in such a way that

Xn = Ximp" Xory" " * X

For each k€ Z* there is an x; € Gy\ Gy such that x,,, (x;) = e*/Pk+1=
$x- Each x € G has a unique representation x =272 o b; x; with 0< b; < p; . 1.
We can enumerate the cosets of G, in G by means of the lexicographic or-
dering of the coset representatives of the form z=Y%-§ b; x; (0<b; < p;11)-

In particular, we shall let z{*) be that coset representative z for which o=
SEZh bi(my /my ).
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As a compact abelian group, G has a normalized Haar measure, which is
indicated by dx or dt in integrals. For f e L(G), the Fourier series of f is
the series S(f;x) =22 ¢; x;(x), where the coefficients ¢; are determined by
the formula c¢; = |5 f(#)x;(¢) dt. The partial sums of the Fourier series we
denote by S, (f;x). Now

n—1
SUfi¥)= 3 axix)=|_ fx=DD 1) dt,

where the Dirichlet kernel of nth order is defined by D,(t) = X724 x,;(¢).
Standard properties of the Dirichlet kernel are listed in [1] and [2]. Addi-
tionally we present the following modification of a result in [1].

2.1. LEMMA. Let G be a Vilenkin group, bounded or unbounded. If n=
apmy+n’, where a, and n’ are integers such that 1 <a, <py,,and 0=<n’'<

my, and lec(xk)E G)‘\G)\_H, then
m
|D, (2| < py s —=.

In particular, if G is a bounded Vilenkin group with p; <p for all i, then

m
1D, (20| < p- 2

2.2. Proof. If Z((Ik)EG \G)\+l’ then Z(k)'—b)\X)\+ +bk 1Xk—1 (b)\#O)
Then o = X5=} b;(my/m;,,) and my/m, ., < a < m;,/m,. The Dirichlet ker-
nel D,.(¢) may be written

Xn(¢) 1—x7m. ()
D, (t)= E X% (1) D, (¢ )T—m

Now if z{¥ € G\\G, ., we have

i=ZN+1.
Consequently,
N xw(za?) o X (2&)
D,(z{)=3 X (@) 2
lzox i (289) Do 1- xm(z"")
_ﬁ) Xn’ (z"") 1—xm (z)

i<0 X (z”") l-xm (8
Moreover, if 29 € G;, (i.e., if i <)) then x,,,(z) =1. We may write

xn(z"") 1— X\ z)

D, (z¥) = (z8F)). a,-m,-+ N
E o D @ZP) M = x 2

Hence
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A
k
|D,(z$9)| < 'Eo a;m; < Px41M.
i=
From the inequalities my /my ., < a <my/m,, it follows that my < my /o, so
that
my
_—

|D, (z8N)| < Dy O

A point x € G is said to be a Lebesgue point of f provided that

1
m(Gy)

SG | f(x+1)—f(x)|dt=0(1) as k—co.
k

If fe LY(G) then almost every x € G is a Lebesgue point of f.
Next we define a quantity f*(x) whose existence is analogous to the exis-
tence of lim,,_, o 1/4 [& f(x+¢) dt for functions on the real line.

2.3. DEFINITION. Let f*(X) = limk_,m l/m(Gk_H) ijk+Gk+l f(x-—t) df,
provided that the limit exists uniformly in j€{0,1,2,..., pr,1—1}.

For the class of all Vilenkin groups, there is no simple relationship between
the existence of f*(x) and x being a Lebesgue point.

2.4. THEOREM. Let G be a Vilenkin group and suppose that fe L (G).
If G is bounded and if x is a Lebesgue point of f, then f*(x) exists and is
equal to f(x), but the existence of f*(x) does not imply that x is a Lebesgue
point of f. Moreover, if G is unbounded, then f*(x) need not exist even at
Lebesgue points.

2.5. Proof. First let G be bounded, and suppose that x is a Lebesgue point
of f. To estimate the magnitude of the difference

1
m(Gy 1) SJ’Xk+Gk+1

f(x—1t)dt = f(x),

observe that this difference is dominated by

— |
m(Gy 1) dixi+Gisn

| f(x—1t)—f(x)|dt,

which in turn is bounded above by

1

_— —f)— _ _Pr+1 N
m(Gp41) SGk[f(x t)—f(x)| dt KGka(X ty—f(x)|dt

m(Gy)
=Pr+1°0(1).

That 1/m(Gy 1) §jx+Ge sy S(Xx—1t) dt tends to f(x) follows from the bound-
edness of the Vilenkin group G.

To show that f*(x) may exist at points that are not Lebesgue points of
f, let G be the Walsh group 2%, define f by the formula
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1 texk+Gk+2, k=0,1,...,
f(t)= —1 texk+xk+1+Gk+2, k=0,1,...,
0 =0,

and examine the behavior of f at 0. We observe that

Lkﬂf(O—t)dt:S F(0—1)dt =0,

X+ Gyl
so that f*(0) =0 also. But 0 cannot be a Lebesgue point of f, since

1 1
m(Gy) m(Gy)

| 17©@=D-r(©0)]dr = [ 1ar=1
Gk Gy

Finally, let G be an unbounded Vilenkin group having an increasing se-
quence {p;} of primes. Define the function

1 texk+Gk+1, k=0, 1,...,
1) =
J@ {0 otherwise.

Then f(0) =0 while f*(0) does not exist. But
1 1 1 1
f)—f(0)|dt=m [ + + +]
m(Gy) Sle | Mt Misy T My,
< L. [1 + ! + ! + ]
Pr+1 Pir+2  Pk+2Pk+3
1 1
< . ,
Pr+1 1= (1/Dgy2)
so that x is a Lebesgue point of f. J

3. Convergence of Fourier Series on
Bounded Vilenkin Groups

A straightforward connection between the existence of f*(x) and the con-
vergence of Fourier series is given by the following result.

3.1. THEOREM. Let G be a bounded Vilenkin group, and suppose that
feLX(G). Additionally, let n = a,m,+n’, where a;, and n’ are integers such
that 1<a, < py,1 and 0<n’'<my. At an xe G for which f*(x) exists, we

have
mk—l

SAfix)=*(x)=0()+ ¥ xnk(zP)D,(2{F) fa fx=z{ =) xqk () dt
a=1 k

as n — 0. Thus the necessary and sufficient condition that the Fourier series
of f converges at such an x is that

my—1
() S X% (20 D) SG Sx=zd =) xh (1) dt = 0(1)
a=] k

uniformly in a; and n’ as k — .
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3.2. Proof. Consider the integral representation of the difference

Sn(f3 %)= S*(x).
We have

Sulf3%) =S (%)
= | L= =* 01D, (1) dt

= |, Fe=0=r*ID, 0 dt+ |  f(x=)=/*x1D,(0) i
Gy G\Gy

=A+B.

First we observe that

B=§G\G Lf(x =) = f*(x) X (£) D, (t) dt

2 x“m"k(z"")D (z"")S [f(x—2 — )= f(X) X% (¢) dt

my—1

= 3 XDl || fx=al-0xio dr,

so that B is equal to the expression in (*).
It remains to analyze A. We proceed by separating A into two parts:

1—xpk (¢ .
A=S [f(x—1t)— f*(x)]{mk I——Z—i—)ﬁ’-xnﬁ(t)}dt

(1)
— 1 Y F*
=Gy Jo D=0 dt
1 * a 1
oG e E0- f(x)][xm,,(m +xi O+ kxmk(t)}
=A1+A2.
Now
—_ 1 — — % —
A= 6o Jg fE=D A=) =0

by the definition of f*(x). To estimate A,, fix Ae{l1,2,..., pr4+;—1} and
consider

1 . \
m(Gy) L,}f (x—1) = f*(0)]x (1) dt,

which we may rewrite as

1 Pr+1—1

[f(x—8)—f*(x)]xh, (t) dt

m(Gy) j=o Ska+Gk+l

1 Pk+1—1 1

_ PN N . ~
Pr+1 j=o mM(Ggyy) SGkH[f(x JXp =) = (X)X (2 + JXp) dE =
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1 Pk+1—1 1

= VRN — Y, —f)— * N /s
Dr+1 jgo m(Gy41) So,mlf(x X =) = (X)X, (JXi) At

1 Pk+1-1 1

Jo, Lx=ime=0= o s dr
+1

" Prr1t j2o m(Geyy) Jo
LSy
Pk+1 j=0 * {m(GkH) Slxk+Gk+l

Hence we have that

Fe—1) dt—f*(x)}.

1
m(Gy)

is bounded above by

Jo 0= @0
G

flx=1t)dt—f*(x)|,

sup
J
and it follows that

m(Gy 41) ijk+Gk+1

=o0(l) as kK—oo.

fx—=t)dt—f*(x)

'Azl Pk+1° Sup

m(Gy 1) ka+Gk+1

Consequently, A=o0(1), and we have shown that if f*(x) exists then
mk—l

SUfix) =S () =0+ 3 Xt @Dy || fOx=2—xik(edt
a=1

which in turn implies that S, (f; x) — f*(x) if and only if

my—1

PR EACLS (z"")g fx=zP—n)xmk(tydt=0(1). O

The following result localizes the Onneweer-Waterman Salem test for the
convergence of Fourier series on bounded Vilenkin groups.

3.3. THEOREM. Let G be a bounded Vilenkin group, and suppose that
fe LX(G). Then the Fourier series of f converges to f*(x) at every point
x € G at which the following conditions hold:

(S1) f*(x) exists, and
1 S me ol
—_ T =

Gik+1 a=1 @

Di+1—1

2 SO0 5| dt =0

(S2) lim

uniformly in ap€{l,2,..., pr.1—1}.
The convergence is uniform in x on any closed set of points where f is con-
tinuous and (S2) holds uniformly.

3.4. Proof. Let n=a,m;+n’, where a; and n’ are integers such that 1<
a; < pPr+1 and 0 < n’<my. Then (S1) implies
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Sy(f3 %)= f*(x) = 0(1) + 2 xﬁi‘k(z“")an(zé"’) j Sx—z® =) x% (1) dt.

Thus we need only show that (S2) implies

mk—

(*) =z X% (z4N D, (z“")§ f(x=z8 ) x% (1) dt = o(1).

We begin by writing the integrals that appear in (*) as sums of integrals
over the cosets of Gy lying inside G;, and observe that

S(x—=z =) xnk (1) dt

. . P41~
| fx—zP—nxtmndi="3 |
Gk j=0 Yixk+Gryy

Pr+1~1 .
= 3 [ Sl 03k Gno di
Jj= k+1

Pr+1—1 .
=[S se-z@—jme-nsitar,
Gk+1 J=0
so that

mkl

=z X2 (24D, (z“")j S(x—z® —)x% (1) dt

my—1

=S S xm (2D, (z"‘)) E f(x —z — jx, —t) $f%* dt.

Gi+1 a=1
On bounded Vilenkin groups |D,(z")| < p- (my /a), so that

my—1
%3 Xk (28 Dy (289) S flx— z""—-t)xf,{‘k(t)dt'

a_—-

my—1 ¢ |PREL
S e
Gr+1 a=1
p 1 mg—1 1 [Pk+1— 1 o
= —_ —_ —t Jag
<pk+l>m(Gk+l) SGk+l 021 o g S =z == i

=o(1)

uniformly in @ by (S2). Thus (S1) and (S2) together imply (*), and S,(f; x) —
f*(x). For x in a closed set of points of continuity, f*(x) = f(x) and

1
—1)— =o(1
GO sck[f(x )—f(x)]dt=o(1)
uniformly in x as kK — co. Hence the convergence of the Fourier series is uni-
form in x so long as (S2) holds uniformly. O

3.5. EXAMPLES. Here we mention briefly two examples which illustrate
the scope of the preceding theorem.
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3.5.1 Conditions (S1) and (S2) together do not imply the continuity of f at
x. On the Walsh group 29, let f be defined by

_ tex,_ 1+Gk2’ k=1,2,. .
S = {0 otherwise.

Then f is continuous except at 0 but f*(0) exists and equals 0.
To show that (S2) holds, evaluate

1 me -1 4
_____§ > -
M(Gry1) JGrs1 o=1 @

which reduces to

Pr+1-1

E FO—zF —jx, — )% | d

2¢-1 4
(1) 2k+1 3 — S | /P + )= f@P +x+ 1) dt
a=1 Gr+1
on the Walsh group.
In analyzing this expression, it will be convenient to consider the repre-
sentations

z((,f‘)+t=b0x0+ ---+bk_1xk_1+0xk+bk+1xk+1+ se
and
z&k)+xk+t=b0x0+ +bk_1xk_1+1xk+bk+1xk+1+

By the definition of f, f(x)=1 only if there is a sufficient number of zero
coefficients between the first two nonzero coefficients in the representation
of x. Hence it is easy to see that if f(z{® +x,+¢)=1 then f(zF +¢)=1
also. Thus, in evaluating (1) we need consider only those points for which
Sz +¢)=1 and f(z(k)+xk+t) 0. Further, note that if f(z®+¢)=1,
then either z*) = $¥=} b, x; has two nonzero b,’s (which implies that the same
is true of z{F +x; + ¢, so that f(z{ +x, +¢) =1also) or z¥) = ¥4 b; x; has
just one nonzero b;, which implies that « =2/ and z(k’ =Xy_;_;. In this
case, however, if f(z¥+¢)=1and f(zF +x,+¢) =0, it must follow that
Xy & G- jy2. This in turn implies that (k—j)? > k, which we may rewrite as
j<k—vk. It follows, then, that the nonzero terms in (1) correspond to

2k+1,L_S 1dt=21+k—j—(k—j)2_
27 JGge_y2

There is one term for each integer j satisfying 0 < j < k—Vk. Hence

2¥—1 L
2"“5 lIf(z""+r) S@E +x,+ 1) dt = 21+KK 3 2@/,

Gk+1 a= 1 J

where the sum extends over those integers j such that 0 < j < k—vVk. The
last term in this sum is the largest so it follows that

2k
2k+1, S 2 —If(z(’"+t) — [P +x, +1)| dt
G+l a=1

< 21+k=K? (f _\E). 2k -2k +VE
<21-k+VEk (k—JE)=0(1) as k- .
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3.5.2. In the convergence Theorem 3.3, condition (S1), the assumption that
S*(x) exists, cannot be weakened to the requirement that

lim

1
koo M(Gy) SGk J—tydt

exists.
Define the group 3¢ to be the product of countably many copies of Z;. Let

1 texk_1+Gk, k=1,2,.. ,

f(t)= —1 terk_1+Gk, k=1,2,...,
0 ¢=0.
Then f is continuous except at 0, and {5, f(0—¢) dt =0 for each k, so that
. 1
f(0) = lim 0—t)dt.
k- M(Gy) SGk / )

Nonetheless f*(0) does not exist because

1 9,
o) L
M(Gri1) dixg+Grar 2

0 J
fO—t)dt=< -1 j
1 j

The function f does however satisfy (S2), since the integrand may be rewrit-
ten in the form

my—1 1 [Pk+1~ 1 . ) 2 my—1 1 |Pr+1— 1 . 2
> —| X fO0-zP—jxe—0)5% =3 —| T Sl=z)si%*|=0
a=1 X | j=0 a=1 &| j=0

The following direct computation shows that S, (f;0) fails to converge as
n— oo,

Observe that the integral expression for the partial sum of the Fourier
series,

S,.(f;0=|_r=nD,0)d,
may be rewritten as the sum

[ seopwdi+|  f-0D0ydi=A+B.
Gk G\Gg

Now B =0, since
— )%k ,
SG\G S(=0)x% (1) D, (1) dt

mg—1

E x;kk(zm)u,,(z(“)j F(=z —t)x% (t) dt
2 Xik (z80) D, (z“")S S(=z{)x% (¢) dt

=" xﬁfk(z"")D (z"f’>f(—z&">)§ X% (1) dt,
a=1

which is 0 because {¢, xu& (¢) dt =
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In estimating A, consider the two specific sequences of partial sums cor-
responding to n=3* and n=2-3%. For n=3%, A=m [, f(—1)dt=0, s0
that if S, (f;x) converges, it must converge to 0. On the other hand, for
n=2-3%,

A=my | SO+ XD dt=my [ | [0 xm(0)dt

—=m, SGHI f=t)dt+my XG (=) ¢, dt+my SG ()¢ dt

k+1 k+1

_ox Ll 1 a1
=0+ 3 (Dot 3 iE= .

Since this value differs from 0, the sequence of partial sums cannot converge.

3.6. REMARKS. Theorem 3.3 may be regarded as an extension of the
Onneweer-Waterman Lebesgue test for the convergence of Fourier series
[2]). This theorem establishes the condition

Pr+1—1

S [f(x=t—jx) = fCO)IE% | T () dt =0(1)  as koo,

j=0

(%)

Jove

where T, ! = a/my for t € z¥) + G, as sufficient for the convergence of the
Fourier series at Lebesgue points of f. This is equivalent to our condition
(S2), as may be seen by expanding the integral in (**) into a sum of integrals
over cosets of Gy and expanding these integrals in turn into sums of integrals
over the cosets of Gy, ;. Theorem 3.3, by comparison, replaces the require-
ment that x is a Lebesgue point of f by the requirement that f*(0) exists.

References

1. C. W. Onneweer and D. Waterman, Uniform convergence of Fourier series on
groups I, Michigan Math. J. 18 (1971), 265-273.

, Fourier series of functions of harmonic bounded fluctuation on groups,
J. Analyse Math. 27 (1974), 79-93.

3. D. Waterman, A generalization of the Salem test, Proc. Amer. Math. Soc. 105
(1989), 129-133.

2.

D. H. Dezern D. Waterman
Department of Mathematics Department of Mathematics
University of North Carolina-Asheville Syracuse University

Asheville, NC 28804 Syracuse, NY 13244



