The Groups of Real Genus 4
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1. Introduction

A finite group G can be represented as a group of automorphisms of a com-
pact bordered Klein surface [14]. In other words, there is a bordered surface
on which the group G acts. The real genus p(G) [14] is the minimum alge-
braic genus of any bordered Klein surface on which G acts. This parameter
is called the “real” genus because of the important correspondence between
compact Klein surfaces and real algebraic curves [1]; the bordered surfaces
correspond to curves with real points.

The real genus parameter was introduced in [14], and numerous basic re-
sults about the parameter were obtained there. In particular, the groups with
real genus p <3 were classified. There are infinite families of groups with
p=<1. The groups of real genus 0 are the cyclic and dihedral groups [14,
Thm. 3]. The group G has real genus 1 if and only if G is Z, x D, with n
even or Z, X Z, with n even, n=4 [14, Thm. 4]. Interestingly, there are no
groups of real genus 2 [14, Thm. 5], and exactly two groups, S, and A4, have
real genus 3 [14, Thm. 6]; also see [4], [2], and [3].

Here we classify the groups with real genus 4. Let G,3 denote the non-
abelian group of order 18 that is not Dy and not Z3 X D3. Our main result is
the following.

THEOREM 1.  The finite group G has real genus 4 if and only if G is Dy X D;,
Z3 XD3, GIS! or Z3 X Z3.

We also develop some general ideas about large groups of automorphisms
of bordered surfaces. One consequence is a useful lower bound for the real
genus of a group; this lower bound applies to groups with order not divisible
by 4 and to groups that cannot be generated by involutions. In addition, we
calculate the real genus of two infinite families of supersolvable groups.

2. Preliminaries

We shall assume that all surfaces are compact. Let X be a bordered surface; X
is characterized topologically by orientability, the number k of components
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of the boundary d.X and the topological genus p. The surface X can carry a
dianalytic structure [1, p. 46] and be considered a Klein surface or a non-
singular algebraic curve over R. Thus the bordered surface X has an alge-
braic genus g, which is given by the following relation:

| 2p+k—1 if Xisorientable,
&= p+k—1 if X isnon-orientable.

The algebraic genus appears naturally in bounds for the order of an auto-
morphism group of a Klein surface ([10] and [12], among others), and the
real genus of a group is defined in terms of the algebraic genus.

Group actions on Klein surfaces have often been studied using non-
Euclidean crystallographic (NEC) groups. Let £ denote the full group of
automorphisms of the open upper half-plane U. An NEC group is a discrete
subgroup I'" of £ (with the quotient space U/T' compact). Associated with
the NEC group I is its signature, which has the form

@1 (D E e, 11 (e Pig),s s (it ooy Tis )

The quotient space X =U/T is a surface with topological genus p and k
holes. The surface is orientable if the plus-sign is used and non-orientable
otherwise. The ordinary periods m,, ..., m, are the ramification indices of
the natural quotient mapping from U to X in fibers above interior points of
X. The link periods n;,, ..., n, are the ramification indices in fibers above
points on the ith boundary component of X. Associated with the signature
(2.1) is a presentation for the NEC group I'. For more information about
signatures, see [9] and [15].

Let I' be an NEC group with signature (2.1) and assume k=1 so that
the quotient space U/T is a bordered surface. Then the non-Euclidean area
n(I') of a fundamental region for I' can be calculated directly from its sig-
nature [15, p. 235]:

w(T). 4 1 L 31 1
. —_—=y-1 - —(1——
(-2) 2 ) +i§1(1 i>+i§1 j§=:1 2( n;j )’
where v is the algebraic genus of the quotient space U/T". If A is a subgroup
of finite index in I', then

2.3) [I': Al = p(A)/u(T).

An NEC group X is called a surface group if the quotient map from U to
U/K is unramified. If the quotient space U/K has a nonempty boundary,
then KX is called a bordered surface group. Bordered surface groups contain
reflections but no other elements of finite order.

Let X be a bordered Klein surface of algebraic genus g =2. Then X can
be represented as U/K, where K is a bordered surface group with u(K) =
2w(g—1). Let G be a group of dianalytic automorphisms of the Klein sur-
face X. Then there are an NEC group I' and a homomorphism ¢: ' - G
onto G such that kernel ¢ =K.
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Involutions play an important role in group actions on bordered surfaces.
Let S be a generating set for the finitely presented group G, and let #(S) be
the number of generators of order larger than 2. We define

7(G) =minimum{z(S) | S a generating set for G}.

3. Large Groups

Especially important in the study of automorphisms of bordered Klein sur-
faces are the quadrilateral groups. An extended quadrilateral group is an
NEC group with signature

(0; +; [ 1; {(/, m, n, )},
where
1/1+1/m+1/n+1/t <2.

The group is generated by the reflections in the sides of the non-Euclidean
quadrilateral with angles n/l/, #/m, «/n, and «/¢. We shall denote a group
with this signature I'[/, mn, n, ¢].

Let X be a bordered Klein surface of algebraic genus g = 2. Then the auto-
morphism group G of X has order at most 12(g —1) [10]. This general upper
bound was established by considering all possible ramification indices of
the covering w: X — X/G and applying the Riemann-Hurwitz formula. A
careful examination of [10, §3] shows that o(G)=<6(g—1) in all but three
cases. Here we also use the ideas of Wilkie [17] to state this result in the
language of NEC groups.

PROPOSITION 1. Let G be a group of automorphisms of a bordered Klein
surface X of genus g=2. If o(G)> 6(g—1), then o(G) is one of the follow-
ing (in each case G is a quotient of the NEC group listed):

(1) o(G)=12(g—-1), I'[2,2,2,3];
(3) 0(G)=20(g—1)/3, I'[2,2,2,5].

Proof. Represent X as U/K where K is a bordered surface group, and ob-
tain an NEC group A with signature (2.1) and a homomorphism a: A- G
onto G such that kernel « = K. Then G = A/K acts on X with quotient space
Y=X/G=(U/K)/(A/K)=U/A. Let w: X - Y be the natural quotient map-
ping. Then the calculations of [10, §3] show that o(G) < 6(g—1) unless the
quotient space Y is the disc D and = is ramified above exactly four boundary
points of D; further, the ramification index in the fiber above two of these
points is 2. Applying Wilkie’s results [17, p. 96] as in the proof of Theorem 1
of [11], it follows that the group A has signature

0; +; [ 15 12,2,n,2)}.
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Now u(K)=2w(g—1) and, from (2.2), p(A)=n(1—1/n—1/t). But 0(G) =
u(K)/u(A). Now n=2, and ¢t =3,4,5 give the three largest orders. Also,
easily, if n=2and =6 or r =n=3, then o(G)<6(g—1). ]

This result places an obvious restriction on a large group of automorphisms.
Its order must be divisible by 4.

THEOREM 2. Let G be a finite group with p(G)=2. If the order of G is
not divisible by 4, then

p(G) = 1+0(G)/6.

Proof. Let G act on a bordered surface of genus p = p(G). Then, by Prop-
osition 1, 0o(G) < 6(p—1). U

If p(G) =2, then we always have p(G) =1+ 0(G)/12 [14, §4].

An extended quadrilateral group is generated by reflections, of course.
Then a large group of automorphisms of a bordered Klein surface must be
generated by involutions. Thus Proposition 1 also yields an improved lower
bound for the real genus of a group that is not generated by involutions.

THEOREM 3. Let G be a finite group with p(G)=2. If 7(G) =1, then
p(G)Y=1+0(G)/6.
Theorem 3 has some immediate applications. If the group G is not a 2-

group and the Sylow 2-subgroup of G is normal, then G is not generated by
involutions.

COROLLARY 1. Let G be a finite group that is not a 2-group and has
o(G)=2. If the Sylow 2-subgroup of G is normal in G, then

p(G)=1+0(G)/6.
COROLLARY 2. Let G be a finite nilpotent group that is not a 2-group
and has p(G)=2. Then

p(G)=1+0(G)/6.

Proof. The Sylow 2-subgroup S of G is normal but S# G. O]

Proposition 1 also improves in most cases the general upper bound 8(g —1)
for the order of a nilpotent group acting on a bordered Klein surface of
genus g [12, Thm. 1].

COROLLARY 3. Let G be a nilpotent group of automorphisms of a bor-
dered Klein surface of genus g =2. If G is not a 2-group, then o(G) <

6(g—1).

The automorphism groups of largest possible order have received the most at-
tention, of course. These groups are called M *-groups [11]. The first important
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result about M *-groups was that they must have a certain partial presenta-
tion [11, p. 5]. This was established by considering an M *-group as a quotient
of a quadrilateral group I'[2, 2, 2, 3]. We can extend the ideas in [11].

PROPOSITION 2. Let G be a finite group and I' =T'[2, 2, 2, n] an extended
quadrilateral group. If there is a homomorphism ¢: " —» G onto G such that
K =kernel ¢ is a bordered surface group, then G is generated by three dis-
tinct nontrivial elements T, U,V satisfying the relations

(3.1 T?=0U2=V*=(TU)?*=(TV)"=1.

Proof. Here n=3. The group I' is generated by the four reflections ¢, u, j,v
with defining relations

t*=ul=j2=v?=(tu)>=(uj) = (v’ = (tv)"=1.

Now the bordered surface group K contains a reflection, and since X is nor-
mal in I, it follows that one of the four generators must be in I [9, p. 119§].

Suppose ¢ € K = kernel ¢. If n is odd then clearly ve K and also tve K. If
n is even, n =4, then (fv)? € K. In either case, X would contain an analytic
element of finite order, a contradiction. Thus ¢ ¢ K. Similarly, v ¢ K.

Assume then that j e K, and set T=¢(¢), U= ¢(u), and V= ¢(v). Since
K contains no analytic elements of finite order, it is easy to see that 7, U,V
are distinct and nontrivial. These three elements clearly generate G and sat-
isfy the relations (3.1).

The argument in the other case is similar. If # € K, then choose T'= ¢(v),
U=¢(j), and V= ¢(¢). Cl

COROLLARY 4. The group G contains a subgroup isomorphic to the di-
hedral group D,,.

Proof. Let H=(T, V). Then H is a dihedral group and o(7TV) must be n,
again since K contains no analytic elements of finite order. 1

4. Applications

Before concentrating on groups of genus 4, we briefly consider some appli-
cations of these general ideas. There is a nice connection with supersolvable
groups.

The especially tractable supersolvable M *-groups were studied in [13].
Among the M*-groups, the supersolvable ones are completely determined
by their order. An M*-group G is supersolvable if and only if 0(G) =4-3"
for some positive integer r [13, Thm. 1].

THEOREM 4. Let G be a supersolvable M*-group of order 4-3", r=2. If
H is a subgroup of index 2 in G, then

p(H)=1+0(H)/6.
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Proof. The group G and its subgroup H act on a bordered surface of genus
g, where o(G)=12(g—1). Thus p(H)<g=1+0(H)/6. But o(H)=2-3'
is not divisible by 4. That p(H) is not zero or unity follows from the struc-
ture of a supersolvable M*-group [13, §3]. Hence, by Theorem 2, p(H) =
1+0(H)/6. ‘ J

If the M*-group G is not supersolvable, then it might happen that p(H) <
o(G)=1+0(H)/6. For example, Z, X S, is an M*-group [10] and thus has
real genus 5, but p(S,) =3.

We apply Theorem 4 to an infinite family of groups. Let G %" be the
group with generators 4, B, C and defining relations

A"=BI9=C"=(AB)?>=(BC)>*=(CA)>*=(ABC)*=1.

Also, let (I, m, n; k) denote the group with generators R, S, T and defining
relations

R'=8"=(RS)"=(RIS"IRS)*=1.

These related families contain many important groups, and were studied in
[5]; see also [6].

Any finite group G*%" is an M*-group, and any M*-group is a quotient
of some group G*%7 {7, §5]. In particular, the group G* %2 is an M*-group
of order 12¢2 [6, p. 139]. Thus we have

p(G3,6,2t) — 1+t2.

In general, the group G* %2/ has two subgroups of index 2, (2, 3, 6; ¢) and
(2,3,2¢;3) [5, p. 109]. Now assume ¢ = 3". Then the M*-group G*%?2 has
order 12¢% =4.327*1 and therefore is supersolvable.

COROLLARY 5. Ift=3",n=1, then
0(2,3,6;)=1+¢t* and p(2,3,2t;3)=14+12.

5. Genus 4

Theorem 4 is also relevant to our classification problem, since the M *-group
D3 X Dj is supersolvable [13]. The group H = D3 X D; has subgroups of
index 2 isomorphic to Z; X D; and G,3. (Let K be the Sylow 3-subgroup
of H, and apply the correspondence theorem to the quotient map n: H—
H/K = Z, X Z,. The subgroup isomorphic to Gz corresponds to {(1, 1)>.) The
group G is denoted ((3, 3, 3;2)) in [6, p. 134]. By Theorem 4, p(Z3; X D3) =
p(Gig) =4. In addition, p(Z3X Z;) =4 [14, §7]. Hence D3 X D; and its sub-
groups Z; X D3, Gz, and Z3 X Z; have real genus 4.

We shall consider group actions on bordered surfaces of algebraic genus 4.
There are seven topological types (or species) of surfaces of this genus; three
are orientable. Suppose G is a group with p = p(G)=4. Then o(G)<36=
12(p—1). But the only M *-group of order 36 is D5 X D5 [7], so we may assume
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that o(G) < 36. Then, by Proposition 1, if o(G) > 18 then o(G) is either 20
or 24. The only group with order less than 16 and real genus 4 is Z3; X Z; [14,
§7]. A group of order 17 is cyclic, of course, and has real genus 0. There-
fore, to complete the classification of the groups with real genus 4, we need
only consider groups of orders 24, 20, 18, and 16. We shall generally use the
notation of [6, pp. 134, 135], where there is a table of non-abelian groups of
order less than 32.

6. Groups of Order 24

There are 15 groups of order 24; three of these are abelian. No group of this
order has real genus 4. Some have lower genus. The groups Z,, and D),
have real genus O [14, Thm. 3], while Z, X Z,;, and Z, X D¢ have real genus 1
[14, Thm. 4]. Also, p(S4) =3 [14, Thm. 6].

The remaining groups have real genus 5 or greater. For m = 2, let H,,, denote
the dicyclic group (2, 2, m) of order 4m. Then p(Hg) =13 and p(Z, X H3) =
p(H;)=6 [14, Thm. 8]. Most of the remaining groups can be handled with
the results of Section 3. The remaining abelian group Z, X Z, X Z4 and the
groups Z; X Q and Z; X D, are nilpotent; by Corollary 2, the real genus of
each is at least 5. Also the Sylow 2-subgroup of Z,x A, is normal; thus
p(Z, X Ay) =5 by Corollary 1.

Let B denote the binary tetrahedral group (2, 3, 3). The group B has A, as
a quotient group [6, p. 68]. It follows that the Sylow 2-subgroup of B must
be normal. Hence p(B)=5.

Now let G be a group of order 24 that acts on a bordered surface of genus
g=4. Then 24 = 8(g—1), and G must contain a subgroup isomorphic to D,
by Proposition 1 and Corollary 4. In other words, a Sylow 2-subgroup of G
must be dihedral. A Sylow 2-subgroup of Z, X D; is isomorphic to Z, X Z,,
of course, and the ZS-metacyclic group (-2, 2, 3) has a cyclic Sylow 2-
subgroup [6, p. 11]. Hence neither of these two groups has real genus 4.

There is one remaining group of order 24 to consider. Let G,4 be the
group with generators R and S and defining relations

R*=8%=(RS)*=(R7!S)*=1.

This group is denoted (4,6(2,2) in [6, p. 135]. It is not hard to see that
R?S=SR?, and in fact the center Z(G,,) =(R?). Also, a Sylow 2-subgroup
of G,, is dihedral, isomorphic to (R, S3).

Suppose G,4 acts on a bordered surface X with algebraic genus 4 and &
boundary components. Let A be the subgroup of G,, that fixes each compo-
nent of d.X; H is either a dihedral group or a cyclic group with [G,4: H] < k!
[14, §6]. If kK =1 then G,, itself would be cyclic or dihedral. If X were a sphere
with five holes or a real projective plane with four holes, then G,4 would act
on a sphere (and have symmetric genus 0) [14, §5]. But G,, does not act on
the sphere [8, pp. 287-291]. Thus we may assume that topologically X is one
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of the three remaining species, orientable with kK = 3 or non-orientable with
k=2or k=3.

First suppose X to be non-orientable with £ =2. Since H is cyclic or di-
hedral, H must have index 2 in G,4. Let W be the surface obtained from X
by attaching a disc to one of the boundary components. Then the group H
acts on W, a non-orientable surface with one hole and algebraic genus 3. It
follows that o(H) < 8 [3, p. 42], an obvious contradiction.

Next suppose X to be one of the species with Kk =3. Then the quotient
space X/G,, is the disc D, and the quotient map 7 : X — D is ramified above
exactly four points of D, all on dD, with ramification indices 2, 2, 2, 4 (see
the proof of Proposition 1). Then let the center Z act on X and set X'=
X/Z. Let g’ be the genus of X’ and let ¢: X - X’ be the quotient map. Then
G,4/Z acts on X', and we have the following diagram of quotient maps:

Applying the Riemann-Hurwitz formula for coverings of bordered sur-
faces [10, p. 201] to » yields

2g'—2=12[—2+2<1—;1?)],

where the ¢;’s are the ramification indices. The possible values for these in-
dices are quite limited since = = v ¢, and it is easy to see that the only solu-
tion is g’=1 (and ¢; =2 for i =1, ..., 4). Thus the quotient space X' =X/Z
has genus 1.

Let C be any one of the three components of d.X, and let

H.={f€ Gyl f(C)=C].

Since G,, is transitive on d.X (X/G,4 is the disc), it is basic that [G,4: H.] =
k=3. Thus H, is a Sylow 2-subgroup and H,.= D,. Now H, acts as a di-
hedral group on C. But 0(Z)=2 so that ZC H,. Hence Z=Z(H,) and Z
must act on C as a rotation. Then ¢(C) is a component of dX’, and thus X’
would have (at least) three boundary components. This is not possible, since
X’ has genus 1. Therefore G,, does not act on a bordered surface of alge-
braic genus 4, and there is no group of order 24 with p=4.

7. Groups of Order 20, 18, and 16

There are five groups of order 20. None have real genus 4. The groups Z,,
and D,, have real genus 0 and p(Z, X Z;¢) =1. The dicyclic group H; has
real genus 11 [14, Thm. §].

The only group of order 20 left to consider is the K-metacyclic group M.
The group M has generators S and T and defining relations [6, p. 134}

SS=T4=1, T1ST=S2
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Each element of M can be written S'7/, where 0<i<4and 0<j<3. Itis
not hard to see that M has exactly five involutions, the elements of the form
S‘T2. But each of these elements is in the normal subgroup (S, 72) = D;.
Thus M is not generated by involutions, and 7(M ) = 1. Now, by Theorem 3,
o(M)=S5.

There are five groups of order 18, and two of these, Z; X D; and G4, have
real genus 4. The groups Z;3 and Dy have real genus 0.

Let G=Z; X Z¢, the remaining group of order 18, and let G act on a bor-
dered surface X of algebraic genus g. We shall show that g =7. We know
g=4. There are an NEC group I"' and a homomorphism ¢:I' - G onto G
such that X = U/K, where K =kernel ¢ is a bordered surface group with
p(K)=2m(g—1). Let v denote the algebraic genus of the quotient space
Y= U/T, and simplify the canonical presentation for I" as in [14, §2]. In this
simplified presentation there must be at least two elements with order larger
than 2, since I'/K = G. It follows (as in [14]) that

(7.1) y+r=2.

From (2.3) we obtain
(g—1)/18 =pu(T')/2m,

which is given by (2.2). We obtain a lower bound for this expression. If
v =2, then easily g=19. Suppose y=1. From (7.1) we have r=1 with at
least one ordinary period larger than 2. Thus (g—1)/18=2/3 and g =13.
Now assume v =0 so that Y is the disc D. Using (7.1) again, we have r=2
and at least two of the ordinary periods are greater than 2. Then (g—1)/18 =
—1+4+2-2/3 and g="7. Hence p(G)=7.

Now let G be a group of order 16, and suppose that G acts on a bordered
surface X of algebraic genus 4. Then represent X as U/K, where K is a bor-
dered surface group, and proceed as in the proof of Proposition 1. Obtain an
NEC group I"' and a homomorphism ¢:I' - G onto G such that kernel ¢ =
K. Let G act on X and consider the quotient mapping =: X — X/G. Then a
careful examination of the calculations of [10, §3] shows that there is only
one possibility for the ramification indices of w, and consequently G is a
quotient of an extended quadrilateral group I'[2, 2, 2, 8]. Therefore, by Cor-
ollary 4, G must be the dihedral group Dg. Thus Dy is the only group of
order 16 that acts on a bordered surface of algebraic genus 4, and p(Dg) =0.
No group of order 16 has real genus 4.

8. Real Genus 5

It is now natural to consider the problem of classifying the groups of real
genus 5. There are at least five such groups. First Z, xS, is an M*-group
[10]. Hence Z, X S, and its subgroup Z, X A, have real genus 5. The quater-
nion group Q and (Z,)* also have this real genus [14, §7]. Using the upper
bound for the real genus of a group from [14, §3], it is not hard to see that
the group G of order 16 denoted (4,42, 2) in [6, p. 134] has p(G) =5.
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We conjecture that there are other groups (at least one or two) of real
genus 5.
Finally, we would like to thank the referee for several helpful suggestions.
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